1
|
Nirchio M, Oliveira C, de Bello Cioffi M, Sassi FMC, Rizzi FP, Benavides SWN, Berrones AJC, Romero JFR, Deon GA, Kuranaka M, Valdiviezo-Rivera JS, Carrión Olmedo JC, Rossi AR. Integrative morphological, cytogenetic and molecular characterization of the Andean climbing catfish Astroblepus mindoensis (Regan, 1916) (Siluriformes:Astroblepidae). JOURNAL OF FISH BIOLOGY 2024. [PMID: 39385531 DOI: 10.1111/jfb.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 10/12/2024]
Abstract
Astroblepus species, commonly known as Andean climbing catfish, exhibit a unique challenge in species delimitation, leading to ongoing taxonomic debates. Here we report data on Astroblepus mindoensis, a vulnerable species endemic to Ecuador, obtained by an integrative approach that includes cytogenetic analysis, molecular identification of the specimens, and recording of morphological and morphometric characters useful for species diagnosis. Thus, this study aimed to associate the karyotype data of the specimens analyzed with morphological and molecular characters, improving and expanding the existing taxonomic information, thus contributing to the systematics of the species. Our morphology results, unlike Regan's original description, which is brief and ambiguous, provide a more detailed morphometric and meristic description. Molecular phylogenetic reconstruction and genetic distance based on a fragment of the cytochrome c oxidase subunit I (COI) showed that our samples constitute a well-supported and monophyletic clade within the A. grixalvii species complex. The cytogenetic analysis identified distinct chromosomal markers, including a single cluster of major ribosomal genes (on chromosome pair 3) and of minor ribosomal genes (on chromosome pair 12) with their localization differing from those reported in other Astroblepus species analyzed. Additionally, the presence of a heteromorphic chromosome pair in males suggests the presence of an XX/XY sex-determination system that has not been identified in other congeneric species. Further investigation is necessary to determine if these chromosomes are associated with the accumulation of repeated sequences, as typically occurs with sex chromosomes, and to assess their presence in other species of the genus.
Collapse
Affiliation(s)
- Mauro Nirchio
- Departamento de Acuicultura, Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala, Ecuador
| | - Claudio Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | | | - Francisco M C Sassi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Francisco Provenzano Rizzi
- Centro MBUCVInstituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Mariana Kuranaka
- Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | | | | | - Anna Rita Rossi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Roma, Italy
| |
Collapse
|
2
|
Cruz F, Gómez-Garrido J, Gut M, Alioto TS, Pons J, Alós J, Barcelo-Serra M. Chromosome-level assembly and annotation of the Xyrichtys novacula (Linnaeus, 1758) genome. DNA Res 2023; 30:dsad021. [PMID: 37797305 PMCID: PMC10590160 DOI: 10.1093/dnares/dsad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
The pearly razorfish (Xyrichtys novacula), commonly known as raor in the Balearic Islands, is a wrasse within the family Labridae. This fish species has particular biological and socio-cultural characteristics making it an ideal model organism in the fields of behavioural ecology, molecular ecology and conservation biology. In this study, we present the first annotated chromosome-level assembly for this species. Sequencing involved a combination of long reads with Oxford Nanopore Technologies, Illumina paired-end short reads (2 × 151 bp), Hi-C and RNA-seq from different tissues. The nuclear genome assembly has a scaffold N50 of 34.33 Mb, a total assembly span of 775.53 Mb and 99.63% of the sequence assembled into 24 superscaffolds, consistent with its known karyotype. Quality metrics revealed a consensus accuracy (QV) of 42.92 and gene completeness > 98%. The genome annotation resulted in 26,690 protein-coding genes and 12,737 non-coding transcripts. The coding regions encoded 39,613 unique protein products, 93% of them with assigned function. Overall, the publication of the X. novacula's reference genome will broaden the scope and impact of genomic research conducted on this iconic and colourful species.
Collapse
Affiliation(s)
- Fernando Cruz
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Tyler S Alioto
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Joan Pons
- Institut Mediterrani d’Estudis Avançats, IMEDEA (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
| | - Josep Alós
- Institut Mediterrani d’Estudis Avançats, IMEDEA (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
| | - Margarida Barcelo-Serra
- Institut Mediterrani d’Estudis Avançats, IMEDEA (UIB-CSIC), C/Miquel Marquès 21, 07190 Esporles, Illes Balears, Spain
| |
Collapse
|
3
|
Dos Santos Guimarães A, Maciel LAM, de Souza MFB, Rodrigues LRR. Karyotypic and Molecular Analysis of Pterygoplichthys pardalis (Castelnau 1855) from the Lower Amazon River. Animals (Basel) 2023; 13:ani13091533. [PMID: 37174570 PMCID: PMC10177225 DOI: 10.3390/ani13091533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Pterygoplichthys pardalis is an armored catfish native to South America and an important resource for the ornamental fish industry. Recently, several exotic populations have been introduced into rivers on five continents. Despite its commercial and environmental importance, P. pardalis is poorly studied from a genetic perspective. In this study, we analyzed the karyotype of P. pardalis from the Amazon River and molecular variations in the mitochondrial gene Cytochrome oxidase I (COI) between native and exotic populations. The karyotype presented diploid number 2n = 52 and NF = 100 without cytogenetic variation between males and females. Nucleolus organizer regions (Ag-NOR) in the distal region of the long arm of pair 12 coincided with the 18S hybridization signal, whereas 5S was syntenic to this chromosome but localized in the short arm. The constitutive heterochromatin was restricted in the distal regions of pairs 4, 12, 25, and 26. Telomeric probes showed only distal hybridization signals. The karyotype of P. pardalis diverged from that of its congeners, and COI molecular variation revealed four haplotypes. The Philippine population revealed the greatest diversity with three haplotypes, while haplotype H1 was the most abundant and observed in both native and exotic populations. This new genetic data contributes to species management and provides useful information from an aquaculture perspective.
Collapse
Affiliation(s)
- Alcimara Dos Santos Guimarães
- Graduate Program Natural Resources of Amazonia-PPGRNA, Federal University of Western Pará-UFOPA, Tapajós Campus, Vera Paz Street, Santarém 68040-255, PA, Brazil
- Graduate Program Society, Nature and Development-PPGSND, Federal University of Western Pará-UFOPA, Tapajós Campus, Vera Paz Street, Santarém 68040-255, PA, Brazil
| | - Luan Aércio Melo Maciel
- Graduate Program Society, Nature and Development-PPGSND, Federal University of Western Pará-UFOPA, Tapajós Campus, Vera Paz Street, Santarém 68040-255, PA, Brazil
| | - Mendelshon Fujiie Belém de Souza
- Genetics and Biodiversity Laboratory-LGBio, Educational Sciences Institute-ICED, Federal University of Western Pará-UFOPA, Tapajós Campus, Vera Paz Street, Santarém 68040-255, PA, Brazil
| | - Luís Reginaldo Ribeiro Rodrigues
- Graduate Program Natural Resources of Amazonia-PPGRNA, Federal University of Western Pará-UFOPA, Tapajós Campus, Vera Paz Street, Santarém 68040-255, PA, Brazil
- Genetics and Biodiversity Laboratory-LGBio, Educational Sciences Institute-ICED, Federal University of Western Pará-UFOPA, Tapajós Campus, Vera Paz Street, Santarém 68040-255, PA, Brazil
| |
Collapse
|
4
|
Khensuwan S, Sassi FDMC, Moraes RLR, Jantarat S, Seetapan K, Phintong K, Thongnetr W, Kaewsri S, Jumrusthanasan S, Supiwong W, Rab P, Tanomtong A, Liehr T, Cioffi MB. Chromosomes of Asian Cyprinid Fishes: Genomic Differences in Conserved Karyotypes of 'Poropuntiinae' (Teleostei, Cyprinidae). Animals (Basel) 2023; 13:ani13081415. [PMID: 37106978 PMCID: PMC10135121 DOI: 10.3390/ani13081415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The representatives of cyprinid lineage 'Poropuntiinae' with 16 recognized genera and around 100 species form a significant part of Southeast Asian ichthyofauna. Cytogenetics are valuable when studying fish evolution, especially the dynamics of repetitive DNAs, such as ribosomal DNAs (5S and 18S) and microsatellites, that can vary between species. Here, karyotypes of seven 'poropuntiin' species, namely Cosmochilus harmandi, Cyclocheilichthys apogon, Hypsibarbus malcomi, H. wetmorei, Mystacoleucus chilopterus, M. ectypus, and Puntioplties proctozysron occurring in Thailand were examined using conventional and molecular cytogenetic protocols. Variable numbers of uni- and bi-armed chromosomes indicated widespread chromosome rearrangements with a stable diploid chromosome number (2n) of 50. Examination with fluorescence in situ hybridization using major and minor ribosomal probes showed that Cosmochilus harmandi, Cyclocheilichthys apogon, and Puntioplites proctozystron all had one chromosomal pair with 5S rDNA sites. However, more than two sites were found in Hypsibarbus malcolmi, H. wetmorei, Mystacoleucus chilopterus, and M. ectypus. The number of chromosomes with 18S rDNA sites varied amongst their karyotypes from one to three; additionally, comparative genomic hybridization and microsatellite patterns varied among species. Our results reinforce the trend of chromosomal evolution in cyprinifom fishes, with major chromosomal rearrangements, while conserving their 2n.
Collapse
Affiliation(s)
- Sudarat Khensuwan
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Francisco de M C Sassi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos 13565-905, Brazil
| | - Renata L R Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos 13565-905, Brazil
| | - Sitthisak Jantarat
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Kriengkrai Seetapan
- School of Agriculture and Natural Resources, University of Phayao, Tumbol Maeka, Muang, Phayao 56000, Thailand
| | - Krit Phintong
- Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University, Muang, Surin 32000, Thailand
| | - Weera Thongnetr
- Division of Biology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Sarawut Kaewsri
- Program in Biology, Faculty of Science, Buriram Rajabhat University, Muang, Buriram 31000, Thailand
| | - Sarun Jumrusthanasan
- Program in Biology, Faculty of Science, Buriram Rajabhat University, Muang, Buriram 31000, Thailand
| | - Weerayuth Supiwong
- Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000, Thailand
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Marcelo B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos 13565-905, Brazil
| |
Collapse
|
5
|
Rubert M, Takagui FH, dos Santos KF, Santana Pompeo LR, da Rosa R, Zawadzki CH, Mariotto S, Baumgärtner L, Moreira-Filho O, Giuliano-Caetano L. Topotype-Based Chromosomal Diversity among Five Species of Freshwater Armored Catfishes in the Hypostomus auroguttatus Supergroup (Actinopterygii: Siluriformes). Zoolog Sci 2022; 39:446-452. [DOI: 10.2108/zs210103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Marceléia Rubert
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235- SP-310, P.O. Box 676, CEP 13565-905, São Carlos, São Paulo, Brazil
| | - Fábio Hiroshi Takagui
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, P.O. Box 6001, CEP 86051-970, Londrina, Paraná, Brazil
| | - Kátia Fabiana dos Santos
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, P.O. Box 6001, CEP 86051-970, Londrina, Paraná, Brazil
| | - Luis Ricardo Santana Pompeo
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, P.O. Box 6001, CEP 86051-970, Londrina, Paraná, Brazil
| | - Renata da Rosa
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, P.O. Box 6001, CEP 86051-970, Londrina, Paraná, Brazil
| | - Claudio Henrique Zawadzki
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura; Universidade Estadual de Maringá; Av. Colombo 5790, G-90, Sala 18-B, 87020-900 Maringá, Paraná, Brazil
| | - Sandra Mariotto
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso (IFMT), Campus Bela Vista. Rua Juliano Costa Marques s/n, Bela Vista, 78050-560 Cuiabá, Mato Grosso, Brazil
| | - Lucas Baumgärtner
- Laboratório de Citogenética; Centro de Ciências Biológicas e da Saúde; Universidade Estadual do Oeste do Paraná. Rua Universitária 2069, Cascavel-Brasil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235- SP-310, P.O. Box 676, CEP 13565-905, São Carlos, São Paulo, Brazil
| | - Lucia Giuliano-Caetano
- Departamento de Biologia Geral, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, P.O. Box 6001, CEP 86051-970, Londrina, Paraná, Brazil
| |
Collapse
|
6
|
Simanovsky SA, Medvedev DA, Tefera F, Golubtsov AS. First cytogenetic data on Afrotropical lutefishes (Citharinidae) in the light of karyotype evolution in Characiformes. COMPARATIVE CYTOGENETICS 2022; 16:143-150. [PMID: 36761810 PMCID: PMC9849050 DOI: 10.3897/compcytogen.v16.i2.79133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/17/2022] [Indexed: 06/18/2023]
Abstract
The Afrotropical lutefish family Citharinidae (Citharinoidei, Characiformes) comprises three genera with eight species in total. Although Citharinidae have been studied in terms of taxonomy and systematics, no cytogenetic information was available for any representative of the family. Furthermore, only one species out of 116 in Citharinoidei (Distichodusaffinis Günther, 1873) has been studied cytogenetically. Here, we report the karyotypes of Citharinuscitharus (Geoffroy St. Hilaire, 1809) from West Africa and Citharinuslatus Müller et Troschel, 1844 from Northeast Africa. The former has the diploid chromosome number 2n = 40 and the fundamental number FN = 80, while the latter has 2n = 44 and FN = 88. Hence, these karyotypes consist exclusively of bi-armed chromosomes. Such karyotypes were previously found in D.affinis and in many lineages of Neotropical species of another suborder of Characiformes, Characoidei. In contrast, the karyotypes dominated by uni-armed elements are typical for a number of phylogenetically basal lineages of Afrotropical and Neotropical Characoidei. We discuss the importance of our data on Citharinidae for the understanding of the karyotype evolution within the order Characiformes.
Collapse
Affiliation(s)
- Sergey A. Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., 119071 Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Dmitry A. Medvedev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., 119071 Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Fekadu Tefera
- National Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural Research, P.O. Box 64, Sebeta, EthiopiaNational Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural ResearchSebetaEthiopia
| | - Alexander S. Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., 119071 Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
7
|
Randhawa SS, Pawar R. Fish genomes and their evolution under the influence of ecology. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.100980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Soares RX, da Motta-Neto CC, da Costa GWWF, Cioffi MDB, Bertollo LAC, Borges AT, Molina WF. Comparative cytogenetic patterns in Carangidae fishes in association with their distribution range. COMPARATIVE CYTOGENETICS 2021; 15:429-445. [PMID: 34963795 PMCID: PMC8654809 DOI: 10.3897/compcytogen.v15.i4.69638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Carangidae are an important and widespreaded family of pelagic predatory fishes that inhabit reef regions or open ocean areas, some species occupying a vast circumglobal distribution. Cytogenetic comparisons among representatives of its different tribes help to understand the process of karyotype divergence in marine ecosystems due to the variable migratory ability of species. In this sense, conventional cytogenetic investigations (Giemsa staining, Ag-NORs, and C-banding), GC base-specific fluorochrome staining and FISH mapping of ribosomal DNAs were performed. Four species, Elagatisbipinnulata (Quoy et Gaimard, 1825) and Seriolarivoliana (Valenciennes, 1883) (Naucratini), with circumtropical distributions, Gnathanodonspeciosus (Forsskål, 1775) (Carangini), widely distributed in the tropical and subtropical waters of the Indian and Pacific oceans, and Trachinotuscarolinus (Linnaeus, 1766) (Trachinotini), distributed along the western Atlantic Ocean, were analyzed, thus encompassing representatives of three out its four tribes. All species have diploid chromosome number 2n = 48, with karyotypes composed mainly by acrocentric chromosomes (NF = 50-56). The 18S rDNA/Ag-NORs/GC+ and 5S rDNA loci were located on chromosomes likely homeologs. Karyotypes showed a pattern considered basal for the family or with small variations in their structures, apparently due to pericentric inversions. The migratory capacity of large pelagic swimmers, in large distribution areas, likely restricts the fixation of chromosome changes in Carangidae responsible for a low level of karyotype diversification.
Collapse
Affiliation(s)
- Rodrigo Xavier Soares
- Departament of Cell Biology and Genetics, Biosciences Center, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078970, Brazil
| | - Clóvis Coutinho da Motta-Neto
- Departament of Cell Biology and Genetics, Biosciences Center, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078970, Brazil
| | | | - Marcelo de Bello Cioffi
- Fish Cytogenetics Laboratory, Departament of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, C.P. 676, Brazils
| | - Luiz Antônio Carlos Bertollo
- Fish Cytogenetics Laboratory, Departament of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, C.P. 676, Brazils
| | - Amanda Torres Borges
- Departament of Cell Biology and Genetics, Biosciences Center, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078970, Brazil
| | - Wagner Franco Molina
- Departament of Cell Biology and Genetics, Biosciences Center, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078970, Brazil
| |
Collapse
|
9
|
Amorim KDJ, da Costa GWWF, Cioffi MDB, Tanomtong A, Bertollo LAC, Molina WF. A new view on the scenario of karyotypic stasis in Epinephelidae fish: Cytogenetic, historical, and biogeographic approaches. Genet Mol Biol 2021; 44:e20210122. [PMID: 34807969 PMCID: PMC8608104 DOI: 10.1590/1678-4685-gmb-2021-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Epinephelidae (groupers) is an astonishingly diverse group of carnivorous fish widely distributed in reef environments around the world, with growing economic importance. The first chromosomal inferences suggested a conservative scenario for the family. However, to date, this has not been validated using biogeographic and phylogenetic approaches. Thus, to estimate karyotype diversification among groupers, eight species from the Atlantic and Indian oceans were investigated using conventional cytogenetic protocols and fluorescence in situ hybridization of repetitive sequences (rDNA, microsatellites, transposable elements). Despite the remarkable persistence of some symplesiomorphic karyotype patterns, such as all species sharing 2n=48 and most preserve a basal karyotype (2n=48 acrocentrics), the chromosomal diversification in the family revealed an unsuspected evolutionary dynamic, where about 40% of the species escape from the ancestral karyotype pattern. These karyotype changes showed a relation with the historical biogeography, likely as a byproduct of the progressive occupancy of new areas (huge diversity of adaptive and speciation conditions). In this context, oceanic regions harboring more recent clades such as those of the Indo-Pacific, exhibited a higher karyotype diversity. Therefore, the karyotype evolution of Epinephelidae fits well with the expansion and geographic contingencies of its clades, providing a more complex and diverse scenario than previously assumed.
Collapse
Affiliation(s)
- Karlla Danielle Jorge Amorim
- Universidade Federal do Rio Grande do Norte, Departamento de Biologia Celular e Genética, Centro de Biociências, Natal, RN, Brazil
| | | | - Marcelo de Bello Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, São Carlos, SP, Brazil
| | - Alongklod Tanomtong
- Khon Kaen University, Department of Biology, Faculty of Science, Muang, Khon Kaen, Thailand
- Khon Kaen University, Toxic Substances in Livestock and Aquatic Animals Research Group, Muang, Khon Kaen 40002, Thailand
| | - Luiz Antônio Carlos Bertollo
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, São Carlos, SP, Brazil
| | - Wagner Franco Molina
- Universidade Federal do Rio Grande do Norte, Departamento de Biologia Celular e Genética, Centro de Biociências, Natal, RN, Brazil
| |
Collapse
|
10
|
Favarato RM, Ribeiro LB, Campos A, Porto JIR, Nakayama CM, Ota RP, Feldberg E. Comparative cytogenetics of Serrasalmidae (Teleostei: Characiformes): The relationship between chromosomal evolution and molecular phylogenies. PLoS One 2021; 16:e0258003. [PMID: 34618832 PMCID: PMC8496811 DOI: 10.1371/journal.pone.0258003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Serrasalmidae has high morphological and chromosomal diversity. Based on molecular hypotheses, the family is currently divided into two subfamilies, Colossomatinae and Serrasalminae, with Serrasalminae composed of two tribes: Myleini (comprising most of pacus species) and Serrasalmini (represented by Metynnis, Catoprion, and remaining piranha’s genera). This study aimed to analyze species of the tribes Myleini (Myloplus asterias, M. lobatus, M. rubripinnis, M. schomburgki, and Tometes camunani) and Serrasalmini (Metynnis cuiaba, M. hypsauchen, and M. longipinnis) using classical and molecular cytogenetic techniques in order to understand the chromosomal evolution of the family. The four species of the genus Myloplus and T. camunani presented 2n = 58 chromosomes, while the species of Metynnis presented 2n = 62 chromosomes. The distribution of heterochromatin occurred predominantly in pericentromeric regions in all species. Tometes camunani and Myloplus spp. presented only one site with 5S rDNA. Multiple markers of 18S rDNA were observed in T. camunani, M. asterias, M. lobatus, M. rubripinnis, and M. schomburgkii. For Metynnis, however, synteny of the 18S and 5S rDNA was observed in the three species, in addition to an additional 5S marker in M. longipinnis. These data, when superimposed on the phylogeny of the family, suggest a tendency to increase the diploid chromosome number from 54 to 62 chromosomes, which occurred in a nonlinear manner and is the result of several chromosomal rearrangements. In addition, the different karyotype formulas and locations of ribosomal sequences can be used as cytotaxonomic markers and assist in the identification of species.
Collapse
Affiliation(s)
- Ramon Marin Favarato
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
- * E-mail:
| | - Leila Braga Ribeiro
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Avenida Capitão Ene Garcêz, Boa Vista, RR, Brazil
| | - Alber Campos
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
| | - Jorge Ivan Rebelo Porto
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
| | - Celeste Mutuko Nakayama
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
| | - Rafaela Priscila Ota
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, São Paulo, Brazil
| | - Eliana Feldberg
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Petrópolis, Manaus, Amazonas, Brazil
| |
Collapse
|
11
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
12
|
de Sousa RPC, Silva-Oliveira GC, Furo IO, de Oliveira-Filho AB, de Brito CDB, Rabelo L, Guimarães-Costa A, de Oliveira EHC, Vallinoto M. The role of the chromosomal rearrangements in the evolution and speciation of Elopiformes fishes (Teleostei; Elopomorpha). ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Coluccia E, Deidda F, Lobina C, Melis R, Porcu C, Agus B, Salvadori S. Chromosome Mapping of 5S Ribosomal Genes in Indo-Pacific and Atlantic Muraenidae: Comparative Analysis by Dual Colour Fluorescence In Situ Hybridisation. Genes (Basel) 2020; 11:genes11111319. [PMID: 33172170 PMCID: PMC7694744 DOI: 10.3390/genes11111319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
The Muraenidae is one of the largest and most complex anguilliform families. Despite their abundance and important ecological roles, morays are little studied, especially cytogenetically, and both their phylogenetic relationships and the taxonomy of their genera are controversial. With the aim of extending the karyology of this fish group, the chromosomal mapping of the 5S ribosomal gene family was performed on seven species belonging to the genera Muraena and Gymnothorax from both the Atlantic and Pacific oceans. Fluorescence in situ hybridisation (FISH) experiments were realized using species-specific 5S rDNA probes; in addition, two-colour FISH was performed to investigate the possible association with the 45S ribosomal gene family. Multiple 5S rDNA clusters, located either in species-specific or in possibly homoeologous chromosomes, were found. Either a syntenic or different chromosomal location of the two ribosomal genes was detected. Our results revealed variability in the number and location of 5S rDNA clusters and confirmed a substantial conservation of the number and location of the 45S rDNA.
Collapse
|
14
|
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile Elements in Ray-Finned Fish Genomes. Life (Basel) 2020; 10:E221. [PMID: 32992841 PMCID: PMC7599744 DOI: 10.3390/life10100221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.
Collapse
Affiliation(s)
| | | | | | | | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.C.); (M.B.); (A.C.); (E.C.)
| |
Collapse
|
15
|
Nirchio M, Paim FG, Britzke R, Rossi AR, Milana V, Oliveira C. Molecular Analysis and Chromosome Mapping of Repetitive DNAs in the Green Terror Andinoacara rivulatus (Cichlidae: Cichlasomatini). Zebrafish 2020; 17:38-47. [PMID: 31994993 DOI: 10.1089/zeb.2019.1811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neotropical cichlids include hundreds of species whose taxonomy has benefited of molecular phylogeny and whose karyotype evolution has been related to the amount and distribution of different classes of repetitive sequences. This study provides the first integrative molecular (cytochrome c oxidase subunit 1 and 16S sequences) and cytogenetic analyses of wild samples of the green terror Andinoacara rivulatus, a cichlid naturally distributed in Ecuador and spread throughout the world as an aquarium pet. Molecular data revealed that sequences of green terror constitute a single monophyletic clade within the genus and allowed species attribution of uncertain samples previously cytogenetically analyzed. Chromosome number (2n = 48) conforms to the general trend observed within neotropical cichlids. However, mapping of different classes of repeated sequences (18S rDNA, 5S rDNA, U1 snDNA and telomeric) revealed the presence of features uncommon among representatives of these fishes, like multiple major rDNA sites, and suggested a recent occurrence of rearrangements (fusion/inversion) in two chromosome pairs.
Collapse
Affiliation(s)
- Mauro Nirchio
- Departamento de Acuicultura, Escuela de Ciencias Aplicadas del Mar, Núcleo de Nueva Esparta, Universidad de Oriente, Porlamar, Venezuela.,Departamento de Acuicultura, Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala, Ecuador
| | - Fabilene Gomes Paim
- Departamento de Morfologia, Instituto de Biociências Universidade Estadual Paulista, UNESP, Botucatu, Brazil
| | - Ricardo Britzke
- Departamento de Acuicultura, Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala, Ecuador.,Departamento de Morfologia, Instituto de Biociências Universidade Estadual Paulista, UNESP, Botucatu, Brazil
| | - Anna Rita Rossi
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza-Università di Roma, Rome, Italy
| | - Valentina Milana
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza-Università di Roma, Rome, Italy
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências Universidade Estadual Paulista, UNESP, Botucatu, Brazil
| |
Collapse
|
16
|
Sassi FDMC, Hatanaka T, de Moraes RLR, Toma GA, de Oliveira EA, Liehr T, Rab P, Bertollo LAC, Viana PF, Feldberg E, Nirchio M, Marinho MMF, Souza JFDSE, Cioffi MDB. An Insight into the Chromosomal Evolution of Lebiasinidae (Teleostei, Characiformes). Genes (Basel) 2020; 11:genes11040365. [PMID: 32231057 PMCID: PMC7254295 DOI: 10.3390/genes11040365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/29/2022] Open
Abstract
Lebiasinidae fishes have been historically neglected by cytogenetical studies. Here we present a genomic comparison in eleven Lebiasinidae species, in addition to a review of the ribosomal DNA sequences distribution in this family. With that, we develop ten sets of experiments in order to hybridize the genomic DNA of representative species from the genus Copeina, Copella, Nannostomus, and Pyrrhulina in metaphase plates of Lebiasina melanoguttata. Two major pathways on the chromosomal evolution of these species can be recognized: (i) conservation of 2n = 36 bi-armed chromosomes in Lebiasininae, as a basal condition, and (ii) high numeric and structural chromosomal rearrangements in Pyrrhulininae, with a notable tendency towards acrocentrization. The ribosomal DNA (rDNA) distribution also revealed a marked differentiation during the chromosomal evolution of Lebiasinidae, since both single and multiple sites, in addition to a wide range of chromosomal locations can be found. With some few exceptions, the terminal position of 18S rDNA appears as a common feature in Lebiasinidae-analyzed species. Altogether with Ctenoluciidae, this pattern can be considered a symplesiomorphism for both families. In addition to the specific repetitive DNA content that characterizes the genome of each particular species, Lebiasina also keeps inter-specific repetitive sequences, thus reinforcing its proposed basal condition in Lebiasinidae.
Collapse
Affiliation(s)
- Francisco de M. C. Sassi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | - Renata Luiza R. de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | - Gustavo A. Toma
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | | | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena 07747, Germany
- Correspondence: ; Tel.: +49-3641-9396850; Fax: +49-3641-9396852
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| | - Patrik F. Viana
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil; (P.F.V.); (E.F.); (J.F.d.S.e.S.)
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil; (P.F.V.); (E.F.); (J.F.d.S.e.S.)
| | - Mauro Nirchio
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala 070151, Ecuador;
| | - Manoela Maria F. Marinho
- Museu de Zoologia da Universidade de São Paulo (MZUSP), São Paulo, SP 04263-000, Brazil;
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB 58033-455, Brazil
| | - José Francisco de S. e Souza
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM 69067-375, Brazil; (P.F.V.); (E.F.); (J.F.d.S.e.S.)
| | - Marcelo de B. Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (T.H.); (R.L.R.d.M.); (G.A.T.); (L.A.C.B.); (M.d.B.C.)
| |
Collapse
|
17
|
Dorini BF, Ribeiro‐Silva LR, Foresti F, Oliveira C, Melo BF. Molecular phylogenetics provides a novel hypothesis of chromosome evolution in Neotropical fishes of the genus
Potamorhina
(Teleostei, Curimatidae). J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beatriz F. Dorini
- Departamento de MorfologiaInstituto de BiociênciasUniversidade Estadual Paulista, IBB/UNESP Botucatu São Paulo Brazil
| | - Luís R. Ribeiro‐Silva
- Departamento de MorfologiaInstituto de BiociênciasUniversidade Estadual Paulista, IBB/UNESP Botucatu São Paulo Brazil
| | - Fausto Foresti
- Departamento de MorfologiaInstituto de BiociênciasUniversidade Estadual Paulista, IBB/UNESP Botucatu São Paulo Brazil
| | - Claudio Oliveira
- Departamento de MorfologiaInstituto de BiociênciasUniversidade Estadual Paulista, IBB/UNESP Botucatu São Paulo Brazil
| | - Bruno F. Melo
- Departamento de MorfologiaInstituto de BiociênciasUniversidade Estadual Paulista, IBB/UNESP Botucatu São Paulo Brazil
| |
Collapse
|
18
|
Sassi FDMC, Oliveira EAD, Bertollo LAC, Nirchio M, Hatanaka T, Marinho MMF, Moreira-Filho O, Aroutiounian R, Liehr T, Al-Rikabi ABH, Cioffi MDB. Chromosomal Evolution and Evolutionary Relationships of Lebiasina Species (Characiformes, Lebiasinidae). Int J Mol Sci 2019; 20:E2944. [PMID: 31208145 PMCID: PMC6628269 DOI: 10.3390/ijms20122944] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/21/2023] Open
Abstract
We present the first cytogenetic data for Lebiasina bimaculata and L. melanoguttata with the aim of (1) investigating evolutionary events within Lebiasina and their relationships with other Lebiasinidae genera and (2) checking the evolutionary relationships between Lebiasinidae and Ctenoluciidae. Both species have a diploid number 2n = 36 with similar karyotypes and microsatellite distribution patterns but present contrasting C-positive heterochromatin and CMA3+ banding patterns. The remarkable interstitial series of C-positive heterochromatin occurring in L. melanoguttata is absent in L. bimaculata. Accordingly, L. bimaculata shows the ribosomal DNA sites as the only GC-rich (CMA3+) regions, while L. melanoguttata shows evidence of a clear intercalated CMA3+ banding pattern. In addition, the multiple 5S and 18S rDNA sites in L. melanogutatta contrast with single sites present in L. bimaculata. Comparative genomic hybridization (CGH) experiments also revealed a high level of genomic differentiation between both species. A polymorphic state of a conspicuous C-positive, CMA3+, and (CGG)n band was found only to occur in L. bimaculata females, and its possible relationship with a nascent sex chromosome system is discussed. Whole chromosome painting (WCP) and CGH experiments indicate that the Lebiasina species examined and Boulengerella maculata share similar chromosomal sequences, thus supporting the relatedness between them and the evolutionary relationships between the Lebiasinidae and Ctenoluciidae families.
Collapse
Affiliation(s)
| | - Ezequiel Aguiar de Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
- Secretaria de Estado de Educação de Mato Grosso-SEDUC-MT, Cuiabá, MT 78049-909, Brazil.
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
| | - Mauro Nirchio
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala, Machala 070151, Ecuador.
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
| | | | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Yerevan 0063, Armenia.
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena 07747, Germany.
| | | | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
19
|
Nirchio M, Gaviria JI, Siccha-Ramirez ZR, Oliveira C, Foresti F, Milana V, Rossi AR. Chromosomal polymorphism and molecular variability in the pearly razorfish Xyrichtys novacula (Labriformes, Labridae): taxonomic and biogeographic implications. Genetica 2019; 147:47-56. [PMID: 30673915 DOI: 10.1007/s10709-019-00051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 01/28/2023]
Abstract
The pearly razorfish Xyrichtys novacula (Linnaeus, 1758) is a sedentary benthic species distributed in both sides of the Atlantic Ocean and in the Mediterranean Sea. Previous cytogenetic analysis reported different diploid numbers in samples from Italy, Venezuela and Brazil. This research aims to test the hypothesis that samples from American Atlantic coast and Mediterranean Sea belong to the same single evolutionary lineage, characterized by intra-specific chromosome polymorphism. To this purpose a cytogenetic and molecular (mitochondrial COI sequences) survey was undertaken. Results revealed the existence of three different pearly razorfish molecular lineages: one present in Mediterranean Sea and two in the central and south American area, which are characterized by different karyotypes. One of these lineages shows substantial intra-population chromosomal polymorphism (2n = 45-48) determined by Robertsonian fusions that produce large metacentric chromosomes. On the whole data suggest that specimens morphologically identified as X. novacula correspond to three cryptic species.
Collapse
Affiliation(s)
- Mauro Nirchio
- Escuela de Ciencias Aplicadas del Mar, Núcleo de Nueva Esparta, Universidad de Oriente, Apartado 174, Porlamar, Isla de Margarita, Venezuela.,Universidad Técnica de Machala, Av. Panamericana km 5½, Via Pasaje, Machala, El Oro, Ecuador
| | - Juan Ignacio Gaviria
- Escuela de Ciencias Aplicadas del Mar, Núcleo de Nueva Esparta, Universidad de Oriente, Apartado 174, Porlamar, Isla de Margarita, Venezuela
| | | | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências Universidade Estadual Paulista-UNESP, Botucatu, São Paulo, 18618-970, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências Universidade Estadual Paulista-UNESP, Botucatu, São Paulo, 18618-970, Brazil
| | - Valentina Milana
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Anna Rita Rossi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Via Alfonso Borelli 50, 00161, Rome, Italy.
| |
Collapse
|
20
|
Girardi SC, Pavanelli CS, Margarido VP. Contributions to the systematic of Pimelodidae (Osteichthyes, Siluriformes): basic and molecular cytogenetics on seven species of Pimelodus from three Brazilian hydrographic systems. NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20170148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Pimelodidae harbors several species and is widely distributed throughout the Neotropical region. Pimelodus is the genus with the largest number of species, however it is a polyphyletic group. Cytogenetic analyzes of the valid species still covers less than half of them. Herein, seven Pimelodus species from three Brazilian hydrographic systems were analyzed through basic (Giemsa, AgNORs and C banding) and molecular (5S and 18S rDNA-FISH) cytogenetic methods. All species had 2n=56 chromosomes with different karyotype formulas observed among the species. AgNORs were corresponding to 18S rDNA and localized on long arm of one chromosome pair in all species. Heterochromatin distribution follows the pattern commonly verified in the family and allows to identify each one of the studied species. 5S rDNA marker was interspecifically variable in number and position of cistrons. Pimelodus ortmanni had B chromosomes varying intra and inter-individually. We performed a discussion on our own and available cytogenetic data for Pimelodidae, and the associating of them with available phylogeny enable us identifying features that distinguish subgroups within Pimelodidae, such as NORs location (terminal/long arm for species belonging to “Iheringichthys-Parapimelodus” and “Pimelodus maculatus” subclades) and location of 5S rDNA sites (pericentromeric/interstitial/ long arm for species belonging to Pimelodus group).
Collapse
Affiliation(s)
- Simone C. Girardi
- Universidade Estadual do Oeste do Paraná, Brazil; Universidade Estadual de Maringá, Brazil
| | - Carla S. Pavanelli
- Universidade Estadual de Maringá, Brazil; Universidade Estadual de Maringá, Brazil
| | - Vladimir P. Margarido
- Universidade Estadual do Oeste do Paraná, Brazil; Universidade Estadual de Maringá, Brazil
| |
Collapse
|
21
|
Machado MDA, Pieczarka JC, Silva FHR, O'Brien PCM, Ferguson-Smith MA, Nagamachi CY. Extensive Karyotype Reorganization in the Fish Gymnotus arapaima (Gymnotiformes, Gymnotidae) Highlighted by Zoo-FISH Analysis. Front Genet 2018; 9:8. [PMID: 29434621 PMCID: PMC5790778 DOI: 10.3389/fgene.2018.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023] Open
Abstract
The genus Gymnotus (Gymnotiformes) contains over 40 species of freshwater electric fishes exhibiting a wide distribution throughout Central and South America, and being particularly prevalent in the Amazon basin. Cytogenetics has been an important tool in the cytotaxonomy and elucidation of evolutionary processes in this genus, including the unraveling the variety of diploid chromosome number (2n = from 34 to 54), the high karyotype diversity among species with a shared diploid number, different sex chromosome systems, and variation in the distribution of several Repetitive DNAs and colocation and association between those sequences. Recently whole chromosome painting (WCP) has been used for tracking the chromosomal evolution of the genus, showing highly reorganized karyotypes and the conserved synteny of the NOR bearing par within the clade G. carapo. In this study, painting probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30 m/sm + 12 st/a) were hybridized to the mitotic metaphases of G. arapaima (GAR, 2n = 44, 24 m/sm + 20 st/a). Our results uncovered chromosomal rearrangements and a high number of repetitive DNA regions. From the 12 chromosome pairs of G. carapo that can be individually differentiated (GCA1-3, 6, 7, 9, 14, 16, and 18-21), six pairs (GCA 1, 9, 14, 18, 20, 21) show conserved homology with GAR, five pairs (GCA 1, 9, 14, 20, 21) are also shared with cryptic species G. carapo 2n = 40 (34 m/sm + 6 st/a) and only the NOR bearing pair (GCA 20) is shared with G. capanema (GCP 2n = 34, 20 m/sm + 14 st/a). The remaining chromosomes are reorganized in the karyotype of GAR. Despite the close phylogenetic relationships of these species, our chromosome painting studies demonstrate an extensive reorganization of their karyotypes.
Collapse
Affiliation(s)
- Milla de Andrade Machado
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Julio C Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Fernando H R Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Cleusa Y Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| |
Collapse
|
22
|
Krysanov E, Demidova T. Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes). COMPARATIVE CYTOGENETICS 2018; 12:387-402. [PMID: 30338046 PMCID: PMC6182469 DOI: 10.3897/compcytogen.v12i3.25092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/18/2018] [Indexed: 05/09/2023]
Abstract
Karyotypes of 65 species of the genus Nothobranchius Peters, 1868 were reviewed and of those 35 examined first time. The results of present study have shown that fishes of the genus Nothobranchius possessed highly diverse karyotypes. The diploid chromosome number (2n) ranged from 16 to 50. The most frequent 2n was 2n = 36 (in 35 species) while the second one 2n = 38 (in 13 species). Proportion of biarmed chromosomes varied from 0 to 95% between species. Diploid chromosome number variability apparently exists as a result of chromosomal fusions or fissions and extensive karyotypic formula alterations promoting by inversions. Multiple sex chromosomes of system X1X1X2X2/X1X2Y type were found only in karyotypes of 5 species. The extensive karyotype variability, unusual for teleosts, of genus Nothobranchius can be likely associated with the characteristics of its life cycle and inhabiting under unstable environment of East African savannah temporal pools.
Collapse
Affiliation(s)
- Eugene Krysanov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Tatiana Demidova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
23
|
Paim FG, Almeida LADH, Affonso PRADM, Sobrinho-Scudeler PE, Oliveira C, Diniz D. Chromosomal stasis in distinct families of marine Percomorpharia from South Atlantic. COMPARATIVE CYTOGENETICS 2017; 11:299-307. [PMID: 28919966 PMCID: PMC5596989 DOI: 10.3897/compcytogen.11(2).11942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/28/2017] [Indexed: 06/01/2023]
Abstract
The weakness of physical barriers in the marine environment and the dispersal potential of fish populations have been invoked as explanations of the apparent karyotype stasis of marine Percomorpha, but several taxa remain poorly studied cytogenetically. To increase the chromosomal data in this fish group, we analyzed cytogenetically three widespread Atlantic species from distinct families: Chaetodipterus faber Broussonet, 1782 (Ephippidae), Lutjanus synagris Linnaeus, 1758 (Lutjanidae) and Rypticus randalli Courtenay, 1967 (Serranidae). The three species shared a karyotype composed of 2n=48 acrocentric chromosomes, single nucleolus organizer regions (NORs) and reduced amounts of centromeric heterochromatin. A single NOR-bearing pair was identified in all species by physical mapping of 18S rDNA while non-syntenic 5S rRNA genes were located at centromeric region of a single pair. The similar karyotypic macrostructure observed in unrelated groups of Percomorpharia reinforces the conservative karyoevolution of marine teleosteans. Nonetheless, the species could be differentiated based on the pair bearing ribosomal cistrons, revealing the importance of microstructural analyses in species with symmetric and stable karyotypes.
Collapse
Affiliation(s)
- Fabilene Gomes Paim
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia, Brasil
| | | | | | | | - Claudio Oliveira
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, UNESP, Botucatu, SP, Brasil
| | - Débora Diniz
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia, Brasil
| |
Collapse
|
24
|
Karyoevolution inPotamorhina(Cope, 1878) (Ostariophysi, Curimatidae): Using Repetitive DNA for the Elucidation of Genome Organization. Zebrafish 2016; 13:118-31. [DOI: 10.1089/zeb.2015.1187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Barreto SB, Cioffi MB, Medrado AS, Silva AT, Affonso PRAM, Diniz D. Allopatric chromosomal variation in Nematocharax venustus Weitzman, Menezes & Britski, 1986 (Actinopterygii: Characiformes) based on mapping of repetitive sequences. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20150141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Characiformes is the most cytogenetically studied group of freshwater Actinopterygii, but karyotypical data of several taxa remain unknown. This is the case of Nematocharax , regarded as a monotypic genus and characterized by marked sexual dimorphism. Therefore, we provide the first cytogenetic report of allopatric populations of Nematocharax venustus based on distinct methods of chromosomal banding and fluorescence in situ hybridization (FISH) with repetitive DNA probes (18S and 5S rDNA). The karyotype macrostructure was conserved in all specimens and populations, independently on sex, since they shared a diploid number (2n) of 50 chromosomes divided into 8m+26sm+14st+2a. The heterochromatin was mainly distributed at pericentromeric regions and base-specific fluorochrome staining revealed a single pair bearing GC-rich sites, coincident with nucleolar organizer regions (NORs). On the other hand, interpopulation variation in both number and position of repetitive sequences was observed, particularly in relation to 5S rDNA. Apparently, the short life cycles and restricted dispersal of small characins, such as N. venustus , might have favored the divergence of repetitive DNA among populations, indicating that this species might encompass populations with distinct evolutionary histories, which has important implications for conservation measures.
Collapse
Affiliation(s)
| | | | | | - André T. Silva
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | | - Débora Diniz
- Universidade Estadual do Sudoeste da Bahia, Brazil
| |
Collapse
|
26
|
Sánchez-Romero O, Abad CQ, Cordero PQ, de Sene VF, Nirchio M, Oliveira C. First description of the karyotype and localization of major and minor ribosomal genes in Rhoadsiaaltipinna Fowler, 1911 (Characiformes, Characidae) from Ecuador. COMPARATIVE CYTOGENETICS 2015; 9:271-280. [PMID: 26140168 PMCID: PMC4488973 DOI: 10.3897/compcytogen.v9i2.4504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/28/2015] [Indexed: 06/02/2023]
Abstract
Karyotypic features of Rhoadsiaaltipinna Fowler, 1911 from Ecuador were investigated by examining metaphase chromosomes through Giemsa staining, C-banding, Ag-NOR, and two-color-fluorescence in situ hybridization (FISH) for mapping of 18S and 5S ribosomal genes. The species exhibit a karyotype with 2n = 50, composed of 10 metacentric, 26 submetacentric and 14 subtelocentric elements, with a fundamental number FN=86 and is characterized by the presence of a larger metacentric pair (number 1), which is about 2/3 longer than the average length of the rest of the metacentric series. Sex chromosomes were not observed. Heterochromatin is identifiable on 44 chromosomes, distributed in paracentromeric position near the centromere. The first metacentric pair presents two well-defined heterochromatic blocks in paracentromeric position, near the centromere. Impregnation with silver nitrate showed a single pair of Ag-positive NORs localized at terminal regions of the short arms of the subtelocentric chromosome pair number 12. FISH assay confirmed these localization of NORs and revealed that minor rDNA clusters occur interstitially on the larger metacentric pair number 1. Comparison of results here reported with those available on other Characidae permit to hypothesize that the presence of a very large metacentric pair might represent a unique and derived condition that characterize one of four major lineages molecularly identified in this family.
Collapse
Affiliation(s)
- Omar Sánchez-Romero
- Universidad Técnica de Machala, El Oro, Ecuador
- Universidad Nacional Mayor de San Marcos UNMSM, Lima, Perú
| | | | | | - Viviani França de Sene
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil. CEP: 18618-970
| | - Mauro Nirchio
- Universidad Técnica de Machala, El Oro, Ecuador
- Escuela de Ciencias Aplicadas del Mar, Universidad de Oriente, Estado Nueva Esparta, Venezuela
| | - Claudio Oliveira
- Laboratório de Biologia e Genética de Peixes, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil. CEP: 18618-970
| |
Collapse
|