1
|
A Study of Synergy of Combination of Eosin B with Chloroquine, Artemisinin, and Sulphadoxine-Pyrimethamine on Plasmodium falciparum In Vitro and Plasmodium berghei In Vivo. J Trop Med 2020; 2020:3013701. [PMID: 32565830 PMCID: PMC7285249 DOI: 10.1155/2020/3013701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 01/06/2023] Open
Abstract
Methods Drug assessment was carried out singly or in combination on Plasmodium falciparum in vitro using the candle jar method at three inhibitory concentrations. Percent parasitemia of live cells was obtained by microscopic counting. Peter's suppression test was carried out on mice infected with Plasmodium berghei after 3 administration of the drugs singly and in combination, and parasites were counted by microscopy for 10 days. Results Synergy was exhibited by isobolograms of eosin B combined with artesunate and sulphadoxine-pyrimethamine with more than 10 fold reduction of all drugs in vitro. A good combination index was obtained with artesunate at 50% inibitory concentration with 3.4 nM eosin B and 1.7 nM artesunate in contrast to 124 nM eosin B and 7.6 nM artesunate singly. In vivo studies also showed a considerable lowering of the effective dose of eosin B 30 mg/kg: artesunate 3 mg/kg with 200 mg/kg eosin B and 60 mg/kg artesunate separately. Sulphadoxine-pyrimethamine seemed to have the greatest synergistic effect with a combination index of 0.007, but this could be due to it consisting of a combination of three drugs. Eosin B's combination index with chloroquine was fair, and in vivo tests too did not show as much competence as the other two drugs. Conclusion and Interpretation. It can be concluded that eosin B can be used in combination with antimalarial drugs with favorable results.
Collapse
|
2
|
Pereira LM, Mota CM, Baroni L, Bronzon da Costa CM, Brochi JCV, Wainwright M, Mineo TWP, Braga GÚL, Yatsuda AP. Inhibitory action of phenothiazinium dyes against Neospora caninum. Sci Rep 2020; 10:7483. [PMID: 32366934 PMCID: PMC7198568 DOI: 10.1038/s41598-020-64454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Neospora caninum is an Apicomplexan parasite related to important losses in livestock, causing abortions and decreased fertility in affected cows. Several chemotherapeutic strategies have been developed for disease control; however, no commercial treatment is available. Among the candidate drugs against neosporosis, phenothiazinium dyes, offer a low cost-efficient approach to parasite control. We report the anti-parasitic effects of the phenothiaziums Methylene Blue (MB), New Methylene Blue (NMB), 1,9–Dimethyl Methylene Blue (DMMB) and Toluidine Blue O (TBO) on N. caninum, using in vitro and in vivo models. The dyes inhibited parasite proliferation at nanomolar concentrations (0.019–1.83 μM) and a synergistic effect was achieved when Methylene Blue was combined with New Methylene Blue (Combination Index = 0.84). Moreover, the phenothiazinium dyes improved parasite clearance when combined with Pyrimethamine (Pyr). Combination of Methylene Blue + 1,9–Dimethyl Methylene Blue demonstrated superior efficacy compared to Pyrimethamine based counterparts in an in vivo model of infection. We also observed that Methylene Blue, New Methylene Blue and 1,9–Dimethyl Methylene Blue increased by 5000% the reactive oxygen species (ROS) levels in N. caninum tachyzoites. Phenothiazinium dyes represent an accessible group of candidates with the potential to compound future formulations for neosporosis control.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil.,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Martins Mota
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Cássia Mariana Bronzon da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Jade Cabestre Venancio Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Tiago Wilson Patriarca Mineo
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil. .,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Kowouvi K, Alies B, Gendrot M, Gaubert A, Vacher G, Gaudin K, Mosnier J, Pradines B, Barthelemy P, Grislain L, Millet P. Nucleoside-lipid-based nanocarriers for methylene blue delivery: potential application as anti-malarial drug. RSC Adv 2019; 9:18844-18852. [PMID: 35516884 PMCID: PMC9064961 DOI: 10.1039/c9ra02576f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Abstract
Nucleolipid supramolecular assemblies are promising Drug Delivery Systems (DDS), particularly for nucleic acids. Studies based on negatively and positively charged nucleolipids (diC16dT and DOTAU, respectively) demonstrated appropriate stability, safety, and purity profile to be used as DDS. Methylene Blue (MB) remains a good antimalarial drug candidate, and could be considered for the treatment of uncomplicated or severe malaria. However, the development of MB as an antimalarial drug has been hampered by a high dose regimen required to obtain a proper effect, and a short plasmatic half life. We demonstrated that nanoparticles formed by nucleolipid encapsulation of MB using diC16dT and DOTAU (MB-NPs) is an interesting approach to improve drug stability and delivery. MB-NPs displayed sizes, PDI, zeta values, and colloidal stability allowing a possible use in intravenous formulations. Nanoparticles partially protected MB from oxido-reduction reactions, thus preventing early degradation during storage, and allowing prolongated pharmacokinetic in plasma. MB-NPs' efficacy, tested in vitro on sensitive or multidrug resistant strains of Plasmodium falciparum, was statistically similar to MB alone, with a slightly lower IC50. This nucleolipid-based approach to protect drugs against degradation represents a new alternative tool to be considered for malaria treatment.
Collapse
Affiliation(s)
- Koffi Kowouvi
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Bruno Alies
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Mathieu Gendrot
- Unité de Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille France
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME Marseille France
- IHU Méditerranée Infection Marseille France
| | - Alexandra Gaubert
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Gaelle Vacher
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Karen Gaudin
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Joel Mosnier
- Unité de Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille France
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME Marseille France
- IHU Méditerranée Infection Marseille France
- Centre National de Référence du Paludisme Marseille France
| | - Bruno Pradines
- Unité de Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille France
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME Marseille France
- IHU Méditerranée Infection Marseille France
- Centre National de Référence du Paludisme Marseille France
| | - Philippe Barthelemy
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Luc Grislain
- Univ. Bordeaux 146 rue Léo Saignat F-33076 Bordeaux France
| | - Pascal Millet
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| |
Collapse
|
4
|
Rodríguez YV, Arias MH, García JO, Deharo E, Garavito G. Pharmacological activity of Curarea toxicofera in combination with classical antimalarial treatments. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:288-294. [PMID: 29626674 DOI: 10.1016/j.jep.2018.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the Leticia-Amazonas area, Uitoto indigenous people use a preparation of Curarea toxicofera (Wedd) Barneby & Krukoff (Menispermaceae) alone or combined with prescribed medications to prevent and treat malaria. AIM OF STUDY To determine the in vitro and in vivo antiplasmodial activity of traditional preparations of Curarea toxicofera alone and in combination with classical antimalarials. MATERIAL AND METHODS The traditional preparation was evaluated in vitro against P. falciparum FCR3 CQ resistant strain, alone and combined. The preparation was further administered orally alone or combined with chloroquine and artesunate in mice infected with Plasmodium berghei ANKA strain on the four-day antimalarial test model. RESULTS The herbal remedy used alone was able to significantly decrease the parasitemia both in vitro (IC50 7.3 µg/ml) and in vivo (ED50 328 mg/Kg) but it was less active than chloroquine (IC50 0.29 µg/ml in vitro and ED50 2.3 mg/Kg/day in vivo), and than artesunate (IC50 0.002 µg/ml and ED50 3.7 mg/Kg/day). Interestingly it presented synergism with chloroquine in vitro (Combination Index: 0.39) and in vivo; and was additive with artesunate in vitro (Combination Index: 0.94) and in vivo. CONCLUSION The traditional preparation showed potential as an antimalarial and, when used in combination, does not negatively affect the efficacy of the drugs evaluated. Pre-clinical studies should be conducted with a standardized preparation to confirm its efficacy and safety alone and in combination with chloroquine and artesunate.
Collapse
Affiliation(s)
- Yinneth Victoria Rodríguez
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, FaMeTra research group (traditional and Popular medicine Pharmacology), Carrera 30 45-03, Bogotá D.C. 111311, Colombia
| | - Maria Helena Arias
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, FaMeTra research group (traditional and Popular medicine Pharmacology), Carrera 30 45-03, Bogotá D.C. 111311, Colombia
| | - José Octavio García
- Huitoto representative, Km 7 Via Leticia Tarapaca, Comunidad Ciudad Hitoma, Leticia, Colombia
| | - Eric Deharo
- Institut de Recherche pour le développement, IRD Représentation Ban Naxay, Saysettha District. P.O. Box 5992, Vientiane, Lao PDR
| | - Giovanny Garavito
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, FaMeTra research group (traditional and Popular medicine Pharmacology), Carrera 30 45-03, Bogotá D.C. 111311, Colombia.
| |
Collapse
|
5
|
Lu G, Nagbanshi M, Goldau N, Mendes Jorge M, Meissner P, Jahn A, Mockenhaupt FP, Müller O. Efficacy and safety of methylene blue in the treatment of malaria: a systematic review. BMC Med 2018; 16:59. [PMID: 29690878 PMCID: PMC5979000 DOI: 10.1186/s12916-018-1045-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/26/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Methylene blue (MB) was the first synthetic antimalarial to be discovered and was used during the late 19th and early 20th centuries against all types of malaria. MB has been shown to be effective in inhibiting Plasmodium falciparum in culture, in the mouse model and in rhesus monkeys. MB was also shown to have a potent ex vivo activity against drug-resistant isolates of P. falciparum and P. vivax. In preclinical studies, MB acted synergistically with artemisinin derivates and demonstrated a strong effect on gametocyte reduction in P. falciparum. MB has, thus, been considered a potentially useful partner drug for artemisinin-based combination therapy (ACT), particularly when elimination is the final goal. The aim of this study was to review the scientific literature published until early 2017 to summarise existing knowledge on the efficacy and safety of MB in the treatment of malaria. METHODS This systematic review followed PRISMA guidelines. Studies reporting on the efficacy and safety of MB were systematically searched for in relevant electronic databases according to a pre-designed search strategy. The search (without language restrictions) was limited to studies of humans published until February 2017. RESULTS Out of 474 studies retrieved, a total of 22 articles reporting on 21 studies were eligible for analysis. The 21 included studies that reported data on 1504 malaria patients (2/3 were children). Older studies were case series and reports on MB monotherapy while recent studies were mainly controlled trials of combination regimens. MB was consistently shown to be highly effective in all endemic areas and demonstrated a strong effect on P. falciparum gametocyte reduction and synergy with ACT. MB treatment was associated with mild urogenital and gastrointestinal symptoms as well as blue coloration of urine. In G6PD-deficient African individuals, MB caused a slight but clinically non-significant haemoglobin reduction. CONCLUSIONS More studies are needed to define the effects of MB in P. falciparum malaria in areas outside Africa and against P. vivax malaria. Adding MB to ACT could be a valuable approach for the prevention of resistance development and for transmission reduction in control and elimination programs. SYSTEMATIC REVIEW REGISTRATION This study is registered at PROSPERO (registration number CRD42017062349 ).
Collapse
Affiliation(s)
- G Lu
- Medical College of Yangzhou University, Yangzhou University, Yangzhou, 225001, China.,Institute of Public Health, Medical School, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - M Nagbanshi
- Institute of Public Health, Medical School, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - N Goldau
- Institute of Public Health, Medical School, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - M Mendes Jorge
- Institute of Public Health, Medical School, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - P Meissner
- Department of Paediatric and Adolescent Medicine, Ulm University, Ulm, Germany
| | - A Jahn
- Institute of Public Health, Medical School, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - F P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - O Müller
- Institute of Public Health, Medical School, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Calderón M, Weitzel T, Rodriguez MF, Ciapponi A. Methylene blue for treating malaria. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2017. [DOI: 10.1002/14651858.cd012837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- María Calderón
- Institute for Clinical Effectiveness and Health Policy (IECS); Department of Health Technology Assessment, Systematic Reviews and Economic Evaluation; Dr. Emilio Ravignani 2024 Capital Federal Buenos Aires Argentina C1414CPV
| | - Thomas Weitzel
- Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo; Clinical Laboratory; Santiago Chile
| | - Maria F Rodriguez
- University of Chile School of Medicine; Infectious Diseases Department; Santiago Chile
| | - Agustín Ciapponi
- Institute for Clinical Effectiveness and Health Policy (IECS-CONICET); Argentine Cochrane Centre; Dr. Emilio Ravignani 2024 Buenos Aires Capital Federal Argentina C1414CPV
| |
Collapse
|
7
|
Fall B, Madamet M, Diawara S, Briolant S, Wade KA, Lo G, Nakoulima A, Fall M, Bercion R, Kounta MB, Amalvict R, Benoit N, Gueye MW, Diatta B, Wade B, Pradines B. Ex vivo activity of Proveblue, a methylene blue, against field isolates of Plasmodium falciparum in Dakar, Senegal from 2013-2015. Int J Antimicrob Agents 2017; 50:155-158. [PMID: 28689867 DOI: 10.1016/j.ijantimicag.2017.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 11/25/2022]
Abstract
Resistance to most antimalarial drugs has spread from Southeast Asia to Africa. Accordingly, new therapies to use with artemisinin-based combination therapy (triple ACT) are urgently needed. Proveblue, a methylene blue preparation, was found to exhibit antimalarial activity against Plasmodium falciparum strains in vitro. Proveblue has synergistic effects when used in combination with dihydroartemisinin, and has been shown to significantly reduce or prevent cerebral malaria in mice. The objectives of the current study were to evaluate the in vitro baseline susceptibility of clinical field isolates to Proveblue, compare its activity with that of other standard antimalarial drugs and define the patterns of cross-susceptibility between Proveblue and conventional antimalarial drugs. The Proveblue IC50 of 76 P. falciparum isolates ranged from 0.5 nM to 135.1 nM, with a mean of 8.1 nM [95% confidence interval, 6.4-10.3]. Proveblue was found to be more active against P. falciparum parasites than chloroquine, quinine, monodesethylamodiaquine, mefloquine, piperaquine, doxycycline (P <0.001) and lumefantrine (P = 0.014). Proveblue was as active as pyronaridine (P = 0.927), but was less active than dihydroartemisinin and artesunate (P <0.001). The only significant cross-susceptibilities found were between Proveblue and dihydroartemisinin (r2 = 0.195, P = 0.0001), artesunate (r2 = 0.187, P = 0.0002) and piperaquine (r2 = 0.063, P = 0.029). The present study clearly demonstrates the potential of Proveblue as an effective therapeutic agent against P. falciparum. In this context, the use of Proveblue as part of the triple ACT treatment for multidrug-resistant malaria warrants further investigation.
Collapse
Affiliation(s)
- Bécaye Fall
- Laboratoire d'étude de la chimiosensibilité du paludisme, Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Marylin Madamet
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut hospitalo-universitaire en infectiologie, Marseille, France; Centre national de référence du Paludisme, Marseille, France
| | - Silman Diawara
- Laboratoire d'étude de la chimiosensibilité du paludisme, Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Sébastien Briolant
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut hospitalo-universitaire en infectiologie, Marseille, France; Direction Interarmées du Service de Santé, Cayenne, Guyane, France; Laboratoire de Parasitologie, Institut Pasteur de la Guyane, Cayenne, Guyane, France
| | | | - Gora Lo
- Centre Medical Interarmées, Dakar, Senegal; Laboratoire de Bactériologie Virologie, Université Cheikh Anta Diop, CHU Le Dantec, Dakar, Senegal
| | | | - Mansour Fall
- Service de Réanimation Médicale, Hôpital Principal de Dakar, Dakar, Senegal
| | - Raymond Bercion
- Laboratoire d'Analyses Médicales, Institut Pasteur, Dakar, Senegal
| | - Mame Bou Kounta
- Service des Urgences, Hôpital Principal de Dakar, Dakar, Senegal
| | - Rémi Amalvict
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut hospitalo-universitaire en infectiologie, Marseille, France; Centre national de référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut hospitalo-universitaire en infectiologie, Marseille, France; Centre national de référence du Paludisme, Marseille, France
| | - Mamadou Wague Gueye
- Laboratoire d'étude de la chimiosensibilité du paludisme, Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal
| | - Bakary Diatta
- Service de Réanimation Médicale, Hôpital Principal de Dakar, Dakar, Senegal; Chefferie, Hôpital Principal de Dakar, Dakar, Senegal
| | - Boubacar Wade
- Chefferie, Hôpital Principal de Dakar, Dakar, Senegal
| | - Bruno Pradines
- Laboratoire d'étude de la chimiosensibilité du paludisme, Fédération des laboratoires, Hôpital Principal de Dakar, Dakar, Senegal; Unité de Parasitologie et d'Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM 63, CNRS 7278, IRD 198, Inserm 1095, Institut hospitalo-universitaire en infectiologie, Marseille, France; Centre national de référence du Paludisme, Marseille, France.
| |
Collapse
|
8
|
Evaluation of methylene blue, pyrimethamine and its combination on an in vitro Neospora caninum model. Parasitology 2017; 144:827-833. [PMID: 28073383 DOI: 10.1017/s0031182016002584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neospora caninum is an apicomplexan parasite strongly related to reproductive problems in cattle. The neosporosis control is not well established and several fronts are under development, predominantly based on immune protection, immunomodulation and chemotherapy. The use of anti-malarial drugs as therapeutic sources has, in theory, considerable potential for any apicomplexan. Drugs such as methylene blue (MB) and pyrimethamine (Pyr) represent therapeutic options for malaria; thus, their use for neosporosis should be assessed. In this work, we tested the effects of MB and Pyr on N. caninum proliferation and clearance, using LacZ-tagged tachyzoites. The drugs inhibited at nanomolar dosages and its combination demonstrated an antagonistic interaction in proliferation assays, according to the Chou and Talalay method for drug combination index. However, the drug combination significantly improved the parasite in vitro clearance. The repositioning of well-established drugs opens a short-term strategy to obtain low-cost therapeutics approaches against neosporosis.
Collapse
|
9
|
Cohen A, Suzanne P, Lancelot JC, Verhaeghe P, Lesnard A, Basmaciyan L, Hutter S, Laget M, Dumètre A, Paloque L, Deharo E, Crozet MD, Rathelot P, Dallemagne P, Lorthiois A, Sibley CH, Vanelle P, Valentin A, Mazier D, Rault S, Azas N. Discovery of new thienopyrimidinone derivatives displaying antimalarial properties toward both erythrocytic and hepatic stages of Plasmodium. Eur J Med Chem 2015; 95:16-28. [DOI: 10.1016/j.ejmech.2015.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/24/2022]
|
10
|
In vivo antimalarial activity and mechanisms of action of 4-nerolidylcatechol derivatives. Antimicrob Agents Chemother 2015; 59:3271-80. [PMID: 25801563 DOI: 10.1128/aac.05012-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/15/2015] [Indexed: 12/30/2022] Open
Abstract
4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated from Piper peltatum roots. O-Acylation or O-alkylation of compound 1 provides derivatives exhibiting improved stability and significant in vitro antiplasmodial activity. The aim of this work was to study the in vitro inhibition of hemozoin formation, inhibition of isoprenoid biosynthesis in Plasmodium falciparum cultures, and in vivo antimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibited in vitro hemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-(3)H]geranylgeranyl pyrophosphate, diester 2: significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone 8, menaquinone 4, and dolichol 12 in cultures of P. falciparum 3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol 12. P. falciparum in vitro protein synthesis was not affected by compounds 2 or 3. At oral doses of 50 mg per kg of body weight per day, compound 2 suppressed Plasmodium berghei NK65 in infected BALB/c mice by 44%. This in vivo result for derivative 2 represents marked improvement over that obtained previously for natural product 1. Compound 2 was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasma in vitro. However, it was detected after in vitro contact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential.
Collapse
|
11
|
Pereira TB, Rocha e Silva LF, Amorim RCN, Melo MRS, Zacardi de Souza RC, Eberlin MN, Lima ES, Vasconcellos MC, Pohlit AM. In vitro and in vivo anti-malarial activity of limonoids isolated from the residual seed biomass from Carapa guianensis (andiroba) oil production. Malar J 2014; 13:317. [PMID: 25124944 PMCID: PMC4138406 DOI: 10.1186/1475-2875-13-317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/19/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Carapa guianensis is a cultivable tree used by traditional health practitioners in the Amazon region to treat several diseases and particularly symptoms related to malaria. Abundant residual pressed seed material (RPSM) results as a by-product of carapa or andiroba oil production. The objective of this study was to evaluate the in vitro and in vivo anti-malarial activity and cytotoxicity of limonoids isolated from C. guaianensis RPSM. METHODS 6α-acetoxyepoxyazadiradione (1), andirobin (2), 6α-acetoxygedunin (3) and 7-deacetoxy-7-oxogedunin (4) (all isolated from RPSM using extraction and chromatography techniques) and 6α-hydroxy-deacetylgedunin (5) (prepared from 3) were evaluated using the micro test on the multi-drug-resistant Plasmodium falciparum K1 strain. The efficacy of limonoids 3 and 4 was then evaluated orally and subcutaneously in BALB/c mice infected with chloroquine-sensitive Plasmodium berghei NK65 strain in the 4-day suppressive test. RESULTS In vitro, limonoids 1-5 exhibited median inhibition concentrations (IC50) of 20.7-5.0 μM, respectively. In general, these limonoids were not toxic to normal cells (MRC-5 human fibroblasts). In vivo, 3 was more active than 4. At oral doses of 50 and 100 mg/kg/day, 3 suppressed parasitaemia versus untreated controls by 40 and 66%, respectively, evidencing a clear dose-response. CONCLUSION 6α-acetoxygedunin is an abundant natural product present in C. guianensis residual seed materials that exhibits significant in vivo anti-malarial properties.
Collapse
Affiliation(s)
- Tiago B Pereira
- />Laboratório de Princípios Ativos da Amazônia, Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, 69067-375 Manaus, Amazonas Brasil
- />Programa de Pós-graduação em Química, Universidade Federal do Amazonas, Avenida General Rodrigo Octávio, 6200, Coroado I, Campus Universitário, 69077-000 Manaus, Amazonas Brasil
| | - Luiz F Rocha e Silva
- />Laboratório de Princípios Ativos da Amazônia, Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, 69067-375 Manaus, Amazonas Brasil
- />Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Avenida General Rodrigo Octávio, 3000, Coroado I, Campus Universitário, 69077-000 Manaus, Amazonas Brasil
| | - Rodrigo CN Amorim
- />Laboratório de Princípios Ativos da Amazônia, Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, 69067-375 Manaus, Amazonas Brasil
| | - Márcia RS Melo
- />Escola Superior de Ciências da Saúde, Universidade Estadual do Amazonas, Avenida Carvalho Leal, 1777, Cachoeirinha, 69065-001 Manaus, Amazonas Brasil
| | - Rita C Zacardi de Souza
- />Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13083-970 Campinas, São Paulo Brasil
| | - Marcos N Eberlin
- />Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13083-970 Campinas, São Paulo Brasil
| | - Emerson S Lima
- />Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Rua Comendador Alexandre Amorim, 330, Aparecida, 69103-00 Manaus, Amazonas Brasil
| | - Marne C Vasconcellos
- />Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, Rua Comendador Alexandre Amorim, 330, Aparecida, 69103-00 Manaus, Amazonas Brasil
| | - Adrian M Pohlit
- />Laboratório de Princípios Ativos da Amazônia, Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, 69067-375 Manaus, Amazonas Brasil
| |
Collapse
|
12
|
Dormoi J, Briolant S, Desgrouas C, Pradines B. Impact of methylene blue and atorvastatin combination therapy on the apparition of cerebral malaria in a murine model. Malar J 2013; 12:127. [PMID: 23587099 PMCID: PMC3637457 DOI: 10.1186/1475-2875-12-127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022] Open
Abstract
Background Proveblue®, a methylene blue dye that complies with European Pharmacopoeia and contains limited organic impurities and heavy metals of recognized toxicity, showed in vitro synergy against Plasmodium falciparum when combined with atorvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase. The objective of this study was to evaluate the in vivo efficacy of Proveblue® when combined with atorvastatin in a murine model of experimental cerebral malaria. Methods Forty female C57Bl6/N mice were divided into four groups (control, atorvastatin 40 mg/kg for seven days, Proveblue® 10 mg/kg for five days and atorvastatin combined with Proveblue®), infected with Plasmodium berghei ANKA parasites by intraperitoneal inoculation and observed for 45 days. Results Treatment with atorvastatin alone did not demonstrate an effect significantly different from no treatment (p = 0.0573). All the mice treated by atorvastatin alone died. Treatment with Proveblue® or a combination of Proveblue® and atorvastatin was significantly increased survival of cerebral malaria (p = 0.0011 and 0.0002, respectively). Although there was only one death in the atorvastatin and Proveblue® combination treatment group (10%) versus two deaths (22%) with Proveblue® treatment, the effect on cerebral malaria was not significant (p = 0.283). Conclusions The present work demonstrated, for the first time, the high efficacy of Proveblue® in preventing cerebral malaria. Atorvastatin alone or in combination appears to possess limited use for preventing cerebral malaria. Combination of atorvastatin with lower doses of Proveblue® (<10 mg/kg/day) should be evaluated to show potential synergistic effects in cerebral malaria prevention.
Collapse
|