1
|
Tebyaniyan H, Hussain A, Vivian M. Current antibacterial agents in dental bonding systems: a comprehensive overview. Future Microbiol 2023; 18:825-844. [PMID: 37668450 DOI: 10.2217/fmb-2022-0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Dental caries is mainly caused by oral biofilm acid, and the most common dental restoration treatment is composite dental restorations. The main cause of failure is secondary caries adjacent to the restoration. Long-term survival of dental materials is improved by the presence of antibacterial agents, which selectively inhibit bacterial growth or survival. Chemical, natural and biomaterials have been studied for their antimicrobial activities and antibacterial bonding agents have been improved. Their usage has been increased to inhibit the growth of invading and residual bacteria in the oral cavity, as biofilm accumulation increases the risk of treatment failure. In this article, the success and applications of antibacterial agents are discussed in dental bonding systems.
Collapse
Affiliation(s)
- Hamid Tebyaniyan
- Department of Science & Research, Islimic Azade University, Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, AB, T6G 1C9, Canada
| | - Mark Vivian
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, S7N 5E4, Canada
| |
Collapse
|
2
|
Souza AP, Neves JG, Navarro da Rocha D, Lopes CC, Moraes ÂM, Correr-Sobrinho L, Correr AB. Chitosan/Xanthan/Hydroxyapatite-graphene oxide porous scaffold associated with mesenchymal stem cells for dentin-pulp complex regeneration. J Biomater Appl 2023; 37:1605-1616. [PMID: 36740600 DOI: 10.1177/08853282231155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this paper was to synthesize and characterize polymeric scaffolds of Chitosan/Xanthan/Hydroxyapatite-Graphene Oxide nanocomposite associated with mesenchymal stem cells for regenerative dentistry application. The chitosan-xanthan gum (CX) complex was associated with Hydroxyapatite-Graphene Oxide (HA-GO) nanocomposite with different Graphene Oxides (GO) concentration (0.5 wt%; 1.0 wt%; 1.5 wt%). The scaffolds characterizations were performed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and contact angle. The mechanical properties were assessed by compressive strength. The in vitro bioactivity and the in vitro cytotoxicity test (MTT test) were analyzed as well. The data was submitted to the Normality and Homogeneity tests. In vitro Indirect Cytotoxicity assay data was statistically analyzed by ANOVA two-way, followed by Tukey's test (α = 0.05). Compressive strength and contact angle data were statistically analyzed by one-way ANOVA, followed by Tukey's test (α = 0.05). XRD showed the presence of Hydroxyapatite (HA) peaks in the structures CXHA, CXHAGO 0.5%,1.0% and 1.5%. FT-IR showed amino and carboxylic bands characteristic of CX. Raman spectroscopy analysis evidenced a high quality of the GO. In the TGA it was observed the mass loss associated with the CX degradation by depolymerization. SEM analysis showed pores in the scaffolds, in addition to HA incorporated and adhered to the polymer. Contact angle test showed that scaffolds have a hydrophilic characteristic, with the CX group the highest contact angle and CXHA the lowest (p < 0.05). 1.0 wt% GO significantly increased the compressive strength compared to other compositions. In the bioactivity test, the apatite crystals precipitation on the scaffold surface was observed. MTT test showed high cell viability in CXHAGO 1.0% and CXHAGO 1.5% scaffold. CXHAGO scaffolds are promising for regenerative dentistry application because they have morphological characteristics, mechanical and biological properties favorable for the regeneration process.
Collapse
Affiliation(s)
- Alana Pc Souza
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - José G Neves
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - Daniel Navarro da Rocha
- Department of Mechanical and Materials Engineering, 28098Military Institute of Engineering- IME, Rio de Janeiro, Brazil.,Department of Bioengineering, 28132R-Crio Criogenia S.A., Campinas, SP, Brazil
| | - Camila C Lopes
- Department of Mechanical and Materials Engineering, 28098Military Institute of Engineering- IME, Rio de Janeiro, Brazil
| | - Ângela M Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering, 28132University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Lourenço Correr-Sobrinho
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| | - Américo Bortolazzo Correr
- Department of Restorative Dentistry- Dental Materials Area, Piracicaba Dental School, 28132State University of Campinas - UNICAMP, S.P, Brazil
| |
Collapse
|
3
|
Azaryan E, Emadian Razavi F, Hanafi-Bojd MY, Alemzadeh E, Naseri M. Dentin regeneration based on tooth tissue engineering: A review. Biotechnol Prog 2022; 39:e3319. [PMID: 36522133 DOI: 10.1002/btpr.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Missing or damaged teeth due to caries, genetic disorders, oral cancer, or infection may contribute to physical and mental impairment that reduces the quality of life. Despite major progress in dental tissue repair and those replacing missing teeth with prostheses, clinical treatments are not yet entirely satisfactory, as they do not regenerate tissues with natural teeth features. Therefore, much of the focus has centered on tissue engineering (TE) based on dental stem/progenitor cells to create bioengineered dental tissues. Many in vitro and in vivo studies have shown the use of cells in regenerating sections of a tooth or a whole tooth. Tooth tissue engineering (TTE), as a promising method for dental tissue regeneration, can form durable biological substitutes for soft and mineralized dental tissues. The cell-based TE approach, which directly seeds cells and bioactive components onto the biodegradable scaffolds, is currently the most potential method. Three essential components of this strategy are cells, scaffolds, and growth factors (GFs). This study investigates dentin regeneration after an injury such as caries using TE and stem/progenitor cell-based strategies. We begin by discussing about the biological structure of a dentin and dentinogenesis. The engineering of teeth requires knowledge of the processes that underlie the growth of an organ or tissue. Then, the three fundamental requirements for dentin regeneration, namely cell sources, GFs, and scaffolds are covered in the current study, which may ultimately lead to new insights in this field.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical sciences, Birjand, Iran.,Department of Pharmaceutics and Pharmaceutical nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Esmat Alemzadeh
- Department of Medical Biotechnology, Faculty of medicine, Birjand University of Medical Sciences, Birjand, Iran.,Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Noohi P, Abdekhodaie MJ, Nekoofar MH, Galler KM, Dummer PMH. Advances in Scaffolds Used for Pulp-Dentine Complex Tissue Engineering - A Narrative Review. Int Endod J 2022; 55:1277-1316. [PMID: 36039729 DOI: 10.1111/iej.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Pulp necrosis in immature teeth disrupts root development and predisposes roots to fracture as a consequence of their thin walls and open apices. Regenerative endodontics is a developing treatment modality whereby necrotic pulps are replaced with newly formed healthy tissue inside the root canal. Many clinical studies have demonstrated the potential of this strategy to stimulate root maturation and apical root-end closure. However, clinical outcomes are patient-dependent and unpredictable. The development of predictable clinical protocols is achieved through the interplay of the three classical elements of tissue engineering, namely, stem cells, signaling molecules, and scaffolds. Scaffolds provide structural support for cells to adhere and proliferate and also regulate cell differentiation and metabolism. Hence, designing and fabricating an appropriate scaffold is a crucial step in tissue engineering. In this review, four main classes of scaffolds used to engineer pulp-dentine complexes, including bioceramic-based scaffolds, synthetic polymer-based scaffolds, natural polymer-based scaffolds, and composite scaffolds, are covered. Additionally, recent advances in the design, fabrication, and application of such scaffolds are analysed along with their advantages and limitations. Finally, the importance of vascular network establishment in the success of pulp-dentine complex regeneration and strategies used to create scaffolds to address this challenge are discussed.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontic, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
5
|
Beck F, Ilie N. Antioxidants and Collagen-Crosslinking: Benefit on Bond Strength and Clinical Applicability. MATERIALS 2020; 13:ma13235483. [PMID: 33271998 PMCID: PMC7729620 DOI: 10.3390/ma13235483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022]
Abstract
Antioxidants are known for their potential of strengthening the collagen network when applied to dentin. They establish new intra-/intermolecular bonds in the collagen, rendering it less perceptive to enzymatic hydrolysis. The study evaluated the benefit on shear bond strength (SBS) of a resin–composite to dentin when antioxidants with different biomolecular mechanisms or a known inhibitor of enzymatic activity are introduced to the bonding process in a clinically inspired protocol. Specimens (900) were prepared consistent with the requirements for a macro SBS-test. Four agents (Epigallocatechingallate (EGCG), Chlorhexidindigluconate (CHX), Proanthocyanidin (PA), and Hesperidin (HPN)) were applied on dentin, either incorporated in the primer of a two-step self-etch adhesive or as an aqueous solution before applying the adhesive. Bonding protocol executed according to the manufacturer’s information served as control. Groups (n = 20) were tested after one week, one month, three months, six months, or one year immersion times (37 °C, distilled water). After six-month immersion, superior SBS were identified in PA compared to all other agents (p < 0.01) and a higher reliability in both primer and solution application when compared to control. After one year, both PA incorporated test groups demonstrated the most reliable outcome. SBS can benefit from the application of antioxidants. The use of PA in clinics might help extending the lifespan of resin-based restorations.
Collapse
Affiliation(s)
| | - Nicoleta Ilie
- Correspondence: ; Tel.: +49-89-44005-9412; Fax: +49-89-44005-930
| |
Collapse
|
6
|
Liao S, Tang Y, Chu C, Lu W, Baligen B, Man Y, Qu Y. Application of green tea extracts epigallocatechin‐3‐gallate in dental materials: Recent progress and perspectives. J Biomed Mater Res A 2020; 108:2395-2408. [PMID: 32379385 DOI: 10.1002/jbm.a.36991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shengnan Liao
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yu Tang
- Stomatology College & the Affiliated Stomatology Hospital of Southwest Medical University Luzhou Sichuan China
| | - Chenyu Chu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Weitong Lu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Bolatihan Baligen
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yi Man
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yili Qu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| |
Collapse
|
7
|
Polyphenols in Dental Applications. Bioengineering (Basel) 2020; 7:bioengineering7030072. [PMID: 32645860 PMCID: PMC7552636 DOI: 10.3390/bioengineering7030072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: polyphenols are a broad class of molecules extracted from plants and have a large repertoire of biological activities. Biomimetic inspiration from the effects of tea or red wine on the surface of cups or glass lead to the emergence of versatile surface chemistry with polyphenols. Owing to their hydrogen bonding abilities, coordination chemistry with metallic cations and redox properties, polyphenols are able to interact, covalently or not, with a large repertoire of chemical moieties, and can hence be used to modify the surface chemistry of almost all classes of materials. (2) Methods: the use of polyphenols to modify the surface properties of dental materials, mostly enamel and dentin, to afford them with better adhesion to resins and improved biological properties, such as antimicrobial activity, started more than 20 years ago, but no general overview has been written to our knowledge. (3) Results: the present review is aimed to show that molecules from all the major classes of polyphenolics allow for low coast improvements of dental materials and engineering of dental tissues.
Collapse
|
8
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
9
|
Kwon YS, Kim HJ, Hwang YC, Rosa V, Yu MK, Min KS. Effects of Epigallocatechin Gallate, an Antibacterial Cross-linking Agent, on Proliferation and Differentiation of Human Dental Pulp Cells Cultured in Collagen Scaffolds. J Endod 2018; 43:289-296. [PMID: 28132713 DOI: 10.1016/j.joen.2016.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 01/15/2023]
Abstract
INTRODUCTION This study aimed to evaluate the efficacy of epigallocatechin gallate (EGCG), an antibacterial cross-linking agent, on the proliferation and differentiation of human dental pulp cells (hDPCs) cultured in hydrogel collagen scaffolds. METHODS The odontogenic differentiation induced by EGCG was evaluated by alkaline phosphatase (ALP) activity and odontogenic-related gene expression using real-time polymerase chain reaction. The antibacterial effect of EGCG was investigated by a disc diffusion assay in comparison with glutaraldehyde. Proliferation was analyzed by cell number counting under both optical and confocal laser scanning microscopes. To assess the mechanical properties of collagen treated with EGCG, the setting time, surface roughness, and compressive strength were measured. RESULTS EGCG itself did not up-regulate the odontogenic-related markers (P > .05) although ALP activity was slightly increased. The proliferation and differentiation of hDPCs cultured in collagen increased significantly in the presence of EGCG (P < .05). The antibacterial activity of EGCG was similar to that of glutaraldehyde. The setting time of collagen was significantly shortened when it was treated with EGCG (P < .05). The surface roughness and compressive strength of the cross-linked collagen were higher than those of collagen without EGCG (P < .05). CONCLUSIONS Our results showed that EGCG, the antibacterial cross-linking agent, promoted the proliferation and differentiation of hDPCs cultured in collagen scaffolds. Furthermore, the enhanced mechanical properties of collagen scaffolds induced by EGCG may play important roles in cell behavior. Consequently, the application of EGCG to collagen scaffolds might be beneficial for regenerative endodontic therapy.
Collapse
Affiliation(s)
- Young-Sun Kwon
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Hee-Jin Kim
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Vinicius Rosa
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Mi-Kyung Yu
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea; Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea; Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
10
|
Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase. Int J Biol Macromol 2017; 98:292-301. [DOI: 10.1016/j.ijbiomac.2017.01.127] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 11/21/2022]
|
11
|
Choi Y, Kim HJ, Min KS. Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold. Restor Dent Endod 2016; 41:296-303. [PMID: 27847751 PMCID: PMC5107431 DOI: 10.5395/rde.2016.41.4.296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/27/2016] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The purpose of the present study was to evaluate the effects of proanthocyanidin (PAC), a crosslinking agent, on the physical properties of a collagen hydrogel and the behavior of human periodontal ligament cells (hPDLCs) cultured in the scaffold. MATERIALS AND METHODS Viability of hPDLCs treated with PAC was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The physical properties of PAC treated collagen hydrogel scaffold were evaluated by the measurement of setting time, surface roughness, and differential scanning calorimetry (DSC). The behavior of the hPDLCs in the collagen scaffold was evaluated by cell morphology observation and cell numbers counting. RESULTS The setting time of the collagen scaffold was shortened in the presence of PAC (p < 0.05). The surface roughness of the PAC-treated collagen was higher compared to the untreated control group (p < 0.05). The thermogram of the crosslinked collagen exhibited a higher endothermic peak compared to the uncrosslinked one. Cells in the PAC-treated collagen were observed to attach in closer proximity to one another with more cytoplasmic extensions compared to cells in the untreated control group. The number of cells cultured in the PAC-treated collagen scaffolds was significantly increased compared to the untreated control (p < 0.05). CONCLUSIONS Our results showed that PAC enhanced the physical properties of the collagen scaffold. Furthermore, the proliferation of hPDLCs cultured in the collagen scaffold crosslinked with PAC was facilitated. Conclusively, the application of PAC to the collagen scaffold may be beneficial for engineering-based periodontal ligament regeneration in delayed replantation.
Collapse
Affiliation(s)
- Yoorina Choi
- Department of Conservative Dentistry, Wonkwang University Dental Hospital, Iksan, Korea
| | - Hee-Jin Kim
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea.; Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|