1
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Dlamini SB, Mlambo V, Mnisi CM, Ateba CN. Virulence, multiple drug resistance, and biofilm-formation in Salmonella species isolated from layer, broiler, and dual-purpose indigenous chickens. PLoS One 2024; 19:e0310010. [PMID: 39466757 PMCID: PMC11515961 DOI: 10.1371/journal.pone.0310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Globally, the significant risk to food safety and public health posed by antimicrobial-resistant foodborne Salmonella pathogens is driven by the utilization of in-feed antibiotics, with variations in usage across poultry production systems. The current study investigated the occurrence of virulence, antimicrobial resistant profiles, and biofilm-forming potentials of Salmonella isolates sourced from different chicken types. A total of 75 cloacal faecal samples were collected using sterile swabs from layer, broiler, and indigenous chickens across 15 poultry farms (five farms per chicken type). The samples were analysed for the presence of Salmonella spp. using species-specific PCR analysis. Out of the 150 presumptive isolates, a large proportion (82; 55%) were confirmed as Salmonella species, comprising the serovars S. typhimurium (49%) and S. enteritidis (30%) while 21% were uncategorised. Based on phenotypic antibiotic susceptibility test, the Salmonella isolates were most often resistant to erythromycin (62%), tetracycline (59%), and trimethoprim (32%). The dominant multiple antibiotic resistance phenotypes were SXT-W-TE (16%), E-W-TE (10%), AML-E-TE (10%), E-SXT-W-TE (13%), and AMP-AML-E-SXT-W-TE (10%). Genotypic assessment of antibiotic resistance genes revealed that isolates harboured the ant (52%), tet (A) (46%), sui1 (13%), sui2 (14%), and tet (B) (9%) determinants. Major virulence genes comprising the invasion gene spiC, the SPI-3 encoded protein (misL) that is associated with the establishment of chronic infections and host specificity as well as the SPI-4 encoded orfL that facilitates adhesion, autotransportation and colonisation were detected in 26%, 16%, and 14% of the isolates respectively. There was no significant difference on the proportion of Salmonella species and the occurrence of virulence and antimicrobial resistance determinants among Salmonella isolates obtained from different chicken types. In addition, neither the chicken type nor incubation temperature influenced the potential of the Salmonella isolates to form biofilms, although a large proportion (62%) exhibited weak to strong biofilm-forming potentials. Moderate to high proportions of antimicrobial resistant pathogenic Salmonella serovars were detected in the study but these did not vary with poultry production systems.
Collapse
Affiliation(s)
- Sicelo B. Dlamini
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Victor Mlambo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Caven Mguvane Mnisi
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Collins Njie Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| |
Collapse
|
3
|
Coelho MMS, Davanzo EFA, dos Santos RL, Castro VHDL, da Costa HMB, Dallago BSL, Perecmanis S, Santana AP. Escherichia coli and Enterobacteriaceae Counts, Virulence Gene Profile, Antimicrobial Resistance, and Biofilm Formation Capacity during Pig Slaughter Stages. Life (Basel) 2024; 14:1261. [PMID: 39459561 PMCID: PMC11508742 DOI: 10.3390/life14101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to count Enterobacteriaceae and Escherichia coli in different locations on pig carcasses (shank, loin, abdomen, shoulder, and jowl) from two slaughterhouses (A and B) between September 2019 and July 2021 during different slaughter stages (after bleeding, after passing through the epilator machine, after manual toileting in the dirty area, before and after evisceration, and after the final washing), as well as verify antimicrobial resistance and biofilm formation capacity. The main points of Enterobacteriaceae and E. coli contamination were identified in the two slaughterhouses through three collections. The stages with the highest counts were post-bleeding and evisceration in both slaughterhouses and after manual toileting in slaughterhouse B in the first collection. Most E. coli isolates were resistant to multiple antimicrobials, with higher resistance frequencies to amoxicillin, ampicillin, chloramphenicol, sulfonamides, and streptomycin. The virulence genes eae, stx1, and stx2 were also detected. Three isolates had all three genes and exhibited resistance to at least six antimicrobial classes (β-lactams, macrolides, aminoglycosides, sulfonamides, amphenicols, and quinolones). E. coli isolates also showed a high frequency of strains with moderate and strong in vitro biofilm-forming capacity. This is the first study to characterize microbial contamination by pig slaughter stage in the Federal District region, demonstrating the critical points for hygienic production. E. coli was isolated from the surface of pig carcasses, as well as the virulence genes stx1, stx2, and eae were detected. The multi-antimicrobial resistant isolates also had a moderate-to-strong biofilm formation capacity, thus demonstrating risks to public health.
Collapse
Affiliation(s)
| | | | - Rebecca Lavarini dos Santos
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Federal District, Brasília 70910-900, Brazil; (M.M.S.C.); (E.F.A.D.); (V.H.d.L.C.); (H.M.B.d.C.); (B.S.L.D.); (S.P.); (A.P.S.)
| | | | | | | | | | | |
Collapse
|
4
|
Carvalho D, Chitolina GZ, Wilsmann DE, Lucca V, de Emery BD, Borges KA, Furian TQ, dos Santos LR, Moraes HLDS, do Nascimento VP. Development of Predictive Modeling for Removal of Multispecies Biofilms of Salmonella Enteritidis, Escherichia coli, and Campylobacter jejuni from Poultry Slaughterhouse Surfaces. Foods 2024; 13:1703. [PMID: 38890930 PMCID: PMC11172265 DOI: 10.3390/foods13111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Salmonella Enteritidis, Escherichia coli, and Campylobacter jejuni are among the most common foodborne pathogens worldwide, and poultry products are strongly associated with foodborne pathogen outbreaks. These pathogens are capable of producing biofilms on several surfaces used in the food processing industry, including polyethylene and stainless steel. However, studies on multi-species biofilms are rare. Therefore, this study aimed to develop predictive mathematical models to simulate the adhesion and removal of multispecies biofilms. All combinations of microorganisms resulted in biofilm formation with differences in bacterial counts. E. coli showed the greatest ability to adhere to both surfaces, followed by S. Enteritidis and C. jejuni. The incubation time and temperature did not influence adhesion. Biofilm removal was effective with citric acid and benzalkonium chloride but not with rhamnolipid. Among the generated models, 46 presented a significant coefficient of determination (R2), with the highest R2 being 0.88. These results provide support for the poultry industry in creating biofilm control and eradication programs to avoid the risk of contamination of poultry meat.
Collapse
Affiliation(s)
- Daiane Carvalho
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| | - Daiane Elisa Wilsmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| | - Vivian Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| | - Brunna Dias de Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| | - Luciana Ruschel dos Santos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo 99052-900, RS, Brazil;
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil (T.Q.F.); (H.L.d.S.M.); (V.P.d.N.)
| |
Collapse
|
5
|
Pottker ES, Rodrigues LB, Borges KA, de Souza SO, Furian TQ, Pippi Salle CT, de Souza Moraes HL, do Nascimento VP. Bacteriophages as an alternative for biological control of biofilm-forming Salmonella enterica. FOOD SCI TECHNOL INT 2024; 30:197-206. [PMID: 36529875 DOI: 10.1177/10820132221144341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Salmonellosis is one of the most common foodborne diseases worldwide. Surface adherence and biofilm formation are among the main strategies evolved by Salmonella to survive under harsh conditions and are risk factors for its spread through the food chain. Owing to the increase in antimicrobial resistance, there is a growing need to develop other methods to control foodborne pathogens, and bacteriophages have been suggested as a potential alternative for this purpose. The aim of this study was to evaluate bacteriophages as a biological control of Salmonella enterica serotypes to inhibit and remove bacterial biofilms. A total of 12 S. enterica isolates were selected for this study, all of which were biofilm producers. Seven bacteriophages were tested, individually and in a cocktail, for their host range and efficiency of plating (EOP). The phage cocktail was evaluated for its antibiofilm effect against the Salmonella biofilms. Phages UPF_BP1, UPF_BP2, UPF_BP3, UPF_BP6, and 10:2 possessed a broad lytic spectrum and could infect all S. enterica strains. Phages 10:2, UPF_BP6, and UPF_BP3 had high EOP in 10, 9, and 9 out of the 12 S. enterica strains, respectively. The cocktail was able to infect all S. enterica strains and had a high EOP in 10 out of 12 S. enterica isolates, presenting a broader host range than any of the tested single phages. A wide variation of inhibition among strains was observed, ranging from 14.72% to 88.53%. Multidrug-resistant and strong biofilm producer strains showed high biofilm inhibition levels by phage cocktail. Our findings demonstrate the ability of the cocktail to prevent biofilm formation and remove formed biofilms of Salmonella. These results indicate that the phage cocktail is a promising candidate to be used as an alternative for the control of Salmonella biofilms through surface conditioning.
Collapse
Affiliation(s)
- Emanuele Serro Pottker
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Beatriz Rodrigues
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, RS, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Pradhan J, Pradhan D, Sahu JK, Mishra S, Mallick S, Das S, Negi VD. A novel rspA gene regulates biofilm formation and virulence of Salmonella Typhimurium. Microb Pathog 2023; 185:106432. [PMID: 37926364 DOI: 10.1016/j.micpath.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Salmonella spp. are facultative anaerobic, Gram-negative, rod-shaped bacteria and belongs to the Enterobacteriaceae family. Although much has been known about Salmonella pathogenesis, the functional characterizations of certain genes are yet to be explored. The rspA (STM14_1818) is one such gene with putative dehydratase function, and its role in pathogenesis is unknown. The background information showed that rspA gene is upregulated in Salmonella when it resides inside macrophages, which led us to investigate its role in Salmonella pathogenesis. We generated the rspA knockout strain and complement strain in S. Typhimurium 14028. Ex-vivo and in-vivo infectivity was looked at macrophage and epithelial cell lines and Caenorhabditis elegans (C. elegans). The mutant strain differentially formed the biofilm at different temperatures by altering the expression of genes involved in the synthesis of cellulose and curli. Besides, the mutant strain is hyperproliferative intracellularly and showed increased bacterial burden in C. elegans. The mutant strain became more infectious and lethal, causing faster death of the worms than the wild type, and also modulates the worm's innate immunity. Thus, we found that the rspA deletion mutant was more pathogenic. In this study, we concluded that the rspA gene differentially regulates the biofilm formation in a temperature dependent manner by modulating the genes involved in the synthesis of cellulose and curli and negatively regulates the Salmonella virulence for longer persistence inside the host.
Collapse
Affiliation(s)
- Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Jugal Kishor Sahu
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Satyajit Mishra
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Swarupa Mallick
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Surajit Das
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
7
|
Carvalho D, Chitolina GZ, Wilsmann DE, Lucca V, Dias de Emery B, Borges KA, Furian TQ, Salle CTP, Moraes HLDS, do Nascimento VP. Adhesion capacity of Salmonella Enteritidis, Escherichia coli and Campylobacter jejuni on polystyrene, stainless steel, and polyethylene surfaces. Food Microbiol 2023; 114:104280. [PMID: 37290865 DOI: 10.1016/j.fm.2023.104280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 06/10/2023]
Abstract
Poultry products are recognized as the main source of Salmonella and Campylobacter jejuni infections in humans, while avian pathogenic Escherichia coli may have zoonotic potential and can be transmitted from chicken meat to humans. Biofilm formation contributes to their spread through the food chain. This study aimed to compare the adhesion of Salmonella Enteritidis, E. coli, and C. jejuni strains isolated from poultry, food implicated in outbreaks, and poultry slaughterhouses on three surfaces widely used in poultry production (polystyrene, stainless steel, and polyethylene). S. Enteritidis and E. coli adhesion on the three surfaces tested were not significantly different (p > 0.05). Interestingly, the number of C. jejuni cells on stainless steel (4.51-4.67 log10 CFU/cm.-2) was significantly higher (p = 0.0004) than that on polystyrene (3.80-4.25 log10 CFU/cm.-2), but similar (p > 0.05) to that on polyethylene (4.03-4.36 log10 CFU/cm.-2). However, C. jejuni adhesion was significantly lower (p < 0.05) than S. Enteritidis and E. coli adhesion, regardless of the surface evaluated. In addition, scanning electron microscopy analyses have shown an increased irregularity of the stainless steel surface when compared to polyethylene and polystyrene. These irregularities form small spaces ideal for microbial adhesion.
Collapse
Affiliation(s)
- Daiane Carvalho
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daiane Elisa Wilsmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vivian Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Brunna Dias de Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Wilsmann DE, Furian TQ, Carvalho D, Chitolina GZ, Lucca V, Emery BD, Borges KA, Martins AC, Pontin KP, Salle CTP, de Souza Moraes HL, do Nascimento VP. Antibiofilm activity of electrochemically activated water (ECAW) in the control of Salmonella Heidelberg biofilms on industrial surfaces. Braz J Microbiol 2023; 54:2035-2045. [PMID: 37184738 PMCID: PMC10485189 DOI: 10.1007/s42770-023-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
Owing to its antimicrobial activity, electrochemically activated water (ECAW) is a potential alternative to chemical disinfectants for eliminating foodborne pathogens, including Salmonella Heidelberg, from food processing facilities. However, their antibiofilm activity remains unclear. This study aimed to evaluate the antibiofilm activity of ECAW against S. Heidelberg biofilms formed on stainless steel and polyethylene and to determine its corrosive capacity. ECAW (200 ppm) and a broad-spectrum disinfectant (0.2%) were tested for their antibiofilm activity against S. Heidelberg at 25 °C and 37 °C after 10 and 20 min of contact with stainless steel and polyethylene. Potentiostatic polarization tests were performed to compare the corrosive capacity of both compounds. Both compounds were effective in removing S. Heidelberg biofilms. Bacterial counts were significantly lower with ECAW than with disinfectant in polyethylene, regardless the time of contact. The time of contact and the surface significantly influenced the bacterial counts of S. Heidelberg. Temperature was not an important factor affecting the antibiofilm activities of the compounds. ECAW was less corrosive than the disinfectant. ECAW demonstrated a similar or even superior effect in the control of S. Heidelberg biofilms, when compared to disinfectants, reducing bacterial counts by up to 5 log10 CFU cm-2. The corrosion of stainless steel with ECAW was similar to that of commercial disinfectants. This technology is a possible alternative for controlling S. Heidelberg in the food production chain.
Collapse
Affiliation(s)
- Daiane Elisa Wilsmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Daiane Carvalho
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vivian Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Brunna Dias Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Abrahão Carvalho Martins
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karine Patrin Pontin
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| |
Collapse
|
9
|
Dias de Emery B, Zottis Chitolina G, Qadir MI, Quedi Furian T, Apellanis Borges K, de Souza Moraes HL, Pippi Salle CT, Pinheiro do Nascimento V. Antimicrobial and antibiofilm activity of silver nanoparticles against Salmonella Enteritidis. Braz J Microbiol 2023; 54:285-292. [PMID: 36348257 PMCID: PMC9944331 DOI: 10.1007/s42770-022-00868-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Salmonella enterica serotype Enteritidis is one of the main pathogens associated with foodborne illnesses worldwide. Biofilm formation plays a significant role in the persistence of pathogens in food production environments. Owing to an increase in antimicrobial resistance, there is a growing need to identify alternative methods to control pathogenic microorganisms in poultry environments. Thus, this study aimed to synthesize silver nanoparticles (AgNPs) and evaluate their antibiofilm activity against poultry-origin Salmonella Enteritidis in comparison to a chemical disinfectant. AgNPs were synthesized, characterized, and tested for their minimum inhibitory concentration, minimum bactericidal concentration, and antibiofilm activity against S. Enteritidis strains on polyethylene surfaces. The synthesized AgNPs, dispersed in a liquid medium, were spherical in shape with a mean diameter of 6.2 nm. AgNPs exhibited concentration-dependent bactericidal action. The bacterial reduction was significantly higher with AgNPs (3.91 log10 CFU [Formula: see text] cm-2) than that with sanitizer (2.57 log10 CFU ∙ cm-2). Regarding the time of contact, the bacterial count after a contact time of 30 min was significantly lower than that after 10 min. The AgNPs exhibited antimicrobial and antibiofilm activity for the removal of biofilms produced by S. Enteritidis, demonstrating its potential as an alternative antimicrobial agent. The bactericidal mechanisms of AgNPs are complex; hence, the risk of bacterial resistance is minimal, making nanoparticles a potential alternative for microbial control in the poultry chain.
Collapse
Affiliation(s)
- Brunna Dias de Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Muhammad Irfan Qadir
- Laboratório de Catálise Molcular, Instituto de Química, Universidade Federal do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Rio Grande Do Sul, 91501-570, Brazil
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil.
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| |
Collapse
|
10
|
Antimicrobial and Antibiofilm Effect of Commonly Used Disinfectants on Salmonella Infantis Isolates. Microorganisms 2023; 11:microorganisms11020301. [PMID: 36838265 PMCID: PMC9958858 DOI: 10.3390/microorganisms11020301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Infantis is the most prevalent serovar in broilers and broiler meat in the European Union. The aim of our study was to test the biofilm formation and antimicrobial effect of disinfectants on genetically characterized S. Infantis isolates from poultry, food, and humans. For the biofilm formation under various temperature conditions (8 °C, 20 °C, and 28 °C) and incubation times (72 h and 168 h), the crystal violet staining method was used. The evaluation of the in vitro antimicrobial effect of Ecocid® S, ethanol, and hydrogen peroxide was determined using the broth microdilution method. The antibiofilm effect of subinhibitory concentration (1/8 MIC) of disinfectants was then tested on S. Infantis 323/19 strain that had the highest biofilm formation potential. Our results showed that the biofilm formation was strain-specific; however, it was higher at 20 °C and prolonged incubation time. Moreover, strains carrying a pESI plasmid showed higher biofilm formation potential. The antibiofilm potential of disinfectants on S. Infantis 323/19 strain at 20 °C was effective after a shorter incubation time. As shown in our study, more effective precautionary measures should be implemented to ensure biofilm prevention and removal in order to control the S. Infantis occurrence.
Collapse
|
11
|
Factors Influencing Biofilm Formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from Human Milk Determined by PCA Analysis. Foods 2022; 11:foods11233862. [PMID: 36496670 PMCID: PMC9738827 DOI: 10.3390/foods11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Bacteria enter milk during poor hygiene practices and can form a biofilm on surfaces that come into contact with human milk. The presence of a biofilm increases the risk of infections among newborns as bacteria protected by biofilm are resistant to washing and disinfection processes. The formation of the biofilm depends on the microbial species, environmental conditions, and the specific materials colonized. The aim of this study is to analyze the effects of factors such as temperature, incubation time, and initial cell concentration on biofilm formation by pathogenic bacteria isolated from human milk on model hydrophobic polystyrene surfaces. Model studies confirm that pathogenic bacteria appearing in human milk as a result of cross-contamination tend to form a biofilm. The majority of isolates formed biofilm at both 25 and 37 °C after 12 h at 1 × 103 CFU/mL inoculum count. Multivariate principal component analysis (PCA) showed that at lower temperatures, biofilm formation by bacterial isolates was the main determinant of biofilm formation, other factors were less important; however, at 37 °C, time was a factor in biofilm formation. The model research performed underlines the importance of maintaining the proper hygiene of rooms, surfaces, and devices for expressing, storing, and preparing mothers' milk and powdered infant formula (PIF) in facilities responsible for feeding newborns and premature babies.
Collapse
|
12
|
Antibiofilm activity of a lytic Salmonella phage on different Salmonella enterica serovars isolated from broiler farms. Int Microbiol 2022; 26:205-217. [PMID: 36334144 PMCID: PMC10148789 DOI: 10.1007/s10123-022-00294-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
AbstractBacteriophages have been mainly used in treating infections caused by planktonic bacterial cells in the veterinary sector. However, their applications as antibiofilm agents have received little attention. Accordingly, a previously isolated Salmonella infecting Siphoviridae phage was investigated for host range against 15 Salmonella enterica isolates (S. Cape, S. Gallinarum, 4 S. Enteritidis, 3 S. Montevideo, S. Uno, S. Oritamerin, S. Belgdam, S. Agona, S. Daula, and S. Aba) recovered from the litters of commercial broiler farms. All S. enterica isolates were examined for their biofilm activity using a microtiter plate assay and for adrA, csgD, and gcpA genes using conventional PCR. The phage efficacy against established biofilms produced by the selected seven S. enterica isolates (S. Gallinarum, S. Enteritidis, S. Montevideo, S. Uno, S. Oritamerin, S. Belgdam, and S. Agona) was assessed using microtiter plate assay and reverse transcriptase real-time PCR over different incubation times of 5 and 24 h. All S. enterica isolates were strong biofilm formers. Moreover, the phage effectively reduced the biofilm activity of the established S. enterica biofilms in the microtiter plate assay using the independent sample t-test (P < 0.050). Furthermore, the relative expression levels of csgD, gcpA, and adrA genes in the biofilm cells of S. enterica isolate after phage treatment were significantly up-regulated to variable degrees using the independent sample t-test (P < 0.050). In conclusion, the present study revealed the potential use of Salmonella phage in reducing established biofilms produced by S. enterica serovars isolated from broiler farms.
Collapse
|
13
|
Voss-Rech D, Ziech RE, Vaz CSL, Coldebella A, Kuchiishi SS, Balzan C, Matter L, Vargas ÁC, Botton SA. Association between antimicrobial resistance and biofilm forming ability of Salmonella enterica serotypes from commercial broiler farms in Brazil. Br Poult Sci 2022; 64:224-230. [PMID: 36259551 DOI: 10.1080/00071668.2022.2136511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study determined the antimicrobial resistance profile and the biofilm-forming ability of Salmonella enterica strains isolated from commercial broiler houses over a three-year period in southern Brazil. 2. Of the 720 drag swabs analysed, 37 (5.1%) tested positive for non-typhoidal Salmonella spp. and S. Heidelberg was the most frequent serovar. 3. Among the antimicrobial resistant strains (83.8%; 31/37), resistance was most common to tetracycline, ampicillin and nalidixic acid. Multidrug resistance was found in 65% (24/37) of the isolates, with a large proportion of multidrug resistant S. Heidelberg strains (81%; 13/16). 4. In total, 65% (24/37) of the isolates showed the ability to produce biofilm and multiple antimicrobial resistance was negatively correlated with biofilm formation. 5. Strains susceptible to all tested antimicrobials tended to form stronger biofilms than multidrug resistant ones. This suggested that Salmonella spp. with less antimicrobial resistance depend more on the protection provided by biofilm to survive in the farm environment.
Collapse
Affiliation(s)
- D Voss-Rech
- Embrapa Suínos e Aves, Concórdia, SC, Brazil.,Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - R E Ziech
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - C S L Vaz
- Embrapa Suínos e Aves, Concórdia, SC, Brazil
| | | | - S S Kuchiishi
- Centro de Diagnóstico de Sanidade Animal, Concórdia, SC, Brazil
| | - C Balzan
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - L Matter
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Á C Vargas
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - S A Botton
- Programa de Pós-graduação em Medicina Veterinária. Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
14
|
dos Santos RL, Davanzo EFA, Palma JM, Castro VHDL, da Costa HMB, Dallago BSL, Perecmanis S, Santana ÂP. Molecular characterization and biofilm-formation analysis of Listeria monocytogenes, Salmonella spp., and Escherichia coli isolated from Brazilian swine slaughterhouses. PLoS One 2022; 17:e0274636. [PMID: 36126071 PMCID: PMC9488830 DOI: 10.1371/journal.pone.0274636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to verify the presence of Listeria monocytogenes, Salmonella spp., and Escherichia coli in two Brazilian swine slaughterhouses, as well as to perform antibiograms, detect virulence and antimicrobial resistance genes, and evaluate the in vitro biofilm-forming capability of bacterial isolates from these environments. One Salmonella Typhi isolate and 21 E. coli isolates were detected, while L. monocytogenes was not detected. S. Typhi was isolated from the carcass cooling chamber’s floor, resistant to several antimicrobials, including nalidixic acid, cefazolin, chloramphenicol, doxycycline, streptomycin, gentamicin, tetracycline, and sulfonamide, and contained resistance genes, such as tet(B), tet(C), tet(M), and ampC. It also showed moderate biofilm-forming capacity at 37°C after incubating for 72 h. The prevalence of the 21 E. coli isolates was also the highest on the carcass cooling chamber floor (three of the four samplings [75%]). The E. coli isolates were resistant to 12 of the 13 tested antimicrobials, and none showed sensitivity to chloramphenicol, an antimicrobial prohibited in animal feed since 2003 in Brazil. The resistance genes MCR-1, MCR-3, sul1, ampC, clmA, cat1, tet(A), tet(B), and blaSHV, as well as the virulence genes stx-1, hlyA, eae, tir α, tir β, tir γ, and saa were detected in the E. coli isolates. Moreover, 5 (23.8%) and 15 (71.4%) E. coli isolates presented strong and moderate biofilm-forming capacity, respectively. In general, the biofilm-forming capacity increased after incubating for 72 h at 10°C. The biofilm-forming capacity was the lowest after incubating for 24 h at 37°C. Due to the presence of resistance and virulence genes, multi-antimicrobial resistance, and biofilm-forming capacity, the results of this study suggest a risk to the public health as these pathogens are associated with foodborne diseases, which emphasizes the hazard of resistance gene propagation in the environment.
Collapse
Affiliation(s)
- Rebecca Lavarini dos Santos
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
- * E-mail:
| | | | - Joana Marchesini Palma
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
| | | | | | - Bruno Stéfano Lima Dallago
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Simone Perecmanis
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
| | - Ângela Patrícia Santana
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Federal District, Brazil
| |
Collapse
|
15
|
Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, Ikuta N, Lunge VR. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 2022; 9:405. [PMID: 36006320 PMCID: PMC9415136 DOI: 10.3390/vetsci9080405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella infects poultry, and it is also a human foodborne pathogen. This bacterial genus is classified into several serovars/lineages, some of them showing high antimicrobial resistance (AMR). The ease of Salmonella transmission in farms, slaughterhouses, and eggs industries has made controlling it a real challenge in the poultry-production chains. This review describes the emergence, dissemination, and AMR of the main Salmonella serovars and lineages detected in Brazilian poultry. It is reported that few serovars emerged and have been more widely disseminated in breeders, broilers, and layers in the last 70 years. Salmonella Gallinarum was the first to spread on the farms, remaining as a concerning poultry pathogen. Salmonella Typhimurium and Enteritidis were also largely detected in poultry and foods (eggs, chicken, turkey), being associated with several human foodborne outbreaks. Salmonella Heidelberg and Minnesota have been more widely spread in recent years, resulting in frequent chicken/turkey meat contamination. A few more serovars (Infantis, Newport, Hadar, Senftenberg, Schwarzengrund, and Mbandaka, among others) were also detected, but less frequently and usually in specific poultry-production regions. AMR has been identified in most isolates, highlighting multi-drug resistance in specific poultry lineages from the serovars Typhimurium, Heidelberg, and Minnesota. Epidemiological studies are necessary to trace and control this pathogen in Brazilian commercial poultry production chains.
Collapse
Affiliation(s)
- Diéssy Kipper
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Andréa Karoline Mascitti
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
| | - Andressa Matos Carneiro
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - André Felipe Streck
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| |
Collapse
|
16
|
Repeated sub-inhibitory doses of cassia essential oil do not increase the tolerance pattern in Listeria monocytogenes cells. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Cervantes-Huamán B, Ripolles-Avila C, Mazaheri T, Rodríguez-Jerez J. Pathogenic mono-species biofilm formation on stainless steel surfaces: Quantitative, qualitative, and compositional study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium. Molecules 2022; 27:molecules27072182. [PMID: 35408576 PMCID: PMC9000680 DOI: 10.3390/molecules27072182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimurium recovered from different abattoir samples were investigated along with the virulence genes (InvA, SdiA and Stn genes), and the antimicrobial susceptibility profile of S. typhimurium as well. The obtained results revealed that S. typhimurium contaminated abattoir samples to varying degrees. The InvA gene was investigated in all isolates, whereas the SdiA and Stn genes were observed in four and three isolates, respectively. Utilizing the disc diffusion method, S. typhimurium isolates demonstrated substantial resistance to most of the examined antibiotics with a high multiple antibiotic resistance index. S. typhimurium isolates demonstrated biofilm formation abilities to various degrees at varied temperatures levels (4 °C and 37 °C). In conclusion, the obtained samples from the research area are regarded as a potential S. typhimurium contamination source. Furthermore, garlic essential oil (GEO) has more potential to inhibit S. typhimurium biofilm at different sub-minimum inhibitory concentrations as compared to thyme essential oil (TEO). Therefore, these EOs are considered as potential natural antibacterial options that could be applied in food industry.
Collapse
|
19
|
von Hertwig AM, Prestes FS, Nascimento MS. Biofilm formation and resistance to sanitizers by Salmonella spp. Isolated from the peanut supply chain. Food Res Int 2022; 152:110882. [DOI: 10.1016/j.foodres.2021.110882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/04/2022]
|
20
|
Kim SH, Jyung S, Kang DH. Comparative study of Salmonella Typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Shatila F, Uyar E, Yalçın HT. Screening of Biosurfactant Production by Yarrowia lipolytica Strains and Evaluation of Their Antibiofilm and Anti-Adhesive Activities against Salmonella enterica ser. Enteritidis Biofilms. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172201012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Obe T, Nannapaneni R, Schilling W, Zhang L, Kiess A. Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
23
|
Obe T, Richards AK, Shariat NW. Differences in biofilm formation of Salmonella serovars on two surfaces under two temperature conditions. J Appl Microbiol 2021; 132:2410-2420. [PMID: 34821433 DOI: 10.1111/jam.15381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
AIMS Salmonella is extremely diverse, with >2500 serovars that are genetically and phenotypically diverse. The aim of this study was to build a collection of Salmonella isolates that are genetically diverse and to evaluate their ability to form biofilm under different conditions relevant to a processing environment. METHODS AND RESULTS Twenty Salmonella isolates representative of 10 serovars were subtyped using Clustered regularly interspaced short palindromic repeats (CRISPR)-typing to assess the genetic diversity between isolates of each serovar. Biofilm formation of the isolates on both plastic and stainless-steel surfaces at 25 and 15°C was assessed. At 25°C, 8/20 isolates each produced strong and moderate biofilm on plastic surface compared to stainless-steel (3/20 and 13/20 respectively). At 15°C, 5/20 produced strong biofilm on plastic surface and none on stainless-steel. Several isolates produced weak biofilm on plastic (11/20) and stainless-steel (16/20) surfaces. Serovar Schwarzengrund consistently produced strong biofilm while serovars Heidelberg and Newport produced weak biofilm. CONCLUSION These results suggest that Salmonellae differ in their attachment depending on the surface and temperature conditions encountered, which may influence persistence in the processing environment. SIGNIFICANCE AND IMPACT OF STUDY These differences in biofilm formation could provide useful information for mitigation of Salmonella in processing environments.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amber K Richards
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nikki W Shariat
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
24
|
Agostinho Davanzo EF, dos Santos RL, Castro VHDL, Palma JM, Pribul BR, Dallago BSL, Fuga B, Medeiros M, Titze de Almeida SS, da Costa HMB, Rodrigues DDP, Lincopan N, Perecmanis S, Santana AP. Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goiás, Brazil. PLoS One 2021; 16:e0259687. [PMID: 34767604 PMCID: PMC8589217 DOI: 10.1371/journal.pone.0259687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/23/2021] [Indexed: 10/26/2022] Open
Abstract
Listeria monocytogenes and Salmonella spp. are considered important foodborne pathogens that are commonly associated with foods of animal origin. The aim of this study was to perform molecular characterization of L. monocytogenes and Salmonella spp. isolated from biofilms of cattle and poultry slaughterhouses located in the Federal District and State of Goiás, Brazil. Fourteen L. monocytogenes isolates and one Salmonella sp. were detected in poultry slaughterhouses. No isolates were detected in cattle slaughterhouses. All L. monocytogenes isolates belonged to lineage II, and 11 different pulsotypes were detected. Pulsed-field gel electrophoresis analysis revealed the dissemination of two strains within one plant, in addition to the regional dissemination of one of them. The Salmonella isolate was identified via whole genome sequencing as Salmonella enterica serovar Minnesota ST548. In the sequence analysis, no premature stop codons were detected in the inlA gene of Listeria. All isolates demonstrated the ability to adhere to Caco-2 cells, while 50% were capable of invading them. Antimicrobial resistance was detected in 57.1% of the L. monocytogenes isolates, and resistance to sulfonamide was the most common feature. The tetC, ermB, and tetM genes were detected, and four isolates were classified as multidrug-resistant. Salmonella sp. was resistant to nine antimicrobials and was classified as multidrug-resistant. Resistance genes qnrB19, blaCMY-2, aac(6')-Iaa, sul2, and tetA, and a mutation in the parC gene were detected. The majority (78.5%) of the L. monocytogenes isolates were capable of forming biofilms after incubation at 37°C for 24 h, and 64.3% were capable of forming biofilms after incubation at 12°C for 168 h. There was no statistical difference in the biofilm-forming capacity under the different evaluated conditions. Salmonella sp. was capable of forming biofilms at both tested temperatures. Biofilm characterization was confirmed by collecting the samples consistently, at the same sampling points, and by assessing biofilm formation in vitro. These results highlight the potential risk of cross-contamination in poultry slaughterhouses and the importance of surveillance and pathogen control maintenance programs within the meat production industry.
Collapse
Affiliation(s)
| | | | | | - Joana Marchesini Palma
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | - Bruno Rocha Pribul
- National Reference Laboratory for Bacterial Enteric Infections, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, RJ, Brazil
| | | | - Bruna Fuga
- Laboratory of Bacterial Resistance and Therapeutic Alternatives, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Margareti Medeiros
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | | | | | - Dália dos Prazeres Rodrigues
- National Reference Laboratory for Bacterial Enteric Infections, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Nilton Lincopan
- Laboratory of Bacterial Resistance and Therapeutic Alternatives, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Simone Perecmanis
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| | - Angela Patrícia Santana
- Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
25
|
Obe T, Berrang ME, Cox NA, House SL, Shariat NW. Comparison of selective enrichment and plating media for
Salmonella
isolation from broiler carcasses. J Food Saf 2021. [DOI: 10.1111/jfs.12928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomi Obe
- Department of Population Health, Poultry Diagnostic and Research Center University of Georgia Athens Georgia USA
| | - Mark E. Berrang
- USDA‐Agricultural Research Service U. S. National Poultry Research Center Athens Georgia USA
| | - Nelson A. Cox
- USDA‐Agricultural Research Service U. S. National Poultry Research Center Athens Georgia USA
| | - Sandra L. House
- USDA‐Agricultural Research Service U. S. National Poultry Research Center Athens Georgia USA
| | - Nikki W. Shariat
- Department of Population Health, Poultry Diagnostic and Research Center University of Georgia Athens Georgia USA
| |
Collapse
|
26
|
Melo RT, Galvão NN, Guidotti-Takeuchi M, Peres PABM, Fonseca BB, Profeta R, Azevedo VAC, Monteiro GP, Brenig B, Rossi DA. Molecular Characterization and Survive Abilities of Salmonella Heidelberg Strains of Poultry Origin in Brazil. Front Microbiol 2021; 12:674147. [PMID: 34220757 PMCID: PMC8253257 DOI: 10.3389/fmicb.2021.674147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to evaluate the genotypic and phenotypic characteristics of 20 strains of S. Heidelberg (SH) isolated from broilers produced in southern Brazil. The similarity and presence of genetic determinants linked to virulence, antimicrobial resistance, biofilm formation, and in silico-predicted metabolic interactions revealed this serovar as a threat to public health. The presence of the ompC, invA, sodC, avrA, lpfA, and agfA genes was detected in 100% of the strains and the luxS gene in 70% of them. None of the strains carries the blaSHV, mcr-1, qnrA, qnrB, and qnrS genes. All strains showed a multidrug-resistant profile to at least three non-β-lactam drugs, which include colistin, sulfamethoxazole, and tetracycline. Resistance to penicillin, ceftriaxone (90%), meropenem (25%), and cefoxitin (25%) were associated with the presence of blaCTX–M and blaCMY–2 genes. Biofilm formation reached a mature stage at 25 and 37°C, especially with chicken juice (CJ) addition. The sodium hypochlorite 1% was the least efficient in controlling the sessile cells. Genomic analysis of two strains identified more than 100 virulence genes and the presence of resistance to 24 classes of antibiotics correlated to phenotypic tests. Protein-protein interaction (PPI) prediction shows two metabolic pathways correlation with biofilm formation. Virulence, resistance, and biofilm determinants must be constant monitoring in SH, due to the possibility of occurring infections extremely difficult to cure and due risk of the maintenance of the bacterium in production environments.
Collapse
Affiliation(s)
- Roberta T Melo
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Newton N Galvão
- Ministry of Agriculture, Livestock and Supply, Rio de Janeiro, Brazil
| | | | - Phelipe A B M Peres
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Belchiolina B Fonseca
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology and Evolution (GEE), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution (GEE), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme P Monteiro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Daise A Rossi
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
27
|
de Moura DF, Rocha TA, de Melo Barros D, da Silva MM, Dos Santos Santana M, Neta BM, Cavalcanti IMF, Martins RD, da Silva MV. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch Microbiol 2021; 203:4303-4311. [PMID: 34110480 DOI: 10.1007/s00203-021-02377-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate the antioxidant, antibacterial, and antibiofilm activities of nerolidol. The antioxidant activity of nerolidol was determined using the total antioxidant activity method. Antibacterial activity was performed using the microdilution method to determine the minimum inhibitory concentration (MIC) against seven standard strains of the ATCC and four bacterial clinical isolates with a resistance profile, following the Clinical and Laboratory Standards Institute (CLSI). The antibiofilm activity of nerolidol was performed using the crystal violet method. The results of the antioxidant test revealed a total antioxidant activity of 93.94%. Nerolidol inhibited the growth of Staphylococcus aureus (MIC = 1 mg/mL), Streptococcus mutans (MIC = 4 mg/mL), Pseudomonas aeruginosa (MIC = 0.5 mg/mL), and Klebsiella pneumoniae (MIC = 0.5 mg/mL). For clinical isolates, nerolidol showed an inhibitory potential against multidrug-resistant P. aeruginosa, K. pneumoniae carbapenemase (MIC = 0.5 mg/mL), methicillin-susceptible S. aureus (MIC = 2 mg/mL), and methicillin-resistant S. aureus (MIC = 2 mg/mL). Nerolidol showed similar antibacterial activity against ATCC strains and hospital clinical isolates with resistance profile, suggesting that even though these strains are resistant to antibiotics, they are still sensitive to nerolidol. Nerolidol exerted a dose-dependent effect on the inhibition of biofilm formation, even at subinhibitory concentrations. Nerolidol inhibited bacterial biofilms of ATCC strains at a rate ranging from 51 to 98%, at concentrations ranging from 0.5 to 4 mg/mL. For clinical bacterial isolates, biofilm inhibition ranged from 6 to 60%. Therefore, the present study showed the antioxidant, antibacterial, and antibiofilm properties of nerolidol.
Collapse
Affiliation(s)
- Danielle Feijó de Moura
- Laboratório de Parasitologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil.,Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Tamiris Alves Rocha
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Dayane de Melo Barros
- Laboratório de Microbiologia de Alimentos, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Marllyn Marques da Silva
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Marcielle Dos Santos Santana
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Beatriz Mendes Neta
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil. .,Setor de Microbiologia Clínica do Laboratório de Imunopatologia Keizo Asami da Universidade Federal de Pernambuco (LIKA/UFPE), Recife, PE, Brazil.
| | - René Duarte Martins
- Espaço Farmácia Viva, Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Márcia Vanusa da Silva
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil.,Núcleo de Bioprospecção da Caatinga, Instituto Nacional do Semiárido, Paraíba, Brazil
| |
Collapse
|
28
|
Surma R, Wojcieszyńska D, Karcz J, Guzik U. Effect of Pseudomonas moorei KB4 Cells' Immobilisation on Their Degradation Potential and Tolerance towards Paracetamol. Molecules 2021; 26:820. [PMID: 33557429 PMCID: PMC7915102 DOI: 10.3390/molecules26040820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas moorei KB4 is capable of degrading paracetamol, but high concentrations of this drug may cause an accumulation of toxic metabolites. It is known that immobilisation can have a protective effect on bacterial cells; therefore, the toxicity and degradation rate of paracetamol by the immobilised strain KB4 were assessed. Strain KB4 was immobilised on a plant sponge. A toxicity assessment was performed by measuring the concentration of ATP using the colony-forming unit (CFU) method. The kinetic parameters of paracetamol degradation were estimated using the Hill equation. Toxicity analysis showed a protective effect of the carrier at low concentrations of paracetamol. Moreover, a pronounced phenomenon of hormesis was observed in the immobilised systems. The obtained kinetic parameters and the course of the kinetic curves clearly indicate a decrease in the degradation activity of cells after their immobilisation. There was a delay in degradation in the systems with free cells without glucose and immobilised cells with glucose. However, it was demonstrated that the immobilised systems can degrade at least ten succeeding cycles of 20 mg/L paracetamol degradation. The obtained results indicate that the immobilised strain may become a useful tool in the process of paracetamol degradation.
Collapse
Affiliation(s)
| | | | | | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (R.S.); (D.W.); (J.K.)
| |
Collapse
|
29
|
Krishna D, Dhanashree B. Antibiogram, Virulence Genes, and Biofilm-Forming Ability of Clinical Salmonella enterica Serovars: An In Vitro Study. Microb Drug Resist 2020; 27:871-878. [PMID: 33305986 DOI: 10.1089/mdr.2020.0419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Typhi and Salmonella Paratyphi are causative agents of enteric fever. Salmonella Typhi persists as a biofilm on gallstones. Hence, we studied the biofilm formation, antibiogram, and virulence genes of S. enterica serovars. Antibiogram of S. enterica serovars from human blood and stool samples were studied by Kirby-Bauer disk diffusion method and biofilm by microtiter plate method. We studied the minimum inhibitory concentration of the isolates by Vitek-2 semiautomated system. Polymerase chain reaction was done to detect invA and spvC genes. Of the 55 isolates studied, 36 (65.45%) were Salmonella Typhi, 13 (23.63%) were Salmonella Paratyphi A, 2 (3.64%) were Salmonella Typhimurium, and 4 (7.28%) were Salmonella spp. Resistance to ciprofloxacin and nalidixic acid were found to be 81.8% and 92.7%, respectively. Chloramphenicol and cotrimoxazole-susceptible strains were 98.18%. One each of Salmonella Typhi, Salmonella Paratyphi A, and S. enterica isolates formed weak biofilm at 28°C. However, at 37°C eight Salmonella Typhi produced weak biofilm in the presence of bile. One Salmonella Paratyphi A and two Salmonella spp. formed weak biofilm in the absence of bile. All the isolates had the invA gene. Salmonella Typhimurium had invA and spvC genes. Bile may contribute to biofilm formation and persistence of the Salmonella Typhi on gallstones, which may lead to carrier state. Changing antibiotic susceptibility pattern of Salmonella serovars is observed in our geographic area. The presence of invA and spvC genes indicate the ability of invasiveness and intracellular survival.
Collapse
Affiliation(s)
- Dhiraj Krishna
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India
| | - Biranthabail Dhanashree
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India
| |
Collapse
|
30
|
AKINOLA STEPHENABIOLA, TSHIMPAMBA MPINDAEDOAURD, MWANZA MULUNDA, ATEBA COLLINSNJIE. Biofilm Production Potential of Salmonella Serovars Isolated from Chickens in North West Province, South Africa. Pol J Microbiol 2020; 69:427-439. [PMID: 33574871 PMCID: PMC7812364 DOI: 10.33073/pjm-2020-046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/05/2022] Open
Abstract
Bacterial biofilms have recently gained considerable interest in the food production and medical industries due to their ability to resist destruction by disinfectants and other antimicrobials. Biofilms are extracellular polymer matrices that may enhance the survival of pathogens even when exposed to environmental stress. The effect of incubation temperatures (25°C, 37°C, and 40°C) and Salmonella serotype on biofilm-forming potentials was evaluated. Previously typed Salmonella serotypes (55) isolated from the gut of chickens were accessed for biofilms formation using a standard assay. Salmonella Typhimurium ATCC 14028TM and Salmonella Enteritidis ATCC 13076TM (positive controls), Escherichia coli (internal control) and un-inoculated Luria Bertani (LB) broth (negative control) were used. The isolates formed no biofilm (11.86-13.56%), weak (11.86-45.76%), moderate (18.64-20.34%), strong biofilms (23.73-54.24%) across the various temperatures investigated. Serotypes, Salmonella Heidelberg and Salmonella Weltevreden were the strongest biofilm formers at temperatures (25°C, 37°C, and 40°C, respectively). The potential of a large proportion (80%) of Salmonella serotypes to form biofilms increased with increasing incubation temperatures but decreased at 40°C. Findings indicate that average temperature favours biofilm formation by Salmonella serotypes. However, the influence of incubation temperature on biofilm formation was greater when compared to serotype. A positive correlation exists between Salmonella biofilm formed at 25°C, 37°C and 40°C (p ≥ 0.01). The ability of Salmonella species to form biofilms at 25°C and 37°C suggests that these serotypes may present severe challenges to food-processing and hospital facilities.
Collapse
Affiliation(s)
- STEPHEN ABIOLA AKINOLA
- Department of Microbiology, Bacteriophage Therapy and Phage Bio-Control Laboratory, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
- Phytochemical Food Network Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - MPINDA EDOAURD TSHIMPAMBA
- Center for Animal Health Studies, Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| | - MULUNDA MWANZA
- Center for Animal Health Studies, Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| | - COLLINS NJIE ATEBA
- Department of Microbiology, Bacteriophage Therapy and Phage Bio-Control Laboratory, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| |
Collapse
|
31
|
Pontin KP, Borges KA, Furian TQ, Carvalho D, Wilsmann DE, Cardoso HRP, Alves AK, Chitolina GZ, Salle CTP, Moraes HLDS, do Nascimento VP. Antimicrobial activity of copper surfaces against biofilm formation by Salmonella Enteritidis and its potential application in the poultry industry. Food Microbiol 2020; 94:103645. [PMID: 33279070 DOI: 10.1016/j.fm.2020.103645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
As a consequence of developing antimicrobial resistance to disinfectants, copper, which exhibits antimicrobial activity, has been studied as a possible alternative to the use of stainless steel surfaces. The aim was to evaluate the antimicrobial activity of copper surfaces in preventing biofilm formation by Salmonella Enteritidis and to determine their corrosive capacity. Strains of S. Enteritidis were incubated at 4 °C, 12 °C, and 25 °C with 1 cm2 coupons of electrolytic copper (99.9% Cu), brass (70% Cu), copper coated with tin, and stainless steel (control). A planktonic cell-suspension assay was used, followed by serial dilutions and bacterial counts. The corrosion test was performed with two disinfectants: benzalkonium chloride and sodium hypochlorite (100, 200, and 400 ppm). There was a significant reduction in biofilm production (log10 CFU cm-2) on the copper (2.64 at 4 °C, 4.20 at 12 °C, 4.56 at 25 °C) and brass (2.79 at 4 °C, 3.49 at 12 °C, 4.55 at 25 °C) surfaces compared to the control (5.68 at 4 °C, 5.89 at 12 °C, 6.01 at 25 °C). The antimicrobial surfaces showed uniform corrosion similar to that of surfaces generally used. These results demonstrated the effectiveness of copper surfaces in reducing S. Enteritidis and suggest they can be used as a complementary antimicrobial to control for this pathogen.
Collapse
Affiliation(s)
- Karine Patrin Pontin
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| | - Daiane Carvalho
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| | - Daiane Elisa Wilsmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| | - Henrique Ribeiro Piaggio Cardoso
- Laboratório de Metalurgia Física, Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil.
| | - Annelise Kopp Alves
- Departamento de Materiais, Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Avenida Osvaldo Aranha 99, 90035-190, Porto Alegre, RS, Brazil.
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 8824, 91540-00, Porto Alegre, RS, Brazil.
| |
Collapse
|
32
|
Rizzo NN, Pottker ES, Webber B, Borges KA, Duarte SC, Levandowski R, Ruschel LR, Rodrigues LB. Effect of two lytic bacteriophages against multidrug-resistant and biofilm-forming Salmonella Gallinarum from poultry. Br Poult Sci 2020; 61:640-645. [PMID: 32901508 DOI: 10.1080/00071668.2020.1805724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1. Salmonella Gallinarum (SG) infections cause fowl typhoid, which leads to important economic losses. Multidrug resistance (MDR) and the capacity for bacteria to form biofilms could play an important role in the persistence of SG in poultry flocks resulting in intermittent disease outbreaks. The aim of the following study was to assess the lytic activity of two new bacteriophages (Salmonella phages UPF_BP1 and UPF_BP2) against MDR and biofilm-forming SG. 2. Forty-six strains of SG, isolated in 2015, were characterised by antimicrobial resistance, biofilm formation profiles and susceptibility to two new bacteriophages. 3. Of these strains, 24% were multidrug resistant and more than 80% formed biofilm, with no statistical difference between incubation temperatures (42°C or 22°C). With regard to the lytic activity of the phages, 85% of strains were susceptible to at least one phage. Of these, 74% were lysed by both phages, including MDR and biofilm producing strains. 4. The use of salmonella phages UPF_BP1 and UPF_BP2 were shown to be promising alternatives for the biological control of fowl typhoid.
Collapse
Affiliation(s)
- N N Rizzo
- Faculdade De Agronomia E Medicina Veterinária, Universidade De Passo Fundo , Passo Fundo, RS, Brazil.,Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul , Porto Alegre, RS, Brazil
| | - E S Pottker
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul , Porto Alegre, RS, Brazil
| | - B Webber
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul , Porto Alegre, RS, Brazil
| | - K A Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul , Porto Alegre, RS, Brazil
| | - S C Duarte
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Suínos e Aves , Concórdia, SC, Brazil
| | - R Levandowski
- Faculdade De Agronomia E Medicina Veterinária, Universidade De Passo Fundo , Passo Fundo, RS, Brazil
| | - L R Ruschel
- Faculdade De Agronomia E Medicina Veterinária, Universidade De Passo Fundo , Passo Fundo, RS, Brazil
| | - L B Rodrigues
- Faculdade De Agronomia E Medicina Veterinária, Universidade De Passo Fundo , Passo Fundo, RS, Brazil
| |
Collapse
|
33
|
Lianou A, Nychas GJE, Koutsoumanis KP. Strain variability in biofilm formation: A food safety and quality perspective. Food Res Int 2020; 137:109424. [PMID: 33233106 DOI: 10.1016/j.foodres.2020.109424] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
The inherent differences in microbial behavior among identically treated strains of the same microbial species, referred to as "strain variability", are regarded as an important source of variability in microbiological studies. Biofilms are defined as the structured multicellular communities with complex architecture that enable microorganisms to grow adhered to abiotic or living surfaces and constitute a fundamental aspect of microbial ecology. The research studies assessing the strain variability in biofilm formation are relatively few compared to the ones evaluating other aspects of microbial behavior such as virulence, growth and stress resistance. Among the available research data on intra-species variability in biofilm formation, compiled and discussed in the present review, most of them refer to foodborne pathogens as compared to spoilage microorganisms. Molecular and physiological aspects of biofilm formation potentially related to strain-specific responses, as well as information on the characterization and quantitative description of this type of biological variability are presented and discussed. Despite the considerable amount of available information on the strain variability in biofilm formation, there are certain data gaps and still-existing challenges that future research should cover and address. Current and future advances in systems biology and omics technologies are expected to aid significantly in the explanation of phenotypic strain variability, including biofilm formation variability, allowing for its integration in microbiological risk assessment.
Collapse
Affiliation(s)
- Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
34
|
Lucca V, Apellanis Borges K, Quedi Furian T, Borsoi A, Pippi Salle CT, de Souza Moraes HL, Pinheiro do Nascimento V. Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry. Microb Pathog 2019; 138:103799. [PMID: 31614192 DOI: 10.1016/j.micpath.2019.103799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 02/03/2023]
Abstract
Salmonella spp. are among the leading pathogens responsible for foodborne illnesses worldwide. Bacterial communities use a quorum sensing (QS) system to control biofilm formation. QS is a cell-to-cell signaling mechanism involving compounds called auto-inducers (AI). Norepinephrine utilizes the same bacterial signaling of AI-3 and serves as a signal of QS. Acid stress is a challenge encountered by microorganisms in food processing environments and in the gastrointestinal tracts of hosts. Thus, adaptation to acidic environments may increase the pathogenicity of the strain. The aim of this study was to evaluate the influence of two concentrations of norepinephrine (100 μM and 250 μM) and acidification (pH 3.0) of the medium on the growth and adhesion of Salmonella Heidelberg strains isolated from poultry sources at 12 °C and 25 °C. Furthermore, three genes associated with the biofilm formation process were detected (adrA, csgD, and sidA). Norepinephrine stimulation did not influence the growth or adhesion of Salmonella Heidelberg strains, regardless of the catecholamine concentration and temperature. On the other hand, the use of acidified medium (pH 3.0) resulted in a significant reduction of growth and a significant increase of S. Heidelberg adhesion at both temperatures, indicating that the acidified medium favors the biofilm formation process. The adrA and sidA genes showed higher detection frequencies than csgD. Experiments analyzing the biofilm production process by S. Heidelberg strains are not common, and further studies are necessary to understand this complex process.
Collapse
Affiliation(s)
- Vivian Lucca
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Karen Apellanis Borges
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil.
| | - Thales Quedi Furian
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Anderlise Borsoi
- Universidade Tuiuti do Paraná, R. Sydnei Antonio Rangel Santos, 238, Curitiba, PR, Brazil
| | - Carlos Tadeu Pippi Salle
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Hamilton Luiz de Souza Moraes
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro do Nascimento
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| |
Collapse
|
35
|
Kaldhone PR, Carlton A, Aljahdali N, Khajanchi BK, Sanad YM, Han J, Deck J, Ricke SC, Foley SL. Evaluation of Incompatibility Group I1 (IncI1) Plasmid-Containing Salmonella enterica and Assessment of the Plasmids in Bacteriocin Production and Biofilm Development. Front Vet Sci 2019; 6:298. [PMID: 31552285 PMCID: PMC6743044 DOI: 10.3389/fvets.2019.00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Mobile genetic elements, such as plasmids, can potentially increase the ability of bacteria to infect and persist in vertebrate host cells. IncI1 plasmids are widely distributed in Salmonella from food animal sources and associated with clinically important strains. These plasmids often encode antimicrobial resistance; however, little is known about their impact on the virulence of Salmonella strains. To assess the potential impact of the plasmids on virulence, 43 IncI1-positive Salmonella isolates from human and animal sources were subjected to whole genome sequence (WGS) analyses and evaluated for their abilities to invade and persist for 48 h in Caco-2 human intestinal epithelial cells, form biofilms and encode bacteriocins. Draft WGS data were submitted to predict the presence of virulence and antimicrobial resistance genes, plasmid replicon types present, conduct plasmid multilocus sequence typing (pMLST), and core genome MLST (cgMLST) in the isolates. Caco-2 cells were infected with Salmonella strains and incubated for both one and 48 h for the invasion and persistence assays, respectively. Additionally, Salmonella isolates and IncI1 plasmid carrying transconjugants (n = 12) generated in Escherichia coli were assessed for their ability to produce biofilms and bacteriocin inhibition of growth of other bacteria. All Salmonella isolates infected Caco-2 cells and persisted in the cells at 48 hrs. Persistent cell counts were observed to be significantly higher than invasion assay cell counts in 26% of the isolates. Among the IncI1 plasmids, there were 18 pMLST types. Nearly 35% (n = 15) of Salmonella isolates produced biofilms; however, none of the IncI1-positive transconjugants produced increased biofilms compared to the recipient. Approximately 65% (n = 28) of isolates and 67% (n = 8) of IncI1-positive transconjugants were able to inhibit growth of at least one E. coli strain; however, none inhibited the growth of strains from species other than E. coli. The study characterized IncI1 positive Salmonella isolates and provided evidence about the potential contributions of IncI1 plasmids virulence phenotypes and areas where they do not. These findings should allow for more focused efforts to assess the impact of plasmids on bacterial pathophysiology and human health.
Collapse
Affiliation(s)
- Pravin R Kaldhone
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States.,Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, AR, United States
| | - Ashlyn Carlton
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States.,Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Nesreen Aljahdali
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States.,Department of Biological Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Bijay K Khajanchi
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Yasser M Sanad
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States.,Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, United States.,Veterinary Research Division, Department of Parasitology and Animal Diseases, National Research Centre, Giza, Egypt
| | - Jing Han
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Joanna Deck
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Steven C Ricke
- Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, AR, United States
| | - Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States.,Center for Food Safety and Food Science Department, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
36
|
Ariafar MN, Iğci N, Akçelik M, Akçelik N. Investigation of the effect of different environmental conditions on biofilm structure of Salmonella enterica serotype Virchow via FTIR spectroscopy. Arch Microbiol 2019; 201:1233-1248. [PMID: 31197408 DOI: 10.1007/s00203-019-01681-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
This study aims to describe the content of polymeric matrix components under different incubation temperatures and pH levels. Optimal biofilm production of 15 S. Virchow isolates occurred following the incubation in LB-NaCl for 72 h, at pH 6.6 and 20 °C. The expression of csgA, csgD, adrA and bcsA genes at 20 °C, 25 °C and 30 °C in S. Virchow DMC18 was analyzed, and it was discovered that the maximum production of cellulose and curli fimbriae occurred at 20 °C. The physical characteristics of pellicle structure of S. Virchow DMC18 was determined as rigid at 20 °C, while becoming fragile at higher temperatures. FTIR analyses confirmed the obtained molecular findings. The intensities of the 16 different peaks originating from carbohydrate, protein, and nucleic acid in the spectra of biofilm samples significantly diminished (p < 0.05) with the increasing temperature. The highest intensities of lipids and carbohydrates were observed at 20 °C indicating the changes in cell surface properties.
Collapse
Affiliation(s)
| | - Nasit Iğci
- Department of Molecular Biology and Genetics, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Mustafa Akçelik
- Biology Department, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey.
| |
Collapse
|
37
|
An ordinal logistic regression approach to predict the variability on biofilm formation stages by five Salmonella enterica strains on polypropylene and glass surfaces as affected by pH, temperature and NaCl. Food Microbiol 2019; 83:95-103. [PMID: 31202424 DOI: 10.1016/j.fm.2019.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
This study assessed the adhesion and formation of biofilm by five Salmonella enterica strains (S. Enteritidis 132, S. Infantis 176, S. Typhimurium 177, S. Heidelberg 281 and S. Corvallis 297) on polypropylene (PP) and glass (G) surfaces as affected by pH (4-7), NaCl concentration (0-10% w/v) and temperature (8-35 °C). Sessile counts <3 log CFU/cm2 were considered lack of adhesion (category 1), while counts ≥ 3 and < 5 log CFU/cm2 corresponded to adhesion (category 2) and counts ≥ 5 log CFU/cm2 corresponded biofilm formation (category 3). The obtained results categorized in these three responses were used to develop ordinal regression models to predict the probability of biofilm stages on PP- and G-surfaces. The experimental outcomes for lack of adhesion were >90% on PP- and G-surfaces. Generally, adhesion outcomes corresponded to approximately 36% of the total, whereas biofilm outcomes were close to 65% in both PP- and G-surfaces. The biofilm stages varied among the strains studied and with the material surface under the same experimental conditions. According to the generated ordinal models, the probability of adhesion and biofilm formation on PP-surface by the five S. enterica strains tested decreased at pH 4 or 5 in NaCl concentrations >4% and at a temperature <20 °C. On G-surface, the probability of adhesion increased pH 6 or 7, in the absence of NaCl and temperatures <20 °C, while, the probability of biofilm formation increased in the same pH, NaCl concentration up to 4% and temperatures ≥20 °C. This is the first study assessing the biofilm formation through categorical, ordinal responses and it shows that ordinal regression models can be useful to predict biofilm stages of S. enterica as a function of pH, NaCl, and temperature or their interactions.
Collapse
|
38
|
Hiller CC, Lucca V, Carvalho D, Borsoi A, Borges KA, Furian TQ, do Nascimento VP. Influence of catecholamines on biofilm formation by Salmonella Enteritidis. Microb Pathog 2019; 130:54-58. [DOI: 10.1016/j.micpath.2019.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
|
39
|
Borges KA, Furian TQ, de Souza SN, Menezes R, de Lima DA, Fortes FBB, Salle CTP, Moraes HLS, Nascimento VP. Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity. Microb Pathog 2018; 118:238-241. [PMID: 29578065 DOI: 10.1016/j.micpath.2018.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Salmonella Enteritidis and Salmonella Typhimurium are among the most prevalent serotypes isolated from salmonellosis outbreaks and poultry. Salmonella spp. have the capacity to form biofilms on several surfaces, which can favour survival in hostile environments, such as slaughterhouses. Salmonella strains present differences in pathogenicity. However, there is little information regarding the pathogenicity of S. Enteritidis and S. Typhimurium isolated from avian sources and their relationship to biofilm production. The aim of this study was to use a novel pathogenicity index and a biofilm production assay to evaluate their relationships within these serotypes. In addition, we detected the presence of the spiA and agfA genes in these strains. Biofilm formation was investigated at two temperatures (37 °C and 28 °C) using microtiter plate assay, and the results were compared with the individual pathogenicity index of each strain. PCR was used to detect spiA and agfA, virulence genes associated with biofilm production. S. Enteritidis and S. Typhimurium strains were capable of producing biofilm at 37 °C and 28 °C. Sixty-two percent and 59.5% of S. Enteritidis and 73.8% and 46.2% of S. Typhimurium produced biofilm at 37 °C and 28 °C, respectively. Biofilm production at 37 °C was significantly higher in both serotypes. Only S. Enteritidis was capable of adhering strongly at both temperatures. Biofilm production was related to pathogenicity index only at 28 °C for S. Enteritidis. spiA and agfA were found in almost all strains and were not statistically associated with biofilm production.
Collapse
Affiliation(s)
- Karen Apellanis Borges
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil.
| | - Thales Quedi Furian
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil
| | - Sara Neves de Souza
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil
| | - Rafaela Menezes
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil
| | - Diane Alves de Lima
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil
| | - Flávia Bornancini Borges Fortes
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil; Department of Agriculture, Livestock and Irrigation of Rio Grande do Sul (SEAPI-RS), Av. Getúlio Vargas 1384, Porto Alegre, RS, Brazil
| | - Carlos Tadeu Pippi Salle
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil
| | - Hamilton Luiz Souza Moraes
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro Nascimento
- Center for Diagnosis and Research in Avian Pathology (CDPA)(1), Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 8824, Porto Alegre, RS, Brazil
| |
Collapse
|