1
|
Kaur S, Kumari A, Seem K, Kaur G, Kumar D, Verma S, Singh N, Kumar A, Kumar M, Jaiswal S, Bhardwaj R, Singh BK, Riar A. Finger millet (Eleusine coracana L.): from staple to superfood-a comprehensive review on nutritional, bioactive, industrial, and climate resilience potential. PLANTA 2024; 260:75. [PMID: 39153062 PMCID: PMC11330411 DOI: 10.1007/s00425-024-04502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
MAIN CONCLUSION This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from "poor man's staple food" to "a nutrient rich cereal" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.
Collapse
Affiliation(s)
- Simardeep Kaur
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India.
| | - Arti Kumari
- Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Karishma Seem
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gurkanwal Kaur
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Deepesh Kumar
- ICAR-National Institute of Plant Biotechnology, New Delhi, 110012, India
| | - Surbhi Verma
- College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Naseeb Singh
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Amit Kumar
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Manish Kumar
- Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Sandeep Jaiswal
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Rakesh Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Binay Kumar Singh
- ICAR-Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture, FiBL, 11 Frick, Switzerland.
| |
Collapse
|
2
|
Zhang J, Yang J, Yin Y. Germination Promotes Flavonoid Accumulation of Finger Millet ( Eleusine coracana L.): Response Surface Optimization and Investigation of Accumulation Mechanism. PLANTS (BASEL, SWITZERLAND) 2024; 13:2191. [PMID: 39204627 PMCID: PMC11360649 DOI: 10.3390/plants13162191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Germination is an effective measure to regulate the accumulation of secondary metabolites in plants. In this study, we optimized the germination conditions of finger millet by response surface methodology. Meanwhile, physiological characteristics and gene expression were measured to investigate the mechanism of flavonoid accumulation in finger millet at the germination stage. The results showed that when germination time was 5.7 d, germination temperature was 31.2 °C, and light duration was 17.5 h, the flavonoid content of millet sprouts was the highest (7.0 μg/sprout). The activities and relative gene expression of key enzymes for flavonoid synthesis (phenylalanine ammonia-lyase, 4-coumarate-coenzyme a ligase, and cinnamate 4-hydroxylase) were significantly higher in finger millet sprouts germinated at 3 and 5 d compared with that in ungerminated seeds (p < 0.05). In addition, germination enhanced the activities of four antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase) and up-regulated the gene expression of PAL and APX. Germination increased malondialdehyde content in sprouts, which resulted in cell damage. Subsequently, the antioxidant capacity of the sprouts was enhanced through the activation of antioxidant enzymes and the up-regulation of their gene expression, as well as the synthesis of active substances, including flavonoids, total phenolics, and anthocyanins. This process served to alleviate germination-induced cellular injury. These findings provide a research basis for the regulation of finger millet germination and the enhancement of its nutritional and functional properties.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China;
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
3
|
Endalew HW, Atlabachew M, Karavoltsos S, Sakellari A, Aslam MF, Allen L, Griffiths H, Zoumpoulakis P, Kanellou A, Yehuala TF, Abera MK, Tenagashaw MW, Cherie HA. Effect of fermentation on nutrient composition, antinutrients, and mineral bioaccessibility of finger millet based Injera: A traditional Ethiopian food. Food Res Int 2024; 190:114635. [PMID: 38945624 DOI: 10.1016/j.foodres.2024.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Finger millet, like other cereals, contains high amounts of antinutrients that bind minerals, making them unavailable for absorption. This study explores the effect of traditional fermentation on nutritional, antinutritional, and subsequent mineral bioaccessibility (specifically iron, zinc, and calcium) of finger millet based Injera. Samples of fermented dough and Injera prepared from light brown and white finger millet varieties were analyzed for nutritional composition, antinutritional content, and mineral bioaccessibility following standard procedures. With some exceptions, the proximate composition of fermented dough was significantly affected by fermentation time. Compared to unfermented flour, the phytate and condensed tannin content significantly (p < 0.05) decreased for fermented dough and Injera samples. A strong decline in phytate and condensed tannin content was observed in white finger millet Injera as fermentation time increased, compared to light brown finger millet based Injera. The mineral bioaccessibility of Injera prepared from finger millet and maize composite flour increased with fermentation time, leading to a significant increase in bioaccessible iron, zinc, and calcium, ranging from 15.4-40.0 %, 26.8-50.8 %, and 60.9-88.5 %, respectively. The results suggest that traditional fermentation can be an effective method to reduce phytate and condensed tannin content, simultaneously increasing the bioaccessibility of minerals in the preparation of finger millet based Injera.
Collapse
Affiliation(s)
- Helen Walle Endalew
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Sotirios Karavoltsos
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15784 Athens, Greece
| | - Aikaterini Sakellari
- Laboratory of Environmental Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15784 Athens, Greece
| | - Mohamad Farshard Aslam
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London SE1 9NH, UK
| | - Lara Allen
- Centre for Global Equality, 8C King's Parade, Cambridge CB2 1SJ, UK; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Howard Griffiths
- Department of Plant Sciences, Downing Street, University of Cambridge, CB2 3EA, UK
| | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Athens, Greece
| | - Anastasia Kanellou
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Athens, Greece
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Metadel Kassahun Abera
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Mesfin Wogahyehu Tenagashaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia; Bahir Dar Food and Nutrition Research Centre, Ethiopia
| | - Hirut Assaye Cherie
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia; Bahir Dar Food and Nutrition Research Centre, Ethiopia.
| |
Collapse
|
4
|
Khan J, Gul P, Liu K. Grains in a Modern Time: A Comprehensive Review of Compositions and Understanding Their Role in Type 2 Diabetes and Cancer. Foods 2024; 13:2112. [PMID: 38998619 PMCID: PMC11241577 DOI: 10.3390/foods13132112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Globally, type 2 diabetes (T2D) and Cancer are the major causes of morbidity and mortality worldwide and are considered to be two of the most significant public health concerns of the 21st century. Over the next two decades, the global burden is expected to increase by approximately 60%. Several observational studies as well as clinical trials have demonstrated the health benefits of consuming whole grains to lower the risk of several chronic non-communicable diseases including T2D and cancer. Cereals grains are the primary source of energy in the human diet. The most widely consumed pseudo cereals include (quinoa, amaranth, and buckwheat) and cereals (wheat, rice, and corn). From a nutritional perspective, both pseudo cereals and cereals are recognized for their complete protein, essential amino acids, dietary fibers, and phenolic acids. The bran layer of the seed contains the majority of these components. Greater intake of whole grains rather than refined grains has been consistently linked to a lower risk of T2D and cancer. Due to their superior nutritional compositions, whole grains make them a preferred choice over refined grains. The modulatory effects of whole grains on T2D and cancer are also likely to be influenced by several mechanisms; some of these effects may be direct while others involve altering the composition of gut microbiota, increasing the abundance of beneficial bacteria, and lowering harmful bacteria, increasing insulin sensitivity, lowering solubility of free bile acids, breaking protein down into peptides and amino acids, producing short-chain fatty acids (SCFAs), and other beneficial metabolites that promote the proliferation in the colon which modulate the antidiabetic and anticancer pathway. Thus, the present review had two aims. First, it summarized the recent knowledge about the nutritional composition and bioactive acids in pseudo cereals (quinoa, amaranth, and buckwheat) and cereals (wheat, rice, and corn); the second section summarized and discussed the progress in recent human studies, such as observational (cross-sectional studies, case-control studies, and cohort studies) and intervention studies to understand their role in T2D and cancer including the potential mechanism. Overall, according to the scientific data, whole grain consumption may reduce the incidence of T2D and cancer. Future studies should carry out randomized controlled trials to validate observational results and establish causality. In addition, the current manuscript encourages researchers to investigate the specific mechanisms by which whole grains exert their beneficial effects on health by examining the effects of different types of specific protein, dietary fibers, and phenolic acids that might help to prevent or treat T2D and cancer.
Collapse
Affiliation(s)
- Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Murungweni KT, Ramashia SE, Mashau ME. Effect of malting on physicochemical, antioxidant, and microstructural properties of finger millet ( Eleusine coracana) flours. Food Sci Nutr 2024; 12:547-563. [PMID: 38268874 PMCID: PMC10804109 DOI: 10.1002/fsn3.3790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024] Open
Abstract
Finger millet (Eleusine coracana L. Gaertn.) is a gluten-free crop with a high amount of fiber, calcium and iron, outstanding malting qualities and a low glycemic index. The study aimed to determine the physicochemical, functional, antioxidant and microstructural properties of malted finger millet (light and dark brown) flours. The two varieties of finger millet grains were germinated for 0, 24, 48 and 72 h and kilned for 8 h. The lightness (L*) values of malted finger millet flours significantly increased, with light brown having the highest L* value of 76.62. The hue angle and total color differences (ΔE) of the malted finger millet flours increased significantly (p ≤ .05.), and values ranged from 63.43° to 71.20° (light brown) and 2.12° to 4.32° (dark brown), respectively. The moisture, ash, fiber, protein, total phenolic, total flavonoids contents and DPPH activity of both malted finger millet flours significantly increased. On the contrary, the fat, carbohydrate, energy contents and FRAP activity significantly decreased with each malting period of both finger millet flours. Both malted finger millet flours' solubility index, water and oil absorption capacity increased significantly while the packed and loose bulk density decreased. Malting had no significant effect on the viscosity of the cold paste; however, a significant decrease in the viscosity of the cooked paste in both finger millet flours was observed, with values ranging from 285 to 424.00 cP (light brown) and 271.33 to 418.00 cP (dark brown), respectively. Malting resulted in changes in the thermal properties of finger millet flours with an increase in the onset, peak and conclusion temperatures. Fourier-Transform Infrared Spectra showed that malting slightly changed the peaks of both finger millet flours. Scanning electron microscopy showed that malting altered the microstructural characteristics of finger millet flours. The results showed that malted finger millet flours are promising raw materials for gluten-free bakery products.
Collapse
Affiliation(s)
- Kundai Thelma Murungweni
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Shonisani Eugenia Ramashia
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanIndia
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| |
Collapse
|
6
|
Kalsi R, Bhasin J, Goksen G, Kashyap P. Exploration of nutritional, pharmacological, and the processing trends for valorization of finger millet ( Eleusine coracana): A review. Food Sci Nutr 2023; 11:6802-6819. [PMID: 37970380 PMCID: PMC10630810 DOI: 10.1002/fsn3.3659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 11/17/2023] Open
Abstract
High nutrient variability and food security are the needs of the hour. Millets may be as effective as other cereal crops for dealing with severe malnutrition and increasing global population problems. Due to their physiologically active components, millets have attracted more research interest. Finger millet (FM), one of the climate-resilient and minor cereal crop species, is well known for several health benefits, primarily attributed to its nutritional value and polyphenolic content. FM seed coat phenolics exhibit excellent anti-diabetic, anti-oxidant, antimicrobial, anti-osteoporosis, wound healing, anti-lithiatic, inhibiting collagen glycation, cross-linking, and enzyme properties, which may serve well for the pharmacological purposes. Furthermore, the processing of FM is an important factor in its commercial use. It is necessary to invent some novel technologies to increase the productivity of FM by lowering the cost of processing and its effective utilization in the pharmaceutical and food industries. The literature presented will further explore the potential prospects of processing as well as value-added utilization and its nutritional and pharmacological aspects in view of initiating further research in the food industry to formulate ready-to-eat and ready-to-cook products, thereby acting as future crops for sustainability.
Collapse
Affiliation(s)
- Rhythm Kalsi
- Department of Food Technology and Nutrition, School of AgricultureLovely Professional UniversityPhagwaraPunjabIndia
| | - Jasleen Bhasin
- Department of Food Technology and Nutrition, School of AgricultureLovely Professional UniversityPhagwaraPunjabIndia
| | - Gulden Goksen
- Department of Food TechnologyVocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus UniversityMersinTurkey
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of AgricultureLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
7
|
Padonou SW, Houngbédji M, Hounhouigan MH, Chadare FJ, Hounhouigan DJ. B-vitamins and heat processed fermented starchy and vegetable foods in sub-Saharan Africa: A review. J Food Sci 2023; 88:3155-3188. [PMID: 37458298 DOI: 10.1111/1750-3841.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
Micronutrient deficiency still occurs in sub-Saharan Africa (SSA) despite the availability of several food resources, particularly fermented foods and vegetables, with high nutritional potential. Fermentation enhances the quality of food in several aspects. Organoleptically, certain taste, aroma, and textures are developed. Health and safety are improved by inhibiting the growth of several foodborne pathogens and removing harmful toxic compounds. Furthermore, nutrition is enhanced by improving micronutrient contents and bioavailability from the food, especially vitamin B content. However, during processing and before final consumption, many fermented foods are heat treated (drying, pasteurization, cooking, etc.) to make the food digestible and safe for consumption. Heat treatment improves the bioavailability of B-vitamins in some foods. In other foods, heating decreases the nutritional value because some B-vitamins are degraded. In SSA, cooked starchy foods are often associated with vegetables in household meals. This paper reviews studies that have focused fermented starchy foods and vegetable foods in SSA with the potential to provide B-vitamins to consumers. The review also describes the process of the preparation of these foods for final consumption, and techniques that can prevent or lessen B-vitamin loss, or enrich B-vitamins prior to consumption.
Collapse
Affiliation(s)
- Sègla Wilfrid Padonou
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Marcel Houngbédji
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Mênouwesso Harold Hounhouigan
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Flora Josiane Chadare
- Laboratoire de Sciences et Technologie des Aliments, des Bioressources et de Nutrition Humaine, Université Nationale d'Agriculture, Sakété, Bénin
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| | - Djidjoho Joseph Hounhouigan
- Laboratoire de Sciences et Technologie des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Jéricho, Bénin
| |
Collapse
|
8
|
Yenasew A, Urga K. Effect of the germination period on functional properties of finger millet flour and sensorial quality of porridge. Food Sci Nutr 2023; 11:2336-2343. [PMID: 37181313 PMCID: PMC10171510 DOI: 10.1002/fsn3.3240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Finger millet is a stable and nutritious cereal crop, mostly grown in the semiarid tropics of the world. Processing is important for improving the nutritional value of finger millets. The aim of the research was to evaluate the effect of the germination period on the functional properties of flours and the sensorial quality of finger millet porridge. Four finger millet varieties were collected, cleaned, and soaked for 24 h, then germinated at room temperature (20-25°C) for 24, 48, and 72 h. The germinated samples were oven-dried at 60°C for 6 h and milled into flour at the size of 1 mm using a cyclomiller. Unsoaked and ungerminated finger millet grains are also milled into flour and used as control. Porridge was prepared with a flour-to-water ratio of 1:12 (weight/volume), and sensory analysis was done by semitrained panelists. Germination enhanced the water absorption capacity, solubility, and oil absorption capacity of flour samples significantly (p < .05). However, it significantly reduced (p < .05) the bulk density and swelling power of flour samples. As the germination period increased from 0 to 72 h, the viscosity of the porridge decreased significantly (p < .05). At 24 h after germination, the sensory analysis revealed no significant difference in color, taste, aroma, mouth feel, or overall acceptability samples when compared to the ungerminated sample. Germination improved the functional properties of finger millet flours as well as the sensory aspects of porridge. Hence, 24-h germinated finger millet flour is best in all aspects compared to ungerminated, 48- and 72-h germinated flours to prepare porridge. The 24-h germinated finger millet-based porridge is recommended for infants, pregnant mothers, and breastfeeding mothers.
Collapse
Affiliation(s)
- Aserse Yenasew
- Center for Food Science and NutritionAddis Ababa UniversityAddis AbabaEthiopia
- Food Science and Nutrition Research DirectorateMelkassa Agricultural Research Center, EIARAddis AbabaEthiopia
| | - Kelebessa Urga
- Center for Food Science and NutritionAddis Ababa UniversityAddis AbabaEthiopia
| |
Collapse
|
9
|
Abioye V, Babarinde G, Ogunlakin G, Adejuyitan J, Olatunde S, Abioye A. Varietal and processing influence on nutritional and phytochemical properties of finger millet: A review. Heliyon 2022; 8:e12310. [PMID: 36590554 PMCID: PMC9800331 DOI: 10.1016/j.heliyon.2022.e12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Food and nutrition insecurity is a problem for the majority of developing nations; incidentally, some underutilized crops have the potential to increase food security. A minor cereal grain called finger millet (Eleusine coracana L.) is widely cultivated in various regions of India and Africa and is consumed for its numerous health advantages. There is a wealth of research on the nutritional and health benefits of this crop, but little is known about how varietal difference and processing affect these qualities. Therefore, this study reviewed the effects of variety and different processing methods on the nutrition, antinutrients, phytochemicals, and antioxidative properties of finger millet and its probable uses in ensuring nutrition and food security. Finger millet is a nutritious cereal with relatively high values of protein, vitamins, minerals, fibre, and energy. The amount of minerals, particularly calcium and potassium, is larger than what is found in the most popular grains, including wheat and rice. The grain of finger millet is non-glutinous and contains only 1.3% fat; in contrast to other types of millet which are noticeably higher in dietary fibre, protein, ash, and fat. The coloured varieties particularly have high levels of minerals, antioxidants, and phytochemicals. The nutritional and phytochemical qualities of finger millet are affected by the cultivars, varieties, and geographical locations. This study elucidates the qualities of finger millet varieties and methods of processing which will help in the selection of appropriate cultivars for food applications.
Collapse
Affiliation(s)
- V.F. Abioye
- Department of Food Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - G.O. Babarinde
- Department of Food Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - G.O. Ogunlakin
- Department of Food Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - J.A. Adejuyitan
- Department of Food Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - S.J. Olatunde
- Department of Food Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - A.O. Abioye
- Department of Food Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
10
|
Samtiya M, Aluko RE, Dhaka N, Dhewa T, Puniya AK. Nutritional and health-promoting attributes of millet: current and future perspectives. Nutr Rev 2022; 81:684-704. [PMID: 36219789 DOI: 10.1093/nutrit/nuac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Millet is consumed as a staple food, particularly in developing countries, is part of the traditional diet in a number of relatively affluent countries, and is gaining popularity throughout the world. It is a valuable dietary energy source. In addition to high caloric value, several health-promoting attributes have been reported for millet seeds. This review describes many nutritional characteristics of millet seeds and their derivatives that are important to human health: antioxidant, antihypertensive, immunomodulatory or anti-inflammatory, antibacterial or antimicrobial, hypocholesterolemic, hypoglycemic, and anti-carcinogenic potential, and their role as modulators of gut health. There are several varieties, but the main focus of this review is on pearl millet (Cenchrus americanus [synonym Pennisetum glaucum]), one of the most widely eaten millet crops grown in India, though other millet types are also covered. In this article, the health-promoting properties of the natural components (ie, proteins, peptides, polyphenols, polysaccharides, oil, isoflavones, etc.) present in millet seeds are discussed. Although many of these health benefits have been demonstrated using animal models in vitro studies, human intervention-feeding trials are required to confirm several of the potential health benefits of millet seeds. Based on the nutritional and health-promoting attributes known for pearl millet (discussed in this review), finger millet and foxtail millet are suggested as good candidates for use in future nutritional interventions for improved human health.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anil Kumar Puniya
- is with the Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
11
|
Physical, functional, nutritional and antioxidant properties of foxtail millet in Bangladesh. Heliyon 2022; 8:e11186. [PMID: 36339997 PMCID: PMC9626931 DOI: 10.1016/j.heliyon.2022.e11186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The nutritional and phytochemical content of foxtail millet (Cetaria italica) makes it a viable food grain. In this study, we looked at foxtail millet in Bangladesh and analyzed its nutritional value, functional and physical characteristics. In addition, methanol, ethanol, and acetone: water: acetic acid (70: 29.50: 0.50) extracts of foxtail millet flour (FMF) were analyzed for their antioxidant properties (total phenolic and flavonoid content, total antioxidant capacity, ferric reducing antioxidant power (FRAP) assay, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity). According to this study, foxtail millet has favorable physiological and functional properties. FMF had protein at 11.65 ± 0.45 g/100 g, fat at 3.48 ± 0.04 g/100 g, carbohydrates at 75.33 ± 0.53 g/100 g, and crude fiber at 2.21 ± 0.03 g/100 g. Calcium was found at 47 ± 0.48 mg/100 g, iron at 4.59 ± 0.14 mg/100 g, potassium at 393 ± 15.87, sodium at 27.4 ± 1.21, magnesium at 45.40 ± 2.22, manganese at 0.71 ± 0.02, copper at 0.58 ± 0.04 and zinc at 2.30 ± 0.18 mg/100 g. The total flavonoid content (TFC) of the methanolic extract (68.26 ± 1.51 mg quercetin equivalents (QE)/100 g) was significantly (p < 0.05) higher than the extract of acetone: water: acetic acid. Total antioxidant capacity (TAC) (169.40 ± 3.45 mg ascorbic acid equivalents (AAE)/100 g) and total phenolic content (TPC) (51.35 ± 1.35 mg gallic acid equivalents (GAE)/100 g) of the methanolic extracts were significantly (p < 0.05) higher than others. The ascending order of DPPH free radical scavenging activity of FMF extract is as follows: acetone: acetic acid: water < ethanol < methanol. In the ferric reducing antioxidant power (FRAP) test, the reducing power of FMF extracts increased with the rise in sample concentration. Foxtail millet has potential as a functional food that could influence rural residents' diets and health.
Collapse
|
12
|
Singh S, Suri S, Singh R. Potential and unrealized future possibilities of browntop millet in the food sector. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.974126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Browntop millet (BTM) is small-seeded annual grass cultivated as grain crop, primarily on the marginal lands in dry areas in temperate, subtropical and tropical regions. It is increasingly receiving attention of the scientific community. Aim of this systematic review is to study the physiochemical, sensory, functional and nutritional properties as well as health benefits of browntop millet. This paper is based on quantitative and qualitative secondary data obtained from 71 out of 208 descriptive and scientific literature reviewed and analyzed from the national and international electronic platforms. The scientific literature based on browntop millet has been found scanty. According to the few studies available energy ranges from 338.0 kcal to 368.62 kcal. The carbohydrate, crude fiber and fat content of BTM is 71.32 gm, 8.06–16.08%, 1.89 gm, respectively. Protein is between 11.64% and 10.72%. Browntop millet contains phytochemicals such as flavonoids, quinones, tannins, and resin. There is galore scope for development and standardization of value added products made from browntop millets such as ready to eat foods (cookies, bars, deserts, etc) and ready to cook foods (idli mix, poha, etc) in which the millet can be used in combination with other cereal grains. Thus, browntop millet holds great potential in alleviating food and nutrition insecurity. It has good nutritional value. It can be used for the prevention and management of several non-communicable diseases. In order to make this smart food popular among farmers and consumers, systematized studies in the field of agriculture, nutrition, toxicology, naturopathy and biomedical sciences need to be done and documented properly. From ancient times BTM has been used in many forms such as forage, staple food or in many traditional dishes. An e-repository can be made of the traditional Indian foods made from BTM to popularize its use among the younger generations.
Collapse
|
13
|
Chaya H, Kumar SS, Jayarama S, Mahadevappa P. Comprehensive Nutritional Analysis, Antioxidant Activities, and Bioactive Compound Characterization from Seven Selected Cereals and Pulses by UHPLC-HRMS/MS. ACS OMEGA 2022; 7:31377-31387. [PMID: 36092608 PMCID: PMC9453962 DOI: 10.1021/acsomega.2c03767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cereals and pulses comprise the largest proportion in a typical Indian diet plate. This research mainly focuses on determining the nutritional composition, bioactive compound characterization, and antioxidant activities of seven selected cereals and pulses. The total carbohydrate content was high in unripe banana (67.65/100 g) and arrowroot (63.76/100 g). Finger millet (44.55 μmol %), chickpea (53.33 μmol %), and green gram (17.40 μmol %) showed high oleic, linoleic, and linolenic acid contents, respectively. The ascorbic acid content was the highest in chickpea and horse gram at 86.83 and 83.76 mg/100 g, respectively. The major phenolics and flavonoids quantified and confirmed using HPLC and UHPLC-HRMS/MS were gallic, protocatechuic, vanillic, para-coumaric, ferulic, chlorogenic, sinapic, and trans-cinnamic acids, rutin, and quercetin. The sample extracts showed dose-dependent antioxidant activity to combat the reactive oxygen species. Hence, these serve as an excellent source for the development of functional food formulations for lowering the risk of various diseases.
Collapse
|
14
|
Niranjan T, Dwivedi M. Moisture‐dependent engineering properties of underutilized browntop millet (unhulled and hulled) and characterization of milled flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thota Niranjan
- Department of Food Process Engineering National Institute of Technology Rourkela Rourkela
| | - Madhuresh Dwivedi
- Department of Food Process Engineering National Institute of Technology Rourkela Rourkela
| |
Collapse
|
15
|
Mudau M, Ramashia SE, Mashau ME. Mineral Content, Functional, Thermo-Pasting, and Microstructural Properties of Spontaneously Fermented Finger Millet Flours. Foods 2022; 11:foods11162474. [PMID: 36010473 PMCID: PMC9407397 DOI: 10.3390/foods11162474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Finger millet is a cereal grain which is superior to wheat and rice in terms of dietary fibre, minerals, and micronutrients. Fermentation is one of the oldest methods of food processing, and it has been used to ferment cereal grains such as finger millet (FM) for centuries. The aim of this study was to investigate the impact of spontaneous fermentation (SF) on mineral content, functional, thermo-pasting, and microstructural properties of light- and dark-brown FM flours. Spontaneous fermentation exhibited a significant increase in the macro-minerals and micro-minerals of FM flours. In terms of functional properties, SF decreased the packed bulk density and swelling capacity, and it increased the water/oil absorption capacity of both FM flours. Spontaneous fermentation had no effect on the cold paste viscosity of FM flours. However, significant decreases from 421.61 to 265.33 cP and 320.67 to 253.67 cP were observed in the cooked paste viscosity of light- and dark-brown FM flours, respectively. Moreover, SF induced alterations in the thermal properties of FM flours as increments in gelatinisation temperatures and gelatinisation enthalpy were observed. The results of pasting properties exhibited the low peak viscosities (1709.67 and 2695.67 cP), through viscosities (1349.67 and 2480.33 cP), and final viscosities (1616.33 and 2754.67 cP), along with high breakdown viscosities (360.00 and 215.33 cP) and setback viscosity (349.33 and 274.33 cP), of spontaneously fermented FM flours. Scanning electron microscopy showed that SF influenced changes in the microstructural properties of FM flours. The changes induced by SF in FM flours suggest that flours can be used in the food industry to produce weaning foods, jelly foods, and gluten-free products that are rich in minerals.
Collapse
|
16
|
Afzaal M, Saeed F, Hanif H, Islam F, Hussain M, Shah YA, Ikram A. Nutritional composition and functional properties of fermented product (Koozh): A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Hafsa Hanif
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Fakhar Islam
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Ali Ikram
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| |
Collapse
|
17
|
Jideani AIO, Onipe OO, Ramashia SE. Classification of African Native Plant Foods Based on Their Processing Levels. Front Nutr 2022; 9:825690. [PMID: 35571923 PMCID: PMC9102804 DOI: 10.3389/fnut.2022.825690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
With increasing advocacy for plant food consumption, the sub-Saharan Africa landscape is home to diverse plant-based food commodities. The need to leverage the advantages of unprocessed/minimally processed foods (PFs) over ultra-processed foods (UPFs) is a system that requires exploitation. Most of the crops produced in the continent are either classified as traditionally or moderately PFs. However, the rise in industrialization and formalization of markets is impacting and marginalizing traditional food processing (FP). Current FP classification frameworks are briefly discussed. The level of processing of cereals, grains, fruits, vegetables, roots, and tuber crops in the continent requires intervention from nutritionists, food scientists, and scientific and governmental bodies to gain a holistic view and tackle the issue of food insecurity in Africa. This study reviews the levels of processing of African foods, challenges, and future directions.
Collapse
Affiliation(s)
- Afam I. O. Jideani
- Vicfame Pty Ltd., Cape Town, South Africa
- Special Interest Group, Postharvest Handling Group, ISEKI-Food Association, Vienna, Austria
| | - Oluwatoyin O. Onipe
- Department of Food Science and Technology, Faculty of Science Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Shonisani E. Ramashia
- Department of Food Science and Technology, Faculty of Science Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
18
|
Mitharwal S, Kumar S, Chauhan K. Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Gluten-Free Cereal Products and Beverages: A Review of Their Health Benefits in the Last Five Years. Foods 2021; 10:foods10112523. [PMID: 34828804 PMCID: PMC8618534 DOI: 10.3390/foods10112523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023] Open
Abstract
In the past decades, food products and beverages made from gluten-free cereals were initially created for certain groups of people who experience gluten-related disorders such as wheat allergies, gluten ataxia, non-celiac gluten sensitivity, and the most well-known, celiac disease. Nowadays, the consumption of gluten-free products is not only restricted to targeted groups, but it has become a food trend for normal consumers, especially in countries such as the UK, the US, and some European countries, who believe that consuming a gluten-free product is a healthier choice compared to normal gluten-containing products. However, some research studies have disapproved of this claim because the currently available gluten-free products in the market are generally known to be lower in proteins, vitamins, and minerals and to contain higher lipids, sugar, and salt compared to their gluten-containing counterparts. The use of other gluten-free cereals such as sorghum, millet, and teff as well as pseudo cereals such as buckwheat and quinoa has gained significant interest in research in terms of their various potential health benefits. Hence, this review highlights the potential health benefits of some gluten-free cereals and pseudo cereals apart from corn and rice in the last decade. The potential health benefits of gluten-free products such as bread, pasta, crackers, and cookies and the health benefits of some other non-alcoholic beverages made from gluten-free cereals and pseudo cereals are reported.
Collapse
|
20
|
Genic microsatellite marker characterization and development in little millet (Panicum sumatrense) using transcriptome sequencing. Sci Rep 2021; 11:20620. [PMID: 34663808 PMCID: PMC8523711 DOI: 10.1038/s41598-021-00100-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
Little millet is a climate-resilient and high-nutrient value plant. The lack of molecular markers severely limits the adoption of modern genomic approaches in millet breeding studies. Here the transcriptome of three samples were sequenced. A total of 4443 genic-SSR motifs were identified in 30,220 unigene sequences. SSRs were found at a rate of 12.25 percent, with an average of one SSR locus per 10 kb. Among different repeat motifs, tri-nucleotide repeat (66.67) was the most abundant one, followed by di- (27.39P), and tetra- (3.83P) repeats. CDS contained fewer motifs with the majority of tri-nucleotides, while 3' and 5' UTR carry more motifs but have shorter repeats. Functional annotation of unigenes containing microsatellites, revealed that most of them were linked to metabolism, gene expression regulation, and response to environmental stresses. Fifty primers were randomly chosen and validated in five little millet and 20 minor millet genotypes; 48% showed polymorphism, with a high transferability (70%) rate. Identified microsatellites can be a noteworthy resource for future research into QTL-based breeding, genetic resource conservation, MAS selection, and evolutionary genetics.
Collapse
|
21
|
Allai FM, Azad ZRAA, Gul K, Dar BN. Wholegrains: a review on the amino acid profile, mineral content, physicochemical, bioactive composition and health benefits. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Farhana Mehraj Allai
- Department of Post Harvest Engineering and Technology Faculty of Agricultural Science Aligarh Muslim University Aligarh India
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - ZRAA Azad
- Department of Post Harvest Engineering and Technology Faculty of Agricultural Science Aligarh Muslim University Aligarh India
| | - Khalid Gul
- Department of Food Process Engineering National Institute of Technology Rourekla India
| | - B. N. Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| |
Collapse
|
22
|
Chibuzor-Onyema IE, Ezeokoli OT, Sulyok M, Notununu I, Petchkongkaew A, Elliott CT, Adeleke RA, Krska R, Ezekiel CN. Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Res Int 2021; 143:110241. [PMID: 33992353 DOI: 10.1016/j.foodres.2021.110241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022]
Abstract
Ogi is a fermented cereal beverage, made primarily from maize (Zea mays) and rarely from millets. Unlike maize-based ogi, little is known about the bacterial community and mycotoxin profile during the production of millet-based ogi. Therefore, the bacterial community dynamics and mycotoxin reduction during ogi processing from three millet varieties were investigated using next-generation sequencing of the 16S rRNA gene and liquid chromatography-tandem mass spectrometry, respectively. A total of 1163 amplicon sequence variants (ASVs) were obtained, with ASV diversity across time intervals influenced by processing stage and millet variety. ASV distribution among samples suggested that the souring stage was more influenced by millet variety than the steeping stage, and that souring may be crucial for the quality attributes of the ogi. Furthermore, bacterial community structure during steeping and souring was significantly differentiated (PERMANOVA, P < 0.05) between varieties, with close associations observed for closely-related millet varieties. Taxonomically, Firmicutes, followed by Actinobacteria, Bacteroidetes, Cyanobacteria and Proteobacteria phyla were relatively abundant (>1%). Lactic acid bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Lactobacillus, Lactococcus and Pediococcus, dominated most fermentation stages, suggesting their roles as key fermentative and functional bacteria in relation to mycotoxin reduction. About 52-100%, 58-100% and 100% reductions in mycotoxin (aflatoxins, beauvericin, citrinin, moniliformin, sterigmatocystin and zearalenone) concentrations were recorded after processing of white fonio, brown fonio and finger millet, respectively, into ogi. This study provides new knowledge of the dominant bacterial genera vital for the improvement of millet-based ogi through starter culture development and as well, elucidates the role of processing in reducing mycotoxins in millet ogi.
Collapse
Affiliation(s)
| | - Obinna T Ezeokoli
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Iviwe Notununu
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, South Africa; Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathumthani, Thailand; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Rasheed A Adeleke
- Unit for Environmental Science and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria.
| |
Collapse
|
23
|
Nutritional and phytochemical profiling of nutracereal finger millet (Eleusine coracana L.) genotypes. Food Chem 2020; 341:128271. [PMID: 33166822 DOI: 10.1016/j.foodchem.2020.128271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
Finger millet (Eleusine coracana L.) is gaining popularity as healthy food due to its nutritional and phytochemical properties. This study reports nutritional and phytochemical profile of ten finger millet genotypes. Proximate analysis of finger millet genotypes revealed moisture, total carbohydrate, protein, fat, fiber and ash in the range of 7.50-11.75, 71.90-76.38, 6.7-8.0, 1.2-1.7, 3.1-3.8 and 3.1-3.8 per cent respectively. Micro-nutrient profiling showed Ca, Fe, Zn, P, K and Mn in the range of 2400.00-3400.00, 40.28-47.60, 12.40-17.45, 1600.00-2900.00, 3800.00-5200.00 and 51.33-61.28 mg kg-1 respectively. Phytochemical profiling was done for total phenol, phytic acid, tannins, flavonoids, HCN, oxalate and trypsin inhibitor which were observed in the range of 99.75-112.25, 210.75-302.75, 340.00-500.00, 62.23-74.05, 2.45-2.80, 19.80-26.23 mg 100 g-1 and 207.35-234.23 TIU g-1 respectively. Amino acid profiling showed good amount of essential amino acids. Nutritional and phytochemical profiling of finger millet genotypes showed its potentiality to become source of health promoting food.
Collapse
|
24
|
Ignat MV, Salanță LC, Pop OL, Pop CR, Tofană M, Mudura E, Coldea TE, Borșa A, Pasqualone A. Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages. Foods 2020; 9:E1031. [PMID: 32752167 PMCID: PMC7466267 DOI: 10.3390/foods9081031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Fermentation continues to be the most common biotechnological tool to be used in cereal-based beverages, as it is relatively simple and economical. Fermented beverages hold a long tradition and have become known for their sensory and health-promoting attributes. Considering the attractive sensory traits and due to increased consumer awareness of the importance of healthy nutrition, the market for functional, natural, and non-alcoholic beverages is steadily increasing all over the world. This paper outlines the current achievements and technological development employed to enhance the qualitative and nutritional status of non-alcoholic fermented cereal beverages (NFCBs). Following an in-depth review of various scientific publications, current production methods are discussed as having the potential to enhance the functional properties of NFCBs and their safety, as a promising approach to help consumers in their efforts to improve their nutrition and health status. Moreover, key aspects concerning production techniques, fermentation methods, and the nutritional value of NFCBs are highlighted, together with their potential health benefits and current consumption trends. Further research efforts are required in the segment of traditional fermented cereal beverages to identify new potentially probiotic microorganisms and starter cultures, novel ingredients as fermentation substrates, and to finally elucidate the contributions of microorganisms and enzymes in the fermentation process.
Collapse
Affiliation(s)
- Maria Valentina Ignat
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.V.I.); (E.M.); (T.E.C.); (A.B.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.R.P.); (M.T.)
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.R.P.); (M.T.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.R.P.); (M.T.)
| | - Maria Tofană
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.R.P.); (M.T.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.V.I.); (E.M.); (T.E.C.); (A.B.)
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.V.I.); (E.M.); (T.E.C.); (A.B.)
| | - Andrei Borșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.V.I.); (E.M.); (T.E.C.); (A.B.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| |
Collapse
|