1
|
Wang M, Xu XR, Bai QX, Wu LH, Yang XP, Yang DQ, Kuang HX. Dichroa febrifuga Lour.: A review of its botany, traditional use, phytochemistry, pharmacological activities, toxicology, and progress in reducing toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118093. [PMID: 38537842 DOI: 10.1016/j.jep.2024.118093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dichroa febrifuga Lour., a toxic but extensively used traditional Chinese medicine with a remarkable effect, is commonly called "Changshan" in China. It has been used to treat malaria and many other parasitic diseases. AIM OF THE REVIEW The study aims to provide a current overview of the progress in the research on traditional use, phytochemistry, pharmacological activities, toxicology, and methods of toxicity reduction of D. febrifuga. Additionally, further research directions and development prospects for the plant were put forward. MATERIALS AND METHODS The article uses "Dichroa febrifuga Lour." "D. febrifuga" as the keyword and all relevant information on D. febrifuga was collected from electronic searches (Elsevier, PubMed, ACS, CNKI, Google Scholar, and Baidu Scholar), doctoral and master's dissertations and classic books about Chinese herbs. RESULTS 30 chemical compounds, including alkaloids, terpenoids, flavonoids and other kinds, were isolated and identified from D. febrifuga. Modern pharmacological studies have shown that these components have a variety of pharmacological activities, including anti-malarial activities, anti-inflammatory activities, anti-tumor activities, anti-parasitic activities and anti-oomycete activities. Meanwhile, alkaloids, as the material basis of its efficacy, are also the source of its toxicity. It can cause multiple organ damage, including liver, kidney and heart, and cause adverse reactions such as nausea and vomiting, abdominal pain and diarrhea. In the current study, the toxicity can be reduced by modifying the structure of the compound, processing and changing the dosage forms. CONCLUSIONS There are few studies on the chemical constituents of D. febrifuga, so the components and their structure characterization contained in it can become the focus of future research. In view of the toxicity of D. febrifuga, there are many methods to reduce it, but the safety and rationality of these methods need further study.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Rui Xu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Xin-Peng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - De-Qiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
2
|
Gurung P, McGee JP, Dvorin JD. PfCAP-H is essential for assembly of condensin I complex and karyokinesis during asexual proliferation of Plasmodium falciparum. mBio 2024; 15:e0285023. [PMID: 38564676 PMCID: PMC11078010 DOI: 10.1128/mbio.02850-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.
Collapse
Affiliation(s)
- Pratima Gurung
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - James P. McGee
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Gurung P, McGee JP, Dvorin JD. PfCAP-H is essential for assembly of condensin I complex and karyokinesis during asexual proliferation of Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582160. [PMID: 38464281 PMCID: PMC10925219 DOI: 10.1101/2024.02.26.582160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites is yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites.
Collapse
Affiliation(s)
- Pratima Gurung
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, M.A
- Department of Pediatrics, Harvard Medical School, Boston, M.A
| | - James P. McGee
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, M.A
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, M.A
- Department of Pediatrics, Harvard Medical School, Boston, M.A
| |
Collapse
|
4
|
Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals its unexpected role in reproduction and vector competence. PLoS Pathog 2021; 17:e1009770. [PMID: 34784388 PMCID: PMC8631644 DOI: 10.1371/journal.ppat.1009770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
PfSPZ Vaccine against malaria is composed of Plasmodium falciparum (Pf) sporozoites (SPZ) manufactured using aseptically reared Anopheles stephensi mosquitoes. Immune response genes of Anopheles mosquitoes such as Leucin-Rich protein (LRIM1), inhibit Plasmodium SPZ development (sporogony) in mosquitoes by supporting melanization and phagocytosis of ookinetes. With the aim of increasing PfSPZ infection intensities, we generated an A. stephensi LRIM1 knockout line, Δaslrim1, by embryonic genome editing using CRISPR-Cas9. Δaslrim1 mosquitoes had a significantly increased midgut bacterial load and an altered microbiome composition, including elimination of commensal acetic acid bacteria. The alterations in the microbiome caused increased mosquito mortality and unexpectedly, significantly reduced sporogony. The survival rate of Δaslrim1 mosquitoes and their ability to support PfSPZ development, were partially restored by antibiotic treatment of the mosquitoes, and fully restored to baseline when Δaslrim1 mosquitoes were produced aseptically. Deletion of LRIM1 also affected reproductive capacity: oviposition, fecundity and male fertility were significantly compromised. Attenuation in fecundity was not associated with the altered microbiome. This work demonstrates that LRIM1's regulation of the microbiome has a major impact on vector competence and longevity of A. stephensi. Additionally, LRIM1 deletion identified an unexpected role for this gene in fecundity and reduction of sperm transfer by males.
Collapse
|
5
|
Gubbels MJ, Coppens I, Zarringhalam K, Duraisingh MT, Engelberg K. The Modular Circuitry of Apicomplexan Cell Division Plasticity. Front Cell Infect Microbiol 2021; 11:670049. [PMID: 33912479 PMCID: PMC8072463 DOI: 10.3389/fcimb.2021.670049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
The close-knit group of apicomplexan parasites displays a wide variety of cell division modes, which differ between parasites as well as between different life stages within a single parasite species. The beginning and endpoint of the asexual replication cycles is a 'zoite' harboring the defining apical organelles required for host cell invasion. However, the number of zoites produced per division round varies dramatically and can unfold in several different ways. This plasticity of the cell division cycle originates from a combination of hard-wired developmental programs modulated by environmental triggers. Although the environmental triggers and sensors differ between species and developmental stages, widely conserved secondary messengers mediate the signal transduction pathways. These environmental and genetic input integrate in division-mode specific chromosome organization and chromatin modifications that set the stage for each division mode. Cell cycle progression is conveyed by a smorgasbord of positively and negatively acting transcription factors, often acting in concert with epigenetic reader complexes, that can vary dramatically between species as well as division modes. A unique set of cell cycle regulators with spatially distinct localization patterns insert discrete check points which permit individual control and can uncouple general cell cycle progression from nuclear amplification. Clusters of expressed genes are grouped into four functional modules seen in all division modes: 1. mother cytoskeleton disassembly; 2. DNA replication and segregation (D&S); 3. karyokinesis; 4. zoite assembly. A plug-and-play strategy results in the variety of extant division modes. The timing of mother cytoskeleton disassembly is hard-wired at the species level for asexual division modes: it is either the first step, or it is the last step. In the former scenario zoite assembly occurs at the plasma membrane (external budding), and in the latter scenario zoites are assembled in the cytoplasm (internal budding). The number of times each other module is repeated can vary regardless of this first decision, and defines the modes of cell division: schizogony, binary fission, endodyogeny, endopolygeny.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, United States
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
6
|
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors 2021; 14:86. [PMID: 33514413 PMCID: PMC7844807 DOI: 10.1186/s13071-020-04558-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.![]()
Collapse
Affiliation(s)
- Elodie Ekoka
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | - Surina Maharaj
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Luisa Nardini
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
7
|
Gubbels MJ, Keroack CD, Dangoudoubiyam S, Worliczek HL, Paul AS, Bauwens C, Elsworth B, Engelberg K, Howe DK, Coppens I, Duraisingh MT. Fussing About Fission: Defining Variety Among Mainstream and Exotic Apicomplexan Cell Division Modes. Front Cell Infect Microbiol 2020; 10:269. [PMID: 32582569 PMCID: PMC7289922 DOI: 10.3389/fcimb.2020.00269] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular reproduction defines life, yet our textbook-level understanding of cell division is limited to a small number of model organisms centered around humans. The horizon on cell division variants is expanded here by advancing insights on the fascinating cell division modes found in the Apicomplexa, a key group of protozoan parasites. The Apicomplexa display remarkable variation in offspring number, whether karyokinesis follows each S/M-phase or not, and whether daughter cells bud in the cytoplasm or bud from the cortex. We find that the terminology used to describe the various manifestations of asexual apicomplexan cell division emphasizes either the number of offspring or site of budding, which are not directly comparable features and has led to confusion in the literature. Division modes have been primarily studied in two human pathogenic Apicomplexa, malaria-causing Plasmodium spp. and Toxoplasma gondii, a major cause of opportunistic infections. Plasmodium spp. divide asexually by schizogony, producing multiple daughters per division round through a cortical budding process, though at several life-cycle nuclear amplifications stages, are not followed by karyokinesis. T. gondii divides by endodyogeny producing two internally budding daughters per division round. Here we add to this diversity in replication mechanisms by considering the cattle parasite Babesia bigemina and the pig parasite Cystoisospora suis. B. bigemina produces two daughters per division round by a “binary fission” mechanism whereas C. suis produces daughters through both endodyogeny and multiple internal budding known as endopolygeny. In addition, we provide new data from the causative agent of equine protozoal myeloencephalitis (EPM), Sarcocystis neurona, which also undergoes endopolygeny but differs from C. suis by maintaining a single multiploid nucleus. Overall, we operationally define two principally different division modes: internal budding found in cyst-forming Coccidia (comprising endodyogeny and two forms of endopolygeny) and external budding found in the other parasites studied (comprising the two forms of schizogony, binary fission and multiple fission). Progressive insights into the principles defining the molecular and cellular requirements for internal vs. external budding, as well as variations encountered in sexual stages are discussed. The evolutionary pressures and mechanisms underlying apicomplexan cell division diversification carries relevance across Eukaryota.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Caroline D Keroack
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Sriveny Dangoudoubiyam
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Hanna L Worliczek
- Department of Biology, Boston College, Chestnut Hill, MA, United States.,Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Ciara Bauwens
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States.,School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Daniel K Howe
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, United States
| |
Collapse
|
8
|
Sharma P, Rani J, Chauhan C, Kumari S, Tevatiya S, Das De T, Savargaonkar D, Pandey KC, Dixit R. Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi. Front Immunol 2020; 11:609. [PMID: 32477320 PMCID: PMC7240202 DOI: 10.3389/fimmu.2020.00609] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/17/2020] [Indexed: 02/05/2023] Open
Abstract
Blood-feeding enriched gut-microbiota boosts mosquitoes' anti-Plasmodium immunity. Here, we ask how Plasmodium vivax alters gut-microbiota, anti-Plasmodial immunity, and impacts tripartite Plasmodium-mosquito-microbiota interactions in the gut lumen. We used a metagenomics and RNAseq strategy to address these questions. In naïve mosquitoes, Elizabethkingia meningitis and Pseudomonas spp. are the dominant bacteria and blood-feeding leads to a heightened detection of Elizabethkingia, Pseudomonas and Serratia 16S rRNA. A parallel RNAseq analysis of blood-fed midguts also shows the presence of Elizabethkingia-related transcripts. After, P. vivax infected blood-meal, however, we do not detect bacterial 16S rRNA until circa 36 h. Intriguingly, the transcriptional expression of a selected array of antimicrobial arsenal cecropins 1-2, defensin-1, and gambicin remained low during the first 36 h-a time frame when ookinetes/early oocysts invaded the gut. We conclude during the preinvasive phase, P. vivax outcompetes midgut-microbiota. This microbial suppression likely negates the impact of mosquito immunity which in turn may enhance the survival of P. vivax. Detection of sequences matching to mosquito-associated Wolbachia opens a new inquiry for its exploration as an agent for "paratransgenesis-based" mosquito control.
Collapse
Affiliation(s)
- Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
- Bio and Nanotechnology Department, Guru Jambheshwar University of Science and Technology, Haryana, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Deepali Savargaonkar
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
9
|
Wells MB, Andrew DJ. Anopheles Salivary Gland Architecture Shapes Plasmodium Sporozoite Availability for Transmission. mBio 2019; 10:e01238-19. [PMID: 31387905 PMCID: PMC6686039 DOI: 10.1128/mbio.01238-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Plasmodium sporozoites (SPZs) must traverse the mosquito salivary glands (SGs) to reach a new vertebrate host and continue the malaria disease cycle. Although SGs can harbor thousands of sporozoites, only 10 to 100 are deposited into a host during probing. To determine how the SGs might function as a bottleneck in SPZ transmission, we have characterized Anopheles stephensi SGs infected with the rodent malaria parasite Plasmodium berghei using immunofluorescence confocal microscopy. Our analyses corroborate findings from previous electron microscopy studies and provide new insights into the invasion process. We identified sites of SPZ accumulation within SGs across a range of infection intensities. Although SPZs were most often seen in the distal lateral SG lobes, they were also observed in the medial and proximal lateral lobes. Most parasites were associated with either the basement membrane or secretory cavities. SPZs accumulated at physical barriers, including fused salivary ducts and extensions of the chitinous salivary duct wall into the distal lumen. SPZs were observed only rarely within salivary ducts. SPZs appeared to contact each other in many different quantities, not just in the previously described large bundles. Within parasite bundles, all of the SPZs were oriented in the same direction. We found that moderate levels of infection did not necessarily correlate with major SG disruptions or abundant SG cell death. Altogether, our findings suggest that SG architecture largely acts as a barrier to SPZ transmission.IMPORTANCE Malaria continues to have a devastating impact on human health. With growing resistance to insecticides and antimalarial drugs, as well as climate change predictions indicating expansion of vector territories, the impact of malaria is likely to increase. Additional insights regarding pathogen migration through vector mosquitoes are needed to develop novel methods to prevent transmission to new hosts. Pathogens, including the microbes that cause malaria, must invade the salivary glands (SGs) for transmission. Since SG traversal is required for parasite transmission, SGs are ideal targets for transmission-blocking strategies. The work presented here highlights the role that mosquito SG architecture plays in limiting parasite traversal, revealing how the SG transmission bottleneck is imposed. Further, our data provide unprecedented detail about SG-sporozoite interactions and gland-to-gland variation not provided in previous studies.
Collapse
Affiliation(s)
- Michael B Wells
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Levin II, Parker PG. Infection with Haemoproteus iwa affects vector movement in a hippoboscid fly--frigatebird system. Mol Ecol 2013; 23:947-53. [PMID: 24215498 DOI: 10.1111/mec.12587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
Haemosporidian parasites, which require both a vertebrate and invertebrate host, are most commonly studied in the life stages occurring in the vertebrate. However, aspects of the vector's behaviour and biology can have profound effects on parasite dynamics. We explored the effects of a haemosporidian parasite, Haemoproteus iwa, on a hippoboscid fly vector, Olfersia spinifera. Olfersia spinifera is an obligate ectoparasite of the great frigatebird, Fregata minor, living among bird feathers for all of its adult life. This study examined the movements of O. spinifera between great frigatebird hosts. Movement, or host switching, was inferred by identifying host (frigatebird) microsatellite genotypes from fly bloodmeals that did not match the host from which the fly was collected. Such host switches were analysed using a logistic regression model, and the best-fit model included the H. iwa infection status of the fly and the bird host sex. Uninfected flies were more likely to have a bird genotype in their bloodmeal that was different from their current host's genotype (i.e. to have switched hosts) than infected flies. Flies collected from female birds were more likely to have switched hosts than those collected on males. Reduced movement of infected flies suggests that there may be a cost of parasitism for the fly. The effect of host sex is probably driven by differences in the sex ratio of bird hosts available to moving flies.
Collapse
Affiliation(s)
- Iris I Levin
- Department of Biology, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121, USA; Whitney R. Harris World Ecology Center, University of Missouri - St. Louis, One University Blvd., St. Louis, MO 63121, USA
| | | |
Collapse
|
11
|
Klein K, Aarons L, Ter Kuile FO, Nosten F, White NJ, Edstein MD, Teja-Isavadharm P. Population pharmacokinetics of halofantrine in healthy volunteers and patients with symptomatic falciparum malaria. ACTA ACUST UNITED AC 2012; 64:1603-13. [PMID: 23058047 DOI: 10.1111/j.2042-7158.2012.01554.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the population pharmacokinetics of the antimalarial halofantrine (HF) in healthy volunteers and patients with symptomatic falciparum malaria. METHODS Healthy volunteer data were obtained from six volunteers who received three different doses of HF (250, 500 and 1000 mg) after an overnight fast with a washout period of at least 6 weeks between doses. Patient data (n = 188) were obtained from randomised controlled trials conducted on the Thai-Burmese border in the early 1990s. They were either assigned to receive a total HF dose of 24 mg/kg (8 mg/kg every 6 h for 24 h) or 72 mg/kg (8 mg/kg every 6 to 10 h for 3 days). The population pharmacokinetics of HF were evaluated using non-linear mixed effects modelling with a two-compartment model with first-order absorption. KEY FINDINGS The population estimates of apparent clearance (CL), volume of compartment one (V1), distributional clearance (CLD) and volume of compartment two (V2) of HF in healthy volunteers were 2453 l/day (102 l/h), 2386 l, 716 l/day (29.8 l/h) and 2641 l, respectively. The population estimates of the PK parameters in patients were 429 l/day (17.9 l/h), 729 l, 178 l/day (7.42 l/h) and 1351 l, respectively. All PK parameters were significantly related to body weight and some were related to sex, sampling method, pre-treatment parasite density and whether patients vomited or not. When the two datasets were analysed jointly using a maximum likelihood method, the population estimates in patients were 196 l/day (8.17 l/h), 161 l, 65 l/day (2.71 l/h) and 89 l, respectively, and the parameters were significantly related to body weight and sex. Bayesian analysis of the patient data, with a diffuse prior based on the healthy volunteer data analysis results, yielded the population estimates 354 l/day (14.8 l/h), 728 l, 162 l/day (6.75 l/h) and 1939 l, respectively. CONCLUSIONS The pharmacokinetic properties of HF in patients with malaria are affected by several demographic variables as well as other relevant covariates. Apparent differences between the healthy volunteer and the patient data analysis results are not entirely due to differences in bioavailability. For the patient data analysis, the Bayesian method was preferred, as the fitting procedure was more stable, allowing random effects to be estimated for all four dispositional parameters.
Collapse
Affiliation(s)
- Kerenaftali Klein
- Queensland Clinical Trials and Biostatistics Centre, School of Population Health, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Nacer A, Walker K, Hurd H. Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi. Parasit Vectors 2008; 1:33. [PMID: 18808667 PMCID: PMC2556657 DOI: 10.1186/1756-3305-1-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/22/2008] [Indexed: 01/16/2023] Open
Abstract
Background Oocysts of the malaria parasite form and develop in close proximity to the mosquito midgut basal lamina and it has been proposed that components of this structure play a crucial role in the development and maturation of oocysts that produce infective sporozoites. It is further suggested that oocysts incorporate basal lamina proteins into their capsule and that this provides them with a means to evade recognition by the mosquito's immune system. The site of production of basal lamina proteins in insects is controversial and it is still unclear whether haemocytes or midgut epithelial cells are the main source of components of the mosquito midgut basal lamina. Of the multiple molecules that compose the basal lamina, laminin is known to interact with a number of Plasmodium proteins. In this study, the localisation of mosquito laminin within the capsule and cytoplasm of Plasmodium berghei oocysts and in the midgut epithelial cells of Anopheles stephensi was investigated. Results An ultrastructural examination of midgut sections from infected and uninfected An. stephensi was performed. Post-embedded immunogold labelling demonstrated the presence of laminin within the mosquito basal lamina. Laminin was also detected on the outer surface of the oocyst capsule, incorporated within the capsule and associated with sporozoites forming within the oocysts. Laminin was also found within cells of the midgut epithelium, providing support for the hypothesis that these cells contribute towards the formation of the midgut basal lamina. Conclusion We suggest that ookinetes may become coated in laminin as they pass through the midgut epithelium. Thereafter, laminin secreted by midgut epithelial cells and/or haemocytes, binds to the outer surface of the oocyst capsule and that some passes through and is incorporated into the developing oocysts. The localisation of laminin on sporozoites was unexpected and the importance of this observation is less clear.
Collapse
Affiliation(s)
- Adéla Nacer
- Centre for Applied Entomology and Parasitology, Institute for Science and Technology in Medicine, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | | | | |
Collapse
|
13
|
Rocha ACVMD, Braga EM, Araújo MSS, Franklin BS, Pimenta PFP. Effect of the Aedes fluviatilis saliva on the development of Plasmodium gallinaceum infection in Gallus (gallus) domesticus. Mem Inst Oswaldo Cruz 2005; 99:709-15. [PMID: 15654426 DOI: 10.1590/s0074-02762004000700008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effect of Aedes fluviatilis saliva on the development of Plasmodium gallinaceum experimental infection in Gallus (gallus) domesticus was studied in distinct aspects. Chickens subcutaneously infected with sporozoites in the presence of the mosquito salivary gland homogenates (SGH) showed higher levels of parasitaemia when compared to those ones that received only the sporozoites. However, the parasitaemia levels were lower among chickens previously immunized by SGH or non-infected mosquito bites compared to the controls, which did not receive saliva. High levels of anti-saliva antibodies were observed in those immunized chickens. Moreover, 53 and 102 kDa saliva proteins were recognized by sera from immunized chickens. After the sporozoite challenge, the chickens also showed significant levels of anti-sporozoite antibodies. However, the ability to generate anti-sporozoites antibodies was not correlated to the saliva immunization. Our results suggest that mosquito saliva components enhance P. gallinaceum parasite development in naive chickens. However, the prior exposure of chickens to salivary components controls the parasitemia levels in infected individuals.
Collapse
Affiliation(s)
- Ana C V M da Rocha
- Laboratório de Entomologia Médica, Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, 30190-002 Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
14
|
Hurd H, Carter V, Nacer A. Interactions between malaria and mosquitoes: the role of apoptosis in parasite establishment and vector response to infection. Curr Top Microbiol Immunol 2005; 289:185-217. [PMID: 15791957 DOI: 10.1007/3-540-27320-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Malaria parasites of the genus Plasmodium are transmitted from host to host by mosquitoes. Sexual reproduction occurs in the blood meal and the resultant motile zygote, the ookinete, migrates through the midgut epithelium and transforms to an oocyst under the basal lamina. After sporogony, sporozoites are released into the mosquito haemocoel and invade the salivary gland before injection when next the mosquito feeds on a host. Interactions between parasite and vector occur at all stages of the establishment and development of the parasite and some of these result in the death of parasite and host cells by apoptosis. Infection-induced programmed cell death occurs in patches of follicular epithelial cells in the ovary, resulting in follicle resorption and thus a reduction in egg production. We argue that fecundity reduction will result in a change in resource partitioning that may benefit the parasite. Apoptosis also occurs in cells of the midgut epithelium that have been invaded by the parasite and are subsequently expelled into the midgut. In addition, the parasite itself dies by a process of programmed cell death (PCD) in the lumen of the midgut before invasion has occurred. Caspase-like activity has been detected in the cytoplasm of the ookinetes, despite the absence of genes homologous to caspases in the genome of this, or any, unicellular eukaryote. The putative involvement of other cysteine proteases in ancient apoptotic pathways is discussed. Potential signal pathways for induction of apoptosis in the host and parasite are reviewed and we consider the evidence that nitric oxide may play a role in this induction. Finally, we consider the hypothesis that death of some parasites in the midgut will limit infection and thus prevent vector death before the parasites have developed into mature sporozoites.
Collapse
Affiliation(s)
- H Hurd
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | | | | |
Collapse
|
15
|
Shahabuddin M, Costero A. Spatial distribution of factors that determine sporogonic development of malaria parasites in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:231-240. [PMID: 11167092 DOI: 10.1016/s0965-1748(00)00142-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mosquitoes transmit malaria, but only a few species permit the complete development and transmission of the parasite. Also, only a fraction of the ingested parasites develop in the vector. The attrition occurs in different compartments during the parasite's complex developmental scheme in the insect. A number of factors, both physical and biochemical, that affect the development have been proposed or demonstrated. Each of these factors is located within a specific space in the insect. We have divided this space into six compartments, which are distinct in their biochemical and biophysical nature: Endoperitrophic space, Peritrophic matrix, Ectopretrophic space, Midgut epithelium, Haemocoel and Salivary gland. Because factors that influence a particular stage of parasite development share the same microenvironment within these compartments, they must be considered collectively to exploit them for designing effective transmission blocking strategies. In this article we discuss these factors according to their spatial location in the mosquito.
Collapse
Affiliation(s)
- M Shahabuddin
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA.
| | | |
Collapse
|
16
|
Abstract
Mosquitoes of the genus Anopheles transmit malaria parasites to humans. Anopheles mosquito species vary in their vector potential because of environmental conditions and factors affecting their abundance, blood-feeding behavior, survival, and ability to support malaria parasite development. In the complex life cycle of the parasite in female mosquitoes, a process termed sporogony, mosquitoes acquire gametocyte-stage parasites from blood-feeding on an infected host. The parasites carry out fertilization in the midgut, transform to ookinetes, then oocysts, which produce sporozoites. Sporozoites invade the salivary glands and are transmitted when the mosquito feeds on another host. Most individual mosquitoes that ingest gametocytes do not support development to the sporozoite stage. Bottle-necks occur at every stage of the cycle in the mosquito. Powerful new techniques and approaches exist for evaluating malaria parasite development and for identifying mechanisms regulating malaria parasite-vector interactions. This review focuses on those interactions that are important for the development of new approaches for evaluating and blocking transmission in nature.
Collapse
Affiliation(s)
- J C Beier
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
17
|
Sidjanski SP, Vanderberg JP, Sinnis P. Anopheles stephensi salivary glands bear receptors for region I of the circumsporozoite protein of Plasmodium falciparum. Mol Biochem Parasitol 1997; 90:33-41. [PMID: 9497030 PMCID: PMC4011076 DOI: 10.1016/s0166-6851(97)00124-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the mosquito, Plasmodium sporozoites rupture from oocysts found on the midgut wall, circulate in the hemolymph and invade salivary glands where they wait to be injected into a vertebrate host during a bloodmeal. The mechanisms by which sporozoites specifically attach to and invade salivary glands are not known but evidence suggests that it is a receptor-mediated process. Here we show that the major surface protein of sporozoites, the circumsporozoite protein (CS), binds preferentially to salivary glands when compared to other organs exposed to the circulating hemolymph. In addition, we show that a peptide encompassing region I, a highly conserved sequence found in all rodent and primate Plasmodium CS proteins, inhibits binding of CS to mosquito salivary glands.
Collapse
Affiliation(s)
| | | | - Photini Sinnis
- Corresponding author. Tel.: +1 212 2635346; fax: +1 212 2638179;
| |
Collapse
|