1
|
Ribeiro T, Reis M, Vasconcelos V, Urbatzka R. Phenotypic screening in zebrafish larvae identifies promising cyanobacterial strains and pheophorbide a as insulin mimetics. Sci Rep 2024; 14:32142. [PMID: 39739113 DOI: 10.1038/s41598-024-83986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Diabetes is a pandemic disease that causes the loss of control of glucose regulation in the organism, in consequence of dysfunction of insulin production or functionality. In this work, the antidiabetic bioactivity of 182 fractions from 19 cyanobacteria strains derived from the LEGE Culture Collection were analysed using the 2-NBDG assay in zebrafish larvae. From this initial screening, two fractions (57 (06104_D) and 107 (03283_B)) were identified as promising insulin mimetics. These were further characterized by measuring glucose levels in whole larvae, the expression of glucose transporters (GLUT 1-3) using western blot, and the mRNA expression levels of the glut2, pepck, and insa genes using real-time qPCR. Both fractions showed a decrease in free glucose levels. Furthermore, exposure to fraction 06104_D decreased GLUT1 and increased insa mRNA levels. The chemical composition of these fractions was determined using LC-HRESIMS/MS and compared to inactive fractions of the same polarity in order to identify the unique bioactive molecules. The molecular networks constructed using the GNPS platform revealed that fraction 06104_D contained mass clusters primarily composed of chlorins, lipids, and terpenoids, while fraction 03283_B contained xanthophylls, peptides, and terpenoids. To correlate the observed activity with the chemical composition of fraction 06104_D, pheophorbide a was chosen as a representative of chlorophyll derivatives. Exposure to zebrafish larvae at 10 and 20 µM confirmed the increased glucose uptake on the 2-NBDG assay. These findings highlight the bioactivity of chlorophyll derivatives as insulin mimetic compounds, as well as cyanobacteria as a source of potential therapeutic diabetes applications.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, Matosinhos, 4450-208, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 1021, 4169-007, Portugal.
| | - Mariana Reis
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, Matosinhos, 4450-208, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, Matosinhos, 4450-208, Portugal
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, 1021, 4169-007, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n, Matosinhos, 4450-208, Portugal
| |
Collapse
|
2
|
Yang J, Ding J, Lu Z, Zhu B, Lin S. Digestive and Absorptive Properties of the Antarctic Krill Tripeptide Phe-Pro-Phe (FPF) and Its Auxiliary Memory-Enhancing Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8491-8505. [PMID: 38587859 DOI: 10.1021/acs.jafc.3c08158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aging and stress have contributed to the development of memory disorders. Phe-Pro-Phe (FPF) was identified with high stability by mass spectrometry from simulated gastrointestinal digestion and everted gut sac products of the Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) which was found to have a positive impact on memory enhancement. This study investigated the digestive stability, absorption, and memory-enhancing effects of FPF using nuclear magnetic resonance spectroscopy, simulated gastrointestinal digestion, in vivo fluorescence distribution analysis, mouse behavioral experiments, acetylcholine function, Nissl staining, immunofluorescence, and immunohistochemistry. FPF crossed the blood-brain barrier into the brain after digestion, significantly reduced shock time, working memory errors, and reference memory errors, and increased the recognition index. Additionally, FPF elevated ACh content; Nissl body counts; and CREB, SYN, and PSD-95 expression levels, while reducing AChE activity (P < 0.05). This implies that FPF prevents scopolamine-induced memory impairment and provides a basis for future research on memory disorders.
Collapse
Affiliation(s)
- Jingqi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jie Ding
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Zhiqiang Lu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| |
Collapse
|
3
|
Chen HH, Li W, Wang Y, Xu B, Hu X, Li XB, Liu JY, Zhang C, Zhang CY, Xing XH. Mining and Validation of Novel Hemp Seed-Derived DPP-IV-Inhibiting Peptides Using a Combination of Multi-omics and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:9164-9174. [PMID: 37058363 DOI: 10.1021/acs.jafc.3c00535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hemp seed-derived inhibitors of dipeptidyl peptidase IV (DPP-IV) demonstrate potential as novel therapeutics for diabetes; however, their proteome and genome remain uncharacterized. We used multi-omics technology to mine peptides capable of inhibiting DPP-IV. First, 1261 and 1184 proteins were identified in fresh and dry hemp seeds, respectively. Simulated protease cleavage of dry seed proteins yielded 185,446 peptides for virtual screening to select the potential DPP-IV-inhibiting peptides. Sixteen novel peptides were selected according to their DPP-IV-binding affinity determined via molecular docking. In vitro DPP-IV inhibition assays identified the peptides LPQNIPPL, YPYY, YPW, LPYPY, WWW, YPY, YPF, and WS with half-maximal inhibitory concentration (IC50) values lower than 0.5 mM, which were 0.08 ± 0.01, 0.18 ± 0.03, 0.18 ± 0.01, 0.20 ± 0.03, 0.22 ± 0.03, 0.29 ± 0.02, 0.42 ± 0.03, and 0.44 ± 0.09 mM, respectively. The dissociation constants (KD) of the 16 peptides ranged from 1.50 × 10-4 to 1.82 × 10-7 M. Furthermore, Caco2 and INS-1 cell assays showed that all 16 peptides could efficiently inhibit DPP-IV activity and increase insulin and glucagon-like peptide-1 concentrations. These results demonstrate a well-established and efficient method to isolate food-derived therapeutic DPP-IV-inhibiting peptides.
Collapse
Affiliation(s)
- Hai-Hong Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 440300, China
| | - Wei Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Yi Wang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Institute of Biochemical Engineering, Beijing 100084, China
| | - Bing Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 440300, China
| | - Xi Hu
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 440300, China
| | - Xiao-Bing Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Jun-Yu Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Institute of Biochemical Engineering, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Can-Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Xin-Hui Xing
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 440300, China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Institute of Biochemical Engineering, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
BARATI M, JABBARI M, FATHOLLAHI M, FATHOLLAHI A, KHAKI V, JAVANMARDI F, JAZAYERI SMHM, SHABANI M, DAVOODI SH, HUSEYN E, HADIAN Z, LORENZO JM, KHANEGHAH AM. Evaluation of different types of milk proteins-derived epitopes using in-silico tools: a primarily study to propose a new definition for bioactive peptides. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.102821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meisam BARATI
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | | | | - Vahid KHAKI
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | | - Mehdi SHABANI
- Shahid Beheshti University of Medical Sciences, Iran
| | - Sayed Hossein DAVOODI
- Shahid Beheshti University of Medical Sciences, Iran; Shahid Beheshti University of Medical Sciences, Iran
| | - Elcin HUSEYN
- Azerbaijan State Oil and Industry University, Azerbaijan
| | - Zahra HADIAN
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | |
Collapse
|