1
|
Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R. A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Hum Vaccin Immunother 2024; 20:2337985. [PMID: 38602074 PMCID: PMC11017952 DOI: 10.1080/21645515.2024.2337985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.
Collapse
Affiliation(s)
- Hind M. Al-Osaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lujain Marghlani
- Department of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Badria Al-Rowaili
- Pharmaceutical Services Department, Northern Area Armed Forces Hospital, King Khalid Military, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Reem Albalawi
- Department of Medicine, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Abrar Saad
- Pharmacy Department, Royal Commission Hospital, Yanbu, Kingdom of Saudi Arabia
| | - Saba Alasmari
- Department of Clinical Pharmacy, King Khalid University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled Althobaiti
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Zainab Alhulaili
- Department of Clinical Pharmacy, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| | - Abeer Alanzi
- Department of Medicine, King Abdulaziz Hospital, Makkah, Kingdom of Saudi Arabia
| | - Rawan Alqarni
- Department of Medicine and Surgery, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Razan Alsofiyani
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Reem Shrwani
- Department of Clinical Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Leite JC, Gonçalves AAM, de Oliveira DS, Resende LA, Boas DFV, Ribeiro HS, Pereira DFS, da Silva AV, Mariano RMDS, Reis PCC, Nakasone EN, França-Silva JC, Galdino AS, Paes PRDO, Melo MM, Dias ES, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Giunchetti RC. Transmission-Blocking Vaccines for Canine Visceral Leishmaniasis: New Progress and Yet New Challenges. Vaccines (Basel) 2023; 11:1565. [PMID: 37896969 PMCID: PMC10610753 DOI: 10.3390/vaccines11101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Dogs with visceral leishmaniasis play a key role in the transmission cycle of Leishmania infantum to humans in the urban environment. There is a consensus regarding the importance of developing a vaccine to control this disease. Despite many efforts to develop a protective vaccine against CVL, the ones currently available, Leish-tec® and LetiFend®, have limited effectiveness. This is due, in part, to the complexity of the immune response of the naturally infected dogs against the parasite and the complexity of the parasite transmission cycle. Thus, strategies, such as the development of a transmission-blocking vaccines (TBVs) already being applied to other vector-borne diseases like malaria and dengue, would be an attractive alternative to control leishmaniasis. TBVs induce the production of antibodies in the vertebrate host, which can inhibit parasite development in the vector and/or interfere with aspects of vector biology, leading to an interruption of parasite transmission. To date, there are few TBV studies for CVL and other leishmaniasis forms. However, the few studies that exist show promising results, thus justifying the further development of this approach.
Collapse
Affiliation(s)
- Jaqueline Costa Leite
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Diana Souza de Oliveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Diego Fernandes Vilas Boas
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Helen Silva Ribeiro
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Diogo Fonseca Soares Pereira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Augusto Ventura da Silva
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Reysla Maria da Silveira Mariano
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Pedro Campos Carvalhaes Reis
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Eiji Nakasone Nakasone
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - João Carlos França-Silva
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, Federal University of São João Del-Rei (UFSJ), Midwest Campus, Divinópolis 35501-296, MG, Brazil;
| | - Paulo Ricardo de Oliveira Paes
- Department of Veterinary Clinic and Surgery, School of Veterinary, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (P.R.d.O.P.); (M.M.M.)
| | - Marília Martins Melo
- Department of Veterinary Clinic and Surgery, School of Veterinary, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (P.R.d.O.P.); (M.M.M.)
| | - Edelberto Santos Dias
- René Rachou Research Center, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Denise da Silveira-Lemos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil; (J.C.L.); (A.A.M.G.); (D.S.d.O.); (L.A.R.); (D.F.V.B.); (H.S.R.); (D.F.S.P.); (A.V.d.S.); (R.M.d.S.M.); (P.C.C.R.); (E.N.N.); (J.C.F.-S.); (D.d.S.-L.); (W.O.D.)
| |
Collapse
|
3
|
Mariano RMDS, Gonçalves AAM, de Oliveira DS, Ribeiro HS, Pereira DFS, Santos IS, Lair DF, da Silva AV, Galdino AS, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Giunchetti RC. A Review of Major Patents on Potential Malaria Vaccine Targets. Pathogens 2023; 12:pathogens12020247. [PMID: 36839519 PMCID: PMC9959516 DOI: 10.3390/pathogens12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Malaria is a parasitic infection that is a great public health concern and is responsible for high mortality rates worldwide. Different strategies have been employed to improve disease control, demonstrating the ineffectiveness of controlling vectors, and parasite resistance to antimalarial drugs requires the development of an effective preventive vaccine. There are countless challenges to the development of such a vaccine directly related to the parasite's complex life cycle. After more than four decades of basic research and clinical trials, the World Health Organization (WHO) has recommended the pre-erythrocytic Plasmodium falciparum (RTS, S) malaria vaccine for widespread use among children living in malaria-endemic areas. However, there is a consensus that major improvements are needed to develop a vaccine with a greater epidemiological impact in endemic areas. This review discusses novel strategies for malaria vaccine design taking the target stages within the parasite cycle into account. The design of the multi-component vaccine shows considerable potential, especially as it involves transmission-blocking vaccines (TBVs) that eliminate the parasite's replication towards sporozoite stage parasites during a blood meal of female anopheline mosquitoes. Significant improvements have been made but additional efforts to achieve an efficient vaccine are required to improve control measures. Different strategies have been employed, thus demonstrating the ineffectiveness in controlling vectors, and parasite resistance to antimalarial drugs requires the development of a preventive vaccine. Despite having a vaccine in an advanced stage of development, such as the RTS, S malaria vaccine, the search for an effective vaccine against malaria is far from over. This review discusses novel strategies for malaria vaccine design taking into account the target stages within the parasite's life cycle.
Collapse
Affiliation(s)
- Reysla Maria da Silveira Mariano
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Diana Souza de Oliveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Helen Silva Ribeiro
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Diogo Fonseca Soares Pereira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Ingrid Soares Santos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Daniel Ferreira Lair
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Augusto Ventura da Silva
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratory of Biotechnology of Microorganisms, Federal University of São João Del-Rei, Divinópolis CEP 35501-296, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru
| | - Denise da Silveira-Lemos
- Campus Jaraguá, University José of Rosário Vellano, UNIFENAS, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte CEP 31270-901, MG, Brazil
- Correspondence: or ; Tel.: +55-31-3409-3003
| |
Collapse
|
4
|
Mulamba C, Williams C, Kreppel K, Ouedraogo JB, Olotu AI. Evaluation of the Pfs25-IMX313/Matrix-M malaria transmission-blocking candidate vaccine in endemic settings. Malar J 2022; 21:159. [PMID: 35655174 PMCID: PMC9161629 DOI: 10.1186/s12936-022-04173-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Malaria control relies heavily on the use of anti-malarial drugs and insecticides against malaria parasites and mosquito vectors. Drug and insecticide resistance threatens the effectiveness of conventional malarial interventions; alternative control approaches are, therefore, needed. The development of malaria transmission-blocking vaccines that target the sexual stages in humans or mosquito vectors is among new approaches being pursued. Here, the immunological mechanisms underlying malaria transmission blocking, status of Pfs25-based vaccines are viewed, as well as approaches and capacity for first in-human evaluation of a transmission-blocking candidate vaccine Pfs25-IMX313/Matrix-M administered to semi-immune healthy individuals in endemic settings. It is concluded that institutions in low and middle income settings should be supported to conduct first-in human vaccine trials in order to stimulate innovative research and reduce the overdependence on developed countries for research and local interventions against many diseases of public health importance.
Collapse
Affiliation(s)
- Charles Mulamba
- Interventions & Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.,Nelson Mandela African Institution of Science and Technology, Tengeru, P. O. Box 447, Arusha, Tanzania
| | - Chris Williams
- The Jenner Institute, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Katharina Kreppel
- Nelson Mandela African Institution of Science and Technology, Tengeru, P. O. Box 447, Arusha, Tanzania
| | | | - Ally I Olotu
- Interventions & Clinical Trials Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
| |
Collapse
|
5
|
Yu S, Wang J, Luo X, Zheng H, Wang L, Yang X, Wang Y. Transmission-Blocking Strategies Against Malaria Parasites During Their Mosquito Stages. Front Cell Infect Microbiol 2022; 12:820650. [PMID: 35252033 PMCID: PMC8889032 DOI: 10.3389/fcimb.2022.820650] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is still the most widespread parasitic disease and causes the most infections globally. Owing to improvements in sanitary conditions and various intervention measures, including the use of antimalarial drugs, the malaria epidemic in many regions of the world has improved significantly in the past 10 years. However, people living in certain underdeveloped areas are still under threat. Even in some well-controlled areas, the decline in malaria infection rates has stagnated or the rates have rebounded because of the emergence and spread of drug-resistant malaria parasites. Thus, new malaria control methods must be developed. As the spread of the Plasmodium parasite is dependent on the part of its life cycle that occurs in mosquitoes, to eliminate the possibility of malaria infections, transmission-blocking strategies against the mosquito stage should be the first choice. In fact, after the gametocyte enters the mosquito body, it undergoes a series of transformation processes over a short period, thus providing numerous potential blocking targets. Many research groups have carried out studies based on targeting the blocking of transmission during the mosquito phase and have achieved excellent results. Meanwhile, the direct killing of mosquitoes could also significantly reduce the probability of malaria infections. Microorganisms that display complex interactions with Plasmodium, such as Wolbachia and gut flora, have shown observable transmission-blocking potential. These could be used as a biological control strategy and play an important part in blocking the transmission of malaria.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luhan Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- *Correspondence: Ying Wang,
| |
Collapse
|
6
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|
7
|
Vaccine approaches applied to controlling dog ticks. Ticks Tick Borne Dis 2021; 12:101631. [PMID: 33494026 DOI: 10.1016/j.ttbdis.2020.101631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Ticks are considered the most important vectors in veterinary medicine with a profound impact on animal health worldwide, as well as being key vectors of diseases affecting household pets. The leading strategy applied to dog tick control is the continued use of acaricides. However, this approach is not sustainable due to surging tick resistance, growing public concern over pesticide residues in food and in the environment, and the rising costs associated with their development. In contrast, tick vaccines are a cost-effective and environmentally friendly alternative against tick-borne diseases by controlling vector infestations and reducing pathogen transmission. These premises have encouraged researchers to develop an effective vaccine against ticks, with several proteins having been characterized and used in native, synthetic, and recombinant forms as antigens in immunizations. The growing interaction between domestic pets and people underscores the importance of developing new tick control measures that require effective screening platforms applied to vaccine development. However, as reviewed in this paper, very little progress has been made in controlling ectoparasite infestations in pets using the vaccine approach. The control of tick infestations and pathogen transmission could be obtained through immunization programs aimed at reducing the tick population and interfering in the pathogenic transmission that affects human and animal health on a global scale.
Collapse
|
8
|
Alterations in the Mitochondrial Physiology of Biomphalaria glabrata (Mollusca: Gastropoda) After Experimental Infection by Angiostrongylus cantonensis (Nematoda: Metastrongylidae). Acta Parasitol 2019; 64:693-699. [PMID: 30887270 DOI: 10.2478/s11686-019-00039-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Angiostrongylus cantonensis is a metastrongylid nematode that has a heteroxenous cycle, where snails act as intermediate hosts and the rodents Rattus rattus and Rattus novergicus are the definitive hosts. However, humans may act as accidental hosts presenting an atypical form of parasitism. This fact has motivated research to better understand systems of relationships involving A. cantonensis, targeting the control of species of gastropods that act as intermediary hosts. METHODS For this, six groups were formed: three control groups (uninfected) and three infected groups, exposed to approximately 1200 L1 larvae of A. cantonensis. At the end of each week (1, 2, and 3 weeks), snails were dissected without anesthesia and the gonad-digestive gland (DGG) complex was separated for determination of oxygen consumption through high-resolution titration-injection respirometer (Oroboros, Oxygraph; Innsbruck, Austria). RESULTS The results indicate suppression of mitochondrial oxidative metabolism of the host and compromised in different mitochondrial respiratory states. This effect, mainly observed in the group exposed to 1 week of infection, showed a decrease of approximately 38% (2.78 ± 0.37 pmol O2/mg of tissue; P < 0.05), 41% (2.76 ± 0.34 pmol O2/mg of tissue; P < 0.05) e 46% (2.91 ± 0.36 pmol O2/mg of tissue; P < 0.05) in the basal oxygen consumption after sequential addition (P + M), succinate and (ADP) in the respiratory medium, differing significantly from the control group. CONCLUSION The results presented indicate that the prepatent infection by this metastrongylid impairs the aerobic oxidative metabolism of its host, causing a reduction in basal oxygen consumption. This effect, observed at the start of development of the parasites, indicates that this stage is the most critical for the success of the infection, and can be explained by a reduction of the mitochondrial density of the tissue analyzed, or also by suppression of enzyme centers related to the oxidative reactions.
Collapse
|
9
|
Khamsehnejad MI, Djadid ND, Raz A. Identification, Molecular Characterization, and In Silico Structural Analysis of Carboxypeptidase B2 of Anopheles stephensi. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:72-85. [PMID: 30124910 DOI: 10.1093/jme/tjy127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 06/08/2023]
Abstract
Malaria is a vector-borne infectious disease that is considered a priority of the World Health Organization due to its enormous impacts on global health. Plasmodium spp. (Haemosporida: Plasmodiidae), Anopheles spp. (Diptera: Culicidae), and a suitable host are the key elements for malaria transmission. To disrupt the parasitic life cycle of malaria or prevent its transmission, these three key elements should be targeted by effective control strategies. Development of vaccines that interrupt malaria transmission is one of the solutions that has been recommended to the countries that aim to eliminate malaria. With respect to the important role of Anopheles stephensi in malaria transmission and involvement of Anopheles carboxypeptidase B1 in sexual parasite development, we characterized the second member of cpb gene family (cpbAs2) of An. Stephensi to provide some basic information and evaluate significance of cpbAs2's role in complementing sexual plasmodium development role of cpbAs1. The cpbAs2 mRNA sequence was characterized by 3' and 5' RACE and the structural features of its coded protein were studied by in silico modeling. The coding sequence and gene structure of cpbAs2 were determined empirically and compared with the in silico predictions from the An. stephensi genome sequencing project. Furthermore, homology modeling revealed that its structure is very similar to the structurally important domains of procarboxypeptidase B2 in humans. This study provides basic molecular and structural information about another member of the cpb gene family of An. stephensi. The reported results are informative and necessary for evaluation of the role of this gene in sexual parasite development by future studies.
Collapse
Affiliation(s)
- Mahdokht Ilbeigi Khamsehnejad
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Pasteur Avenue, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Pasteur Avenue, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Pasteur Avenue, Tehran, Iran
| |
Collapse
|
10
|
Bakhshi H, Failloux AB, Zakeri S, Raz A, Dinparast Djadid N. Mosquito-borne viral diseases and potential transmission blocking vaccine candidates. INFECTION GENETICS AND EVOLUTION 2018; 63:195-203. [PMID: 29842982 DOI: 10.1016/j.meegid.2018.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023]
Abstract
Mosquito-borne viral diseases (MBVDs) have a complex biological cycle involving vectors and vertebrate hosts. These viruses are responsible for many deadly diseases worldwide. Although MBVDs threaten mostly developing countries, there is growing evidence indicating that they are also of concern in western countries where local transmission of arboviruses such as West Nile, Zika, Chikungunya and Dengue viruses have been recently reported. The rapid rise in human infections caused by these viruses is attributed to rapid climate change and travel facilities. Usually, the only way to control these diseases relies on the control of vectors in the absence of licensed vaccines and specific treatments. However, the overuse of insecticides has led to the emergence of insecticide resistance in vector populations, posing significant challenges for their control. An alternative method for reducing MBVDs can be the use of Transmission Blocking Vaccines (TBVs) that limits viral infection at the mosquito vector stage. Some successes have been obtained confirming the potential application of TBVs against viruses; however, this approach remains at the developmental stage and still needs improvements. The present review aims to give an update on MBVDs and to discuss the application as well as usage of potential TBVs for the control of mosquito-borne viral infections.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Tehran, Iran.
| |
Collapse
|
11
|
Singh RK, Dhama K, Khandia R, Munjal A, Karthik K, Tiwari R, Chakraborty S, Malik YS, Bueno-Marí R. Prevention and Control Strategies to Counter Zika Virus, a Special Focus on Intervention Approaches against Vector Mosquitoes-Current Updates. Front Microbiol 2018; 9:87. [PMID: 29472902 PMCID: PMC5809424 DOI: 10.3389/fmicb.2018.00087] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) is the most recent intruder that acquired the status of global threat creating panic and frightening situation to public owing to its rapid spread, attaining higher virulence and causing complex clinical manifestations including microcephaly in newborns and Guillain Barré Syndrome. Alike other flaviviruses, the principal mode of ZIKV transmission is by mosquitoes. Advances in research have provided reliable diagnostics for detecting ZIKV infection, while several drug/therapeutic targets and vaccine candidates have been identified recently. Despite these progresses, currently there is neither any effective drug nor any vaccine available against ZIKV. Under such circumstances and to tackle the problem at large, control measures of which mosquito population control need to be strengthened following appropriate mechanical, chemical, biological and genetic control measures. Apart from this, several other known modes of ZIKV transmission which have gained importance in recent past such as intrauterine, sexual intercourse, and blood-borne spread need to be checked and kept under control by adopting appropriate precautions and utmost care during sexual intercourse, blood transfusion and organ transplantation. The virus inactivation by pasteurization, detergents, chemicals, and filtration can effectively reduce viral load in plasma-derived medicinal products. Added to this, strengthening of the surveillance and monitoring of ZIKV as well as avoiding travel to Zika infected areas would aid in keeping viral infection under check. Here, we discuss the salient advances in the prevention and control strategies to combat ZIKV with a focus on highlighting various intervention approaches against the vector mosquitoes of this viral pathogen along with presenting an overview regarding human intervention measures to counter other modes of ZIKV transmission and spread. Additionally, owing to the success of vaccines for a number of infections globally, a separate section dealing with advances in ZIKV vaccines and transmission blocking vaccines has also been included.
Collapse
Affiliation(s)
- Raj K Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Yashpal S Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Valencia, Spain
| |
Collapse
|
12
|
Famakinde DO. Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication. Trop Med Infect Dis 2018; 3:E4. [PMID: 30274403 PMCID: PMC6136629 DOI: 10.3390/tropicalmed3010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 11/17/2022] Open
Abstract
The mosquito-borne lymphatic filariasis (LF) is a parasitic, neglected tropical disease that imposes an unbearable human scourge. Despite the unprecedented efforts in mass drug administration (MDA) and morbidity management, achieving the global LF elimination slated for the year 2020 has been thwarted by limited MDA coverage and ineffectiveness in the chemotherapeutic intervention. Moreover, successful and sustainable elimination of mosquito-vectored diseases is often encumbered by reintroduction and resurgence emanating from human residual or new infections being widely disseminated by the vectors even when chemotherapy proves effective, but especially in the absence of effective vaccines. This created impetus for strengthening the current defective mosquito control approach, and profound research in vector⁻pathogen systems and vector biology has been pushing the boundaries of ideas towards developing refined vector-harnessed control strategies. Eventual implementation of these emerging concepts will offer a synergistic approach that will not only accelerate LF elimination, but also augurs well for its future eradication. This brief review focuses on advances in mosquito⁻filaria research and considers the emerging prospects for future eradication of LF.
Collapse
Affiliation(s)
- Damilare O Famakinde
- Department of Medical Microbiology and Parasitology, College of Medicine of the University of Lagos, Idi-Araba, Lagos 100254, Nigeria.
| |
Collapse
|
13
|
Mosquito-Borne Diseases: Prevention Is the Cure for Dengue, Chikungunya and Zika Viruses. PARASITOLOGY RESEARCH MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-94075-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Serrato IM, Caicedo PA, Orobio Y, Lowenberger C, Ocampo CB. Vector competence and innate immune responses to dengue virus infection in selected laboratory and field-collected Stegomyia aegypti (= Aedes aegypti). MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:312-319. [PMID: 28407282 PMCID: PMC5718633 DOI: 10.1111/mve.12237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/13/2017] [Accepted: 03/04/2017] [Indexed: 06/07/2023]
Abstract
Control of dengue virus (DenV) transmission, primarily based on strategies to reduce populations of the principle vector Stegomya aegypti (= Aedes aegypti) (Diptera: Culicidae), is difficult to sustain over time. Other potential strategies aim to manipulate characteristics such as vector competence (VC), the innate capacity of the vector to transmit the virus. Previous studies have identified genetic factors, including differential expression of apoptosis-related genes, associated with the refractory and susceptible phenotypes in selected strains of S. aegypti from Cali, Colombia. The present study was designed to evaluate the variability of VC in selected strains against different DenV serotypes and to determine whether field-collected mosquitoes respond similarly to selected laboratory strains in terms of enhanced or reduced expression of apoptosis-related genes. Vector competence differed between strains, but did not differ in response to different DenV serotypes. Differences in VC were observed among mosquitoes collected from different localities in Cali. The overexpression of the pro-apoptosis genes, caspase 16 and Aedronc, was conserved in field-collected refractory mosquitoes and the selected laboratory refractory strain. The results suggest that the apoptosis response is conserved among all refractory mosquitoes to inhibit the development of all DenV serotypes.
Collapse
Affiliation(s)
- I M Serrato
- Biology and Vector Control Unit, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - P A Caicedo
- Biology and Vector Control Unit, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Y Orobio
- Biology and Vector Control Unit, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - C Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - C B Ocampo
- Biology and Vector Control Unit, Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| |
Collapse
|
15
|
Mills MK, Nayduch D, McVey DS, Michel K. Functional Validation of Apoptosis Genes IAP1 and DRONC in Midgut Tissue of the Biting Midge Culicoides sonorensis (Diptera: Ceratopogonidae) by RNAi. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:559-567. [PMID: 28399198 PMCID: PMC5502902 DOI: 10.1093/jme/tjw225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 05/02/2023]
Abstract
Culicoides biting midges transmit multiple ruminant viruses, including bluetongue virus and epizootic hemorrhagic disease virus, causing significant economic burden worldwide. To further enhance current control techniques, understanding vector-virus interactions within the midge is critical. We developed previously a double-stranded RNA (dsRNA) delivery method to induce RNA interference (RNAi) for targeted gene knockdown in adult Culicoides sonorensis Wirth & Jones. Here, we confirm the C. sonorensis inhibitor of apoptosis 1 (CsIAP1) as an anti-apoptotic functional ortholog of IAP1 in Drosophila, identify the ortholog of the Drosophila initiator caspase DRONC (CsDRONC), and demonstrate that injection of dsRNA into the hemocoel can be used for targeted knockdown in the midgut in C. sonorensis. We observed CsIAP1 transcript reduction in whole midges, with highest transcript reduction in midgut tissues. IAP1knockdown (kd) resulted in pro-apoptotic caspase activation in midgut tissues. In IAP1kd midges, midgut tissue integrity and size were severely compromised. This phenotype, as well as reduced longevity, was partially reverted by co-RNAi suppression of CsDRONC and CsIAP1. Therefore, RNAi can be directed to the midgut of C. sonorensis, the initial site of virus infection, using dsRNA injection into the hemocoel. In addition, we provide evidence that the core apoptosis pathway is conserved in C. sonorensis and can be experimentally activated in the midgut to reduce longevity in C. sonorensis. This study thus paves the way for future reverse genetic analyses of midgut-virus interactions in C. sonorensis, including the putative antiviral properties of RNAi and apoptosis pathways.
Collapse
Affiliation(s)
- M K Mills
- Division of Biology, Kansas State University, Manhattan, KS 66506 (; )
| | - D Nayduch
- United States Department of Agriculture, Agricultural Research Service Arthropod Borne Animal Disease Research Unit, Manhattan, KS 66502
| | - D S McVey
- United States Department of Agriculture, Agricultural Research Service Arthropod Borne Animal Disease Research Unit, Manhattan, KS 66502
| | - K Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506 (; )
| |
Collapse
|
16
|
mosGCTL-7, a C-Type Lectin Protein, Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol 2017; 91:JVI.01348-16. [PMID: 28250133 DOI: 10.1128/jvi.01348-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023] Open
Abstract
Japanese encephalitis virus (JEV) is an arthropod-borne flavivirus prevalent in Asia and the Western Pacific and is the leading cause of viral encephalitis. JEV is maintained in a transmission cycle between mosquitoes and vertebrate hosts, but the molecular mechanisms by which the mosquito vector participates in transmission are unclear. We investigated the expression of all C-type lectins during JEV infection in Aedes aegypti The C-type lectin mosquito galactose-specific C-type lectin 7 (mosGCTL-7) (VectorBase accession no. AAEL002524) was significantly upregulated by JEV infection and facilitated infection in vivo and in vitro mosGCTL-7 bound to the N-glycan at N154 on the JEV envelope protein. This recognition of viral N-glycan by mosGCTL-7 is required for JEV infection, and we found that this interaction was Ca2+ dependent. After mosGCTL-7 bound to the glycan, mosPTP-1 bound to mosGCTL-7, promoting JEV entry. The viral burden in vivo and in vitro was significantly decreased by mosPTP-1 double-stranded RNA (dsRNA) treatment, and infection was abolished by anti-mosGCTL-7 antibodies. Our results indicate that the mosGCTL-7/mosPTP-1 pathway plays a key role in JEV infection in mosquitoes. An improved understanding of the mechanisms underlying flavivirus infection in mosquitoes will provide further opportunities for developing new strategies to control viral dissemination in nature.IMPORTANCE Japanese encephalitis virus is a mosquito-borne flavivirus and is the primary cause of viral encephalitis in the Asia-Pacific region. Twenty-four countries in the WHO Southeast Asia and Western Pacific regions have endemic JEV transmission, which exposes >3 billion people to the risks of infection, although JEV primarily affects children. C-type lectins are host factors that play a role in flavivirus infection in humans, swine, and other mammals. In this study, we investigated C-type lectin functions in JEV-infected Aedes aegypti and Culex pipiens pallens mosquitoes and cultured cells. JEV infection changed the expression of almost all C-type lectins in vivo and in vitro, and mosGCTL-7 bound to the JEV envelope protein via an N-glycan at N154. Cell surface mosPTP-1 interacted with the mosGCTL-7-JEV complex to facilitate virus infection in vivo and in vitro Our findings provide further opportunities for developing new strategies to control arbovirus dissemination in nature.
Collapse
|
17
|
Kirstein OD, Abbasi I, Horwitz BZ, Skrip L, Hailu A, Jaffe C, Li LL, Prow TW, Warburg A. Minimally invasive microbiopsies: a novel sampling method for identifying asymptomatic, potentially infectious carriers of Leishmania donovani. Int J Parasitol 2017; 47:609-616. [PMID: 28455239 PMCID: PMC5596977 DOI: 10.1016/j.ijpara.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 12/02/2022]
Abstract
Microbiopsy devices were designed to assess the infectiousness of asymptomatic Leishmania donovani carriers. The microbiopsy devices sample both skin tissues and blood, as do pool-feeding phlebotomine sand flies. Devices were tested on human volunteers in Ethiopia and proven effective, surpassing the sensitivity of finger-pricks.
Visceral leishmaniasis (VL) is a potentially lethal, sand fly-borne disease caused by protozoan parasites belonging to the Leishmania donovani species complex. There are several adequate methods for diagnosing VL, but the majority of infected individuals remain asymptomatic, comprising potential parasite reservoirs for transmission of the disease. The gold standard for assessing host infectiousness to biting vector insects is xenodiagnosis (i.e. scoring infection rates among insectary-reared insects that had fed on humans suspected of being infected). However, when it comes to sand flies and leishmaniasis, xenodiagnosis is an intricate operation burdened by logistical hurdles and ethical concerns that prevent its effective application for mass screening of widely dispersed communities, particularly in rural regions of underdeveloped countries. Minimally invasive microbiopsy (MB) devices were designed to penetrate the skin to a depth of ∼200 µm and absorb blood as well as skin cell lysates, mimicking the mode by which phlebotomine sand flies acquire blood meals, as well as their composition. MBs taken from 137 of 262 volunteers, living in endemic VL foci in Ethiopia, detected Leishmania parasites that could potentially be imbibed by feeding sand flies. Although the volume of MBs was 10-fold smaller than finger-prick blood samples, Leishmania DNA detection rates from MBs were significantly higher, implying that skin, more often than blood, was the source of parasites. Volunteers with histories of VL were almost as likely as healthy volunteers to test positive by MBs (southern Ethiopian focus: 95% CI: 0.35–2.59, P = 1.0. northern Ethiopian focus 0.87: 95% CI: 0.22–3.76, P = 1), suggesting the importance of asymptomatic patients as reservoirs of L. donovani. Minimally invasive, painless MBs should be considered for reliably and efficiently evaluating both L. donovani infection rates among large numbers of asymptomatic carriers and their infectiousness to blood-feeding sand flies.
Collapse
Affiliation(s)
- Oscar David Kirstein
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada (IMRIC), The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Israel
| | - Ibrahim Abbasi
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada (IMRIC), The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Israel
| | - Ben Zion Horwitz
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada (IMRIC), The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Israel
| | - Laura Skrip
- Department of Biostatistics, School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Asrat Hailu
- Department of Microbiology, Immunology & Parasitology, Faculty of Medicine, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| | - Charles Jaffe
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada (IMRIC), The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Israel
| | - Lynlee L Li
- Dermatology Research Centre, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, QLD 4012, Australia
| | - Tarl W Prow
- Dermatology Research Centre, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, QLD 4012, Australia
| | - Alon Warburg
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada (IMRIC), The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University - Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
18
|
Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors 2016; 9:516. [PMID: 27664127 PMCID: PMC5035468 DOI: 10.1186/s13071-016-1802-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Infectious diseases caused by arboviruses (viruses transmitted by arthropods) are undergoing unprecedented epidemic activity and geographic expansion. With the recent introduction of West Nile virus (1999), chikungunya virus (2013) and Zika virus (2015) to the Americas, stopping or even preventing the expansion of viruses into susceptible populations is an increasing concern. With a few exceptions, available vaccines protecting against arboviral infections are nonexistent and current disease prevention relies on vector control interventions. However, due to the emergence of and rapidly spreading insecticide resistance, different disease control methods are needed. A feasible method of reducing emerging tropical diseases is the implementation of vaccines that prevent or decrease viral infection in the vector. These vaccines are designated ‘transmission blocking vaccines’, or TBVs. Here, we summarize previous TBV work, discuss current research on arboviral TBVs and present several promising TBV candidates.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA.
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
19
|
Mongkol W, Arunyawat U, Surat W, Kubera A. Active Compounds Against Anopheles minimus Carboxypeptidase B for Malaria Transmission-Blocking Strategy. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1322-1332. [PMID: 26352934 DOI: 10.1093/jme/tjv133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/13/2015] [Indexed: 06/05/2023]
Abstract
Malaria transmission-blocking compounds have been studied to block the transmission of malaria parasites, especially the drug-resistant Plasmodium. Carboxypeptidase B (CPB) in the midgut of Anopheline mosquitoes has been demonstrated to be essential for the sexual development of Plasmodium in the mosquito. Thus, the CPB is a potential target for blocking compounds. The aim of this research was to screen compounds from the National Cancer Institute (NCI) diversity dataset and U.S. Food and Drug Administration (FDA)-approved drugs that could reduce the Anopheles CPB activity. The cDNA fragment of cpb gene from An. minimus (cpbAmi) was amplified and sequenced. The three-dimensional structure of CPB was predicted from the deduced amino acid sequence. The virtual screening of the compounds from NCI diversity set IV and FDA-approved drugs was performed against CPBAmi. The inhibition activity against CPBAmi of the top-scoring molecules was characterized in vitro. Three compounds-NSC-1014, NSC-332670, and aminopterin with IC50 at 0.99 mM, 1.55 mM, and 0.062 mM, respectively-were found to significantly reduce the CPBAmi activity.
Collapse
Affiliation(s)
- Watcharakorn Mongkol
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Uraiwan Arunyawat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand
| | - Wunrada Surat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand
| | - Anchanee Kubera
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
20
|
Londono-Renteria B, Troupin A, Conway MJ, Vesely D, Ledizet M, Roundy CM, Cloherty E, Jameson S, Vanlandingham D, Higgs S, Fikrig E, Colpitts TM. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. PLoS Pathog 2015; 11:e1005202. [PMID: 26491875 PMCID: PMC4619585 DOI: 10.1371/journal.ppat.1005202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Andrea Troupin
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Michael J Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, Michigan, United States of America
| | - Diana Vesely
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Michael Ledizet
- L2 Diagnostics, New Haven, Connecticut, United States of America
| | - Christopher M. Roundy
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Erin Cloherty
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Samuel Jameson
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Dana Vanlandingham
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Tonya M. Colpitts
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Yang J, Martcheva M, Wang L. Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence. Math Biosci 2015; 268:1-8. [PMID: 26239584 DOI: 10.1016/j.mbs.2015.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/28/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022]
Abstract
Vaccination is the most effective method of preventing the spread of infectious diseases. For many diseases, vaccine-induced immunity is not life long and the duration of immunity is not always fixed. In this paper, we propose an SIVS model taking the waning of vaccine-induced immunity and general nonlinear incidence into consideration. Our analysis shows that the model exhibits global threshold dynamics in the sense that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable implying the disease dies out; while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable indicating that the disease persists. This global threshold result indicates that if the vaccination coverage rate is below a critical value, then the disease always persists and only if the vaccination coverage rate is above the critical value, the disease can be eradicated.
Collapse
Affiliation(s)
- Junyuan Yang
- Department of Applied Mathematics, Yuncheng University, Yuncheng, Shanxi 044000, PR China; Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA; Complex Sciences Center, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Maia Martcheva
- Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA.
| | - Lin Wang
- Department of Applied Mathematics, Yuncheng University, Yuncheng, Shanxi 044000, PR China; Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
22
|
Transmission-Blocking Vaccines: Focus on Anti-Vector Vaccines against Tick-Borne Diseases. Arch Immunol Ther Exp (Warsz) 2014; 63:169-79. [PMID: 25503555 PMCID: PMC4429137 DOI: 10.1007/s00005-014-0324-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/15/2014] [Indexed: 01/07/2023]
Abstract
Tick-borne diseases are a potential threat that account for significant morbidity and mortality in human population worldwide. Vaccines are not available to treat several of the tick-borne diseases. With the emergence and resurgence of several tick-borne diseases, emphasis on the development of transmission-blocking vaccines remains increasing. In this review, we provide a snap shot on some of the potential candidates for the development of anti-vector vaccines (a form of transmission-blocking vaccines) against wide range of hard and soft ticks that include Ixodes, Haemaphysalis, Dermacentor, Amblyomma, Rhipicephalus and Ornithodoros species.
Collapse
|
23
|
Dinglasan RR, Armistead JS, Nyland JF, Jiang X, Mao HQ. Single-dose microparticle delivery of a malaria transmission-blocking vaccine elicits a long-lasting functional antibody response. Curr Mol Med 2013; 13:479-87. [PMID: 23331003 PMCID: PMC3706950 DOI: 10.2174/1566524011313040002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 12/15/2022]
Abstract
Malaria sexual stage and mosquito transmission-blocking vaccines (SSM-TBV) have recently gained prominence as a necessary tool for malaria eradication. SSM-TBVs are unique in that, with the exception of parasite gametocyte antigens, they primarily target parasite or mosquito midgut surface antigens expressed only inside the mosquito. As such, the primary perceived limitation of SSM-TBVs is that the absence of natural boosting following immunization will limit its efficacy, since the antigens are never presented to the human immune system. An ideal, safe SSM-TBV formulation must overcome this limitation. We provide a focused evaluation of relevant nano-/microparticle technologies that can be applied toward the development of leading SSM-TBV candidates, and data from a proof-of-concept study demonstrating that a single inoculation and controlled release of antigen in mice, can elicit long-lasting protective antibody titers. We conclude by identifying the remaining critical gaps in knowledge and opportunities for moving SSM-TBVs to the field.
Collapse
Affiliation(s)
- R R Dinglasan
- W Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
24
|
Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M. Characterization of Phlebotomus papatasi peritrophins, and the role of PpPer1 in Leishmania major survival in its natural vector. PLoS Negl Trop Dis 2013; 7:e2132. [PMID: 23516661 PMCID: PMC3597473 DOI: 10.1371/journal.pntd.0002132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 02/09/2013] [Indexed: 11/17/2022] Open
Abstract
The peritrophic matrix (PM) plays a key role in compartmentalization of the blood meal and as barrier to pathogens in many disease vectors. To establish an infection in sand flies, Leishmania must escape from the endoperitrophic space to prevent excretion with remnants of the blood meal digestion. In spite of the role played regarding Leishmania survival, little is known about sand fly PM molecular components and structural organization. We characterized three peritrophins (PpPer1, PpPer2, and PpPer3) from Phlebotomus papatasi. PpPer1 and PpPer2 display, respectively, four and one chitin-binding domains (CBDs). PpPer3 on the other hand has two CBDs, one mucin-like domain, and a putative domain with hallmarks of a CBD, but with changes in key amino acids. Temporal and spatial expression analyses show that PpPer1 is expressed specifically in the female midgut after blood feeding. PpPer2 and PpPer3 mRNAs were constitutively expressed in midgut and hindgut, with PpPer3 also being expressed in Malpighian tubules. PpPer2 was the only gene expressed in developmental stages. Interestingly, PpPer1 and PpPer3 expression are regulated by Le. major infection. Recombinant PpPer1, PpPer2 and PpPer3 were obtained and shown to display similar biochemical profiles as the native; we also show that PpPer1 and PpPer2 are able to bind chitin. Knockdown of PpPer1 led to a 44% reduction in protein, which in spite of producing an effect on the percentage of infected sand flies, resulted in a 39% increase of parasite load at 48 h. Our data suggest that PpPer1 is a component for the P. papatasi PM and likely involved in the PM role as barrier against Le. major infection. For a successful development within the midgut of the sand fly vector, Leishmania must overcome several barriers imposed by the vector that include the digestive proteases secreted within the midgut following a blood meal by the insect, the need to escape from the endoperitrophic space, and attachment to the midgut epithelia to prevent excretion with the remnants of the blood meal. The sand fly peritrophic matrix (PM) constitutes an important barrier against the establishment of Leishmania within the sand fly and if trapped within the PM these parasites will be passed along with the remnants of the blood meal. Despite the role of sand fly PM on Leishmania development, characterization of its molecular components and assessment of their roles against Leishmania are lacking. Thereby, we performed the molecular characterization of three P. papatasi peritrophins named PpPer1, PpPer2, and PpPer3. Overall, we demonstrated that: (1) PpPer3 displays a putative CBD domain that might have undertaken neo-functionalization, (2) PpPer1 and PpPer3 genes display differential gene expression upon Le. major infection; and (3) PpPer1 seems to be an important component for the function of P. papatasi PM as a barrier against Le. major infection.
Collapse
|
25
|
Abstract
Leishmaniases are vector-borne parasitic diseases with 0.9 - 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti) involves lipophosphoglycan (LPG), this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field.
Collapse
Affiliation(s)
- Anna Dostálová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 12844 Praha 2, Czech Republic
| | | |
Collapse
|
26
|
Arévalo-Herrera M, Solarte Y, Marin C, Santos M, Castellanos J, Beier JC, Valencia SH. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:202-11. [PMID: 21881775 PMCID: PMC4830685 DOI: 10.1590/s0074-02762011000900025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022] Open
Abstract
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.
Collapse
|
27
|
Reactive oxygen species scavenging by catalase is important for female Lutzomyia longipalpis fecundity and mortality. PLoS One 2011; 6:e17486. [PMID: 21408075 PMCID: PMC3052318 DOI: 10.1371/journal.pone.0017486] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 02/07/2011] [Indexed: 11/30/2022] Open
Abstract
The phlebotomine sand fly Lutzomyia longipalpis is the most important vector of American visceral leishmaniasis (AVL), the disseminated and most serious form of the disease in Central and South America. In the natural environment, most female L. longipalpis are thought to survive for less than 10 days and will feed on blood only once or twice during their lifetime. Successful transmission of parasites occurs when a Leishmania-infected female sand fly feeds on a new host. Knowledge of factors affecting sand fly longevity that lead to a reduction in lifespan could result in a decrease in parasite transmission. Catalase has been found to play a major role in survival and fecundity in many insect species. It is a strong antioxidant enzyme that breaks down toxic reactive oxygen species (ROS). Ovarian catalase was found to accumulate in the developing sand fly oocyte from 12 to 48 hours after blood feeding. Catalase expression in ovaries as well as oocyte numbers was found to decrease with age. This reduction was not found in flies when fed on the antioxidant ascorbic acid in the sugar meal, a condition that increased mortality and activation of the prophenoloxidase cascade. RNA interference was used to silence catalase gene expression in female Lu. longipalpis. Depletion of catalase led to a significant increase of mortality and a reduction in the number of developing oocytes produced after blood feeding. These results demonstrate the central role that catalase and ROS play in the longevity and fecundity of phlebotomine sand flies.
Collapse
|
28
|
Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M. Targeting the midgut secreted PpChit1 reduces Leishmania major development in its natural vector, the sand fly Phlebotomus papatasi. PLoS Negl Trop Dis 2010; 4:e901. [PMID: 21152058 PMCID: PMC2994919 DOI: 10.1371/journal.pntd.0000901] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background During its developmental cycle within the sand fly vector, Leishmania must survive an early proteolytic attack, escape the peritrophic matrix, and then adhere to the midgut epithelia in order to prevent excretion with remnants of the blood meal. These three steps are critical for the establishment of an infection within the vector and are linked to interactions controlling species-specific vector competence. PpChit1 is a midgut-specific chitinase from Phlebotomus papatasi presumably involved in maturation and degradation of the peritrophic matrix. Sand fly midgut chitinases, such as PpChit1, whether acting independently or in a synergistic manner with Leishmania-secreted chitinase, possibly play a role in the Leishmania escape from the endoperitrophic space. Thus, we predicted that silencing of sand fly chitinase will lead to reduction or elimination of Leishmania within the gut of the sand fly vector. Methodology/Principal Findings We used injection of dsRNA to induce knock down of PpChit1 transcripts (dsPpChit1) and assessed the effect on protein levels post blood meal (PBM) and on Leishmania major development within P. papatasi. Injection of dsPpChit1 led to a significant reduction of PpChit1 transcripts from 24 hours to 96 hours PBM. More importantly, dsPpChit1 led to a significant reduction in protein levels and in the number of Le. major present in the midgut of infected P. papatasi following a infective blood meal. Conclusion/Significance Our data supports targeting PpChit1 as a potential transmission blocking vaccine candidate against leishmaniasis. For a successful development within the midgut of the sand fly vector, Leishmania must overcome several barriers which are imposed by the vector. The ability to overcome these barriers has been associated with species specificity, and interference with the sand fly vector-parasite balance can change the outcome of the infection in the vector. Recently, our group has carried out a transcriptome assessment of the sand fly Phlebotomus papatasi midgut, uncovering many transcripts possibly associated with the barrier to Leishmania development. In order to validate the role of such genes, we have developed a dedicated RNA interference (RNAi) platform to assess whether RNAi targeting such genes can reduce Leishmania major development. PpChit1 is a midgut-specific chitinase presumably involved in the maturation/degradation of the peritrophic matrix in the gut of the sand fly after a blood meal. Our results show that knockdown of PpChit1 via RNAi led to a significant reduction of Le. major within the gut, supporting the potential use of PpChit1 as a target for transmission blocking strategies against sand fly-transmitted leishmaniasis.
Collapse
Affiliation(s)
| | - Narinder K. Sharma
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Maricela Robles-Murguia
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Marcelo Ramalho-Ortigao
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
The concept of a malaria vaccine has sparked great interest for decades; however, the challenge is proving to be a difficult one. Immune dysregulation by Plasmodium and the ability of the parasite to mutate critical epitopes in surface antigens have proved to be strong defense weapons. This has led to reconsideration of polyvalent and whole parasite strategies and ways to enhance cellular immunity to malaria that may be more likely to target conserved antigens and an expanded repertoire of antigens. These and other concepts will be discussed in this review.
Collapse
|
30
|
Gholizadeh S, Basseri HR, Zakeri S, Ladoni H, Djadid ND. Cloning, expression and transmission-blocking activity of anti-PvWARP, malaria vaccine candidate, in Anopheles stephensi mysorensis. Malar J 2010; 9:158. [PMID: 20537198 PMCID: PMC2904785 DOI: 10.1186/1475-2875-9-158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/11/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Notwithstanding progress in recent years, a safe, an effective and affordable malaria vaccine is not available yet. Ookinete-secreted protein, Plasmodium vivax von Willebrand factor A domain-related protein (PvWARP), is a candidate for malaria transmission-blocking vaccines (TBVs). METHODS The PvWARP was expressed in Escherichia coli BL21 using the pET-23a vector and was purified using Ni-NTA affinity chromatography from a soluble fraction. Polyclonal antibody was raised against rPvWARP and transmission blocking activity was carried out in an Anopheles stephensi-P. vivax model. RESULTS Expression of full length of PvWARP (minus signal peptide) expression showed a 35-kDa protein. The purified protein was recognized by mouse polyclonal antibody directed against rPvWARP. Sera from the animals displayed significantly a blocking activity in the membrane feeding assay of An. stephensi mysorensis. CONCLUSIONS This is the first report on P. vivax WARP expression in E. coli that provides an essential base for development of the malaria TBV against P. vivax. This may greatly assist in malaria elimination, especially in the oriental corner of WHO Eastern Mediterranean Regional Office (WHO/EMRO) including Afghanistan, Iran and Pakistan.
Collapse
Affiliation(s)
- Saber Gholizadeh
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Science, Tehran, Iran, PO Box 6446-14155, Tehran, Iran
| | | | | | | | | |
Collapse
|
31
|
Mueller AK, Kohlhepp F, Hammerschmidt C, Michel K. Invasion of mosquito salivary glands by malaria parasites: prerequisites and defense strategies. Int J Parasitol 2010; 40:1229-35. [PMID: 20621627 DOI: 10.1016/j.ijpara.2010.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
The interplay between vector and pathogen is essential for vector-borne disease transmission. Dissecting the molecular basis of refractoriness of some vectors may pave the way to novel disease control mechanisms. A pathogen often needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium and salivary glands. Additionally, the arthropod vector elicites immune responses that can severely limit transmission success. One important step in the transmission of most vector-borne diseases is the entry of the disease agent into the salivary glands of its arthropod vector. The salivary glands of blood-feeding arthropods produce a complex mixture of molecules that facilitate blood feeding by inhibition of the host haemostasis, inflammation and immune reactions. Pathogen entry into salivary glands is a receptor-mediated process, which requires molecules on the surface of the pathogen and salivary gland. In most cases, the nature of these molecules remains unknown. Recent advances in our understanding of malaria parasite entry into mosquito salivary glands strongly suggests that specific carbohydrate molecules on the salivary gland surface function as docking receptors for malaria parasites.
Collapse
Affiliation(s)
- Ann-Kristin Mueller
- Parasitology Unit, Department of Infectious Diseases, Heidelberg University School of Medicine, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|