1
|
Abstract
Supplemental Digital Content is Available in the Text. The approved antiepileptic drug primidone potently inhibits TRPM3 channels and thereby exerts analgesic properties to chemical pain and thermal hyperalgesia in mice. The melastatin-related transient receptor potential (TRP) channel TRPM3 is a nonselective cation channel expressed in nociceptive neurons and activated by heat. Because TRPM3-deficient mice show inflammatory thermal hyperalgesia, pharmacological inhibition of TRPM3 may exert antinociceptive properties. Fluorometric Ca2+ influx assays and a compound library containing approved or clinically tested drugs were used to identify TRPM3 inhibitors. Biophysical properties of channel inhibition were assessed using electrophysiological methods. The nonsteroidal anti-inflammatory drug diclofenac, the tetracyclic antidepressant maprotiline, and the anticonvulsant primidone were identified as highly efficient TRPM3 blockers with half-maximal inhibition at 0.6 to 6 μM and marked specificity for TRPM3. Most prominently, primidone was biologically active to suppress TRPM3 activation by pregnenolone sulfate (PregS) and heat at concentrations markedly lower than plasma concentrations commonly used in antiepileptic therapy. Primidone blocked PregS-induced Ca2+i influx through TRPM3 by allosteric modulation and reversibly inhibited atypical inwardly rectifying TRPM3 currents induced by coapplication of PregS and clotrimazole. In vivo, analgesic effects of low doses of primidone were demonstrated in mice, applying PregS- and heat-induced pain models, including inflammatory hyperalgesia. Thus, applying the approved drug at concentrations that are lower than those needed to induce anticonvulsive effects offers a shortcut for studying physiological and pathophysiological roles of TRPM3 in vivo.
Collapse
|
2
|
Vada S, Goli D, Sharma UR, Bose A, Mandal S. Thorough investigation of epileptic behavioral characterization of caffeine in adult zebrafishes in correlation with drug brain concentration. Acta Ethol 2017. [DOI: 10.1007/s10211-017-0250-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Geng KW, He T, Wang RR, Li CL, Luo WJ, Wu FF, Wang Y, Li Z, Lu YF, Guan SM, Chen J. Ethanol Increases Mechanical Pain Sensitivity in Rats via Activation of GABAA Receptors in Medial Prefrontal Cortex. Neurosci Bull 2016; 32:433-44. [PMID: 27628528 DOI: 10.1007/s12264-016-0063-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022] Open
Abstract
Ethanol is widely known for its ability to cause dramatic changes in emotion, social cognition, and behavior following systemic administration in humans. Human neuroimaging studies suggest that alcohol dependence and chronic pain may share common mechanisms through amygdala-medial prefrontal cortex (mPFC) interactions. However, whether acute administration of ethanol in the mPFC can modulate pain perception is unknown. Here we showed that bilateral microinjections of ethanol into the prelimbic and infralimbic areas of the mPFC lowered the bilateral mechanical pain threshold for 48 h without influencing thermal pain sensitivity in adult rats. However, bilateral microinjections of artificial cerebrospinal fluid into the mPFC or bilateral microinjections of ethanol into the dorsolateral PFC (also termed as motor cortex area 1 in Paxinos and Watson's atlas of The Rat Brain. Elsevier Academic Press, Amsterdam, 2005) failed to do so, suggesting regional selectivity of the effects of ethanol. Moreover, bilateral microinjections of ethanol did not change the expression of either pro-apoptotic (caspase-3 and Bax) or anti-apoptotic (Bcl-2) proteins, suggesting that the dose was safe and validating the method used in the current study. To determine whether γ-aminobutyric acid A (GABAA) receptors are involved in mediating the ethanol effects, muscimol, a selective GABAA receptor agonist, or bicuculline, a selective GABAA receptor antagonist, was administered alone or co-administered with ethanol through the same route into the bilateral mPFC. The results showed that muscimol mimicked the effects of ethanol while bicuculline completely reversed the effects of ethanol and muscimol. In conclusion, ethanol increases mechanical pain sensitivity through activation of GABAA receptors in the mPFC of rats.
Collapse
Affiliation(s)
- Kai-Wen Geng
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Ting He
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Wen-Jun Luo
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Fang-Fang Wu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yun-Fei Lu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.
- Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
4
|
Fan HC, Lee HS, Chang KP, Lee YY, Lai HC, Hung PL, Lee HF, Chi CS. The Impact of Anti-Epileptic Drugs on Growth and Bone Metabolism. Int J Mol Sci 2016; 17:E1242. [PMID: 27490534 PMCID: PMC5000640 DOI: 10.3390/ijms17081242] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disorder worldwide and anti-epileptic drugs (AEDs) are always the first choice for treatment. However, more than 50% of patients with epilepsy who take AEDs have reported bone abnormalities. Cytochrome P450 (CYP450) isoenzymes are induced by AEDs, especially the classical AEDs, such as benzodiazepines (BZDs), carbamazepine (CBZ), phenytoin (PT), phenobarbital (PB), and valproic acid (VPA). The induction of CYP450 isoenzymes may cause vitamin D deficiency, hypocalcemia, increased fracture risks, and altered bone turnover, leading to impaired bone mineral density (BMD). Newer AEDs, such as levetiracetam (LEV), oxcarbazepine (OXC), lamotrigine (LTG), topiramate (TPM), gabapentin (GP), and vigabatrin (VB) have broader spectra, and are safer and better tolerated than the classical AEDs. The effects of AEDs on bone health are controversial. This review focuses on the impact of AEDs on growth and bone metabolism and emphasizes the need for caution and timely withdrawal of these medications to avoid serious disabilities.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| | - Herng-Shen Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, 813 Kaohsiung, Taiwan.
| | - Kai-Ping Chang
- Department of Pediatrics, Taipei Veterans General Hospital, 112 Taipei, Taiwan.
| | - Yi-Yen Lee
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 112 Taipei, Taiwan.
- Faculty of Medicine, National Yang-Ming University, 112 Taipei, Taiwan.
| | - Hsin-Chuan Lai
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatrics, Kaohsiung Chang Gung Medical Center, 833 Kaohsiung, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, 407 Taichung, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Wuchi, 435 Taichung, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, 356 Miaoli, Taiwan.
| |
Collapse
|
5
|
McCarson KE, Enna SJ. GABA pharmacology: the search for analgesics. Neurochem Res 2014; 39:1948-63. [PMID: 24532294 DOI: 10.1007/s11064-014-1254-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
Decades of research have been devoted to defining the role of GABAergic transmission in nociceptive processing. Much of this work was performed using rigid, orthosteric GABA analogs created by Povl Krogsgaard-Larsen and his associates. A relationship between GABA and pain is suggested by the anatomical distribution of GABA receptors and the ability of some GABA agonists to alter nociceptive responsiveness. Outlined in this report are data supporting this proposition, with particular emphasis on the anatomical localization and function of GABA-containing neurons and the molecular and pharmacological properties of GABAA and GABAB receptor subtypes. Reference is made to changes in overall GABAergic tone, GABA receptor expression and activity as a function of the duration and intensity of a painful stimulus or exposure to GABAergic agents. Evidence is presented that the plasticity of this receptor system may be responsible for the variability in the antinociceptive effectiveness of compounds that influence GABA transmission. These findings demonstrate that at least some types of persistent pain are associated with a regionally selective decline in GABAergic tone, highlighting the need for agents that enhance GABA activity in the affected regions without compromising GABA function over the long-term. As subtype selective positive allosteric modulators may accomplish these goals, such compounds might represent a new class of analgesic drugs.
Collapse
Affiliation(s)
- Kenneth E McCarson
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 1018, Kansas City, KS, 66160, USA
| | | |
Collapse
|
6
|
Henkin RI, Potolicchio SJ, Levy LM. Olfactory Hallucinations without Clinical Motor Activity: A Comparison of Unirhinal with Birhinal Phantosmia. Brain Sci 2013; 3:1483-553. [PMID: 24961619 PMCID: PMC4061890 DOI: 10.3390/brainsci3041483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 01/14/2023] Open
Abstract
Olfactory hallucinations without subsequent myoclonic activity have not been well characterized or understood. Herein we describe, in a retrospective study, two major forms of olfactory hallucinations labeled phantosmias: one, unirhinal, the other, birhinal. To describe these disorders we performed several procedures to elucidate similarities and differences between these processes. From 1272, patients evaluated for taste and smell dysfunction at The Taste and Smell Clinic, Washington, DC with clinical history, neurological and otolaryngological examinations, evaluations of taste and smell function, EEG and neuroradiological studies 40 exhibited cyclic unirhinal phantosmia (CUP) usually without hyposmia whereas 88 exhibited non-cyclic birhinal phantosmia with associated symptomology (BPAS) with hyposmia. Patients with CUP developed phantosmia spontaneously or after laughing, coughing or shouting initially with spontaneous inhibition and subsequently with Valsalva maneuvers, sleep or nasal water inhalation; they had frequent EEG changes usually ipsilateral sharp waves. Patients with BPAS developed phantosmia secondary to several clinical events usually after hyposmia onset with few EEG changes; their phantosmia could not be initiated or inhibited by any physiological maneuver. CUP is uncommonly encountered and represents a newly defined clinical syndrome. BPAS is commonly encountered, has been observed previously but has not been clearly defined. Mechanisms responsible for phantosmia in each group were related to decreased gamma-aminobutyric acid (GABA) activity in specific brain regions. Treatment which activated brain GABA inhibited phantosmia in both groups.
Collapse
Affiliation(s)
- Robert I Henkin
- Center for Molecular Nutrition and Sensory Disorders, The Taste and Smell Clinic, 5125 MacArthur Blvd, NW, Suite 20, Washington, DC 20016, USA.
| | - Samuel J Potolicchio
- Department of Neurology, The George Washington University Medical Center, 2150 Pennsylvania Avenue, NW, 7th Floor, Washington, DC 20037, USA.
| | - Lucien M Levy
- Department of Radiology, The George Washington University Medical Center, 900 23rd Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
7
|
Abstract
BACKGROUND Sedation or anesthesia is used to facilitate many cases of an estimated 45 million diagnostic and therapeutic medical procedures in the United States. Preclinical studies have called attention to the possibility that sedative-hypnotic drugs can increase pain perception, but whether this observation holds true in humans and whether pain-modulating effects are agent-specific or characteristic of IV sedation in general remain unclear. METHODS To study this important clinical question, the authors recruited 86 healthy volunteers and randomly assigned them to receive one of three sedative drugs: midazolam, propofol, or dexmedetomidine. The authors asked participants to rate their pain in response to four experimental pain tasks (i.e., cold, heat, ischemic, or electrical pain) before and during moderate sedation. RESULTS Midazolam increased cold, heat, and electrical pain perception significantly (10-point pain rating scale change, 0.82 ± 0.29, mean ± SEM). Propofol reduced ischemic pain and dexmedetomidine reduced both cold and ischemic pain significantly (-1.58 ± 0.28, mean ± SEM). The authors observed a gender-by-race interaction for dexmedetomidine. In addition to these drug-specific effects, the authors observed gender effects on pain perception; female subjects rated identical experimental pain stimuli higher than male subjects. The authors also noted race-drug interaction effects for dexmedetomidine, with higher doses of drug needed to sedate Caucasians compared with African Americans. CONCLUSIONS The results of the authors' study call attention to the fact that IV sedatives may increase pain perception. The effect of sedation on pain perception is agent- and pain type-specific. Knowledge of these effects provides a rational basis for analgesia and sedation to facilitate medical procedures.
Collapse
|
8
|
Kilts JD, Tupler LA, Keefe FJ, Payne VM, Hamer RM, Naylor JC, Calnaido RP, Morey RA, Strauss JL, Parke G, Massing MW, Youssef NA, Shampine LJ, Marx CE. Neurosteroids and self-reported pain in veterans who served in the U.S. Military after September 11, 2001. PAIN MEDICINE 2010; 11:1469-76. [PMID: 20735755 DOI: 10.1111/j.1526-4637.2010.00927.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Nearly half of Operation Enduring Freedom/Operation Iraqi Freedom veterans experience continued pain post-deployment. Several investigations report analgesic effects of allopregnanolone and other neurosteroids in animal models, but few data are currently available focusing on neurosteroids in clinical populations. Allopregnanolone positively modulates GABA(A) receptors and demonstrates pronounced analgesic and anxiolytic effects in rodents, yet studies examining the relationship between pain and allopregnanolone in humans are limited. We thus hypothesized that endogenous allopregnanolone and other neurosteroid levels may be negatively correlated with self-reported pain symptoms in humans. DESIGN We determined serum neurosteroid levels by gas chromatography/mass spectrometry (allopregnanolone, pregnenolone) or radioimmunoassay (dehydroepiandrosterone [DHEA], progesterone, DHEA sulfate [DHEAS]) in 90 male veterans who served in the U.S. military after September 11, 2001. Self-reported pain symptoms were assessed in four areas (low back pain, chest pain, muscle soreness, headache). Stepwise linear regression analyses were conducted to investigate the relationship between pain assessments and neurosteroids, with the inclusion of smoking, alcohol use, age, and history of traumatic brain injury as covariates. SETTING Durham VA Medical Center. RESULTS Allopregnanolone levels were inversely associated with low back pain (P=0.044) and chest pain (P=0.013), and DHEA levels were inversely associated with muscle soreness (P=0.024). DHEAS levels were positively associated with chest pain (P=0.001). Additionally, there was a positive association between traumatic brain injury and muscle soreness (P=0.002). CONCLUSIONS Neurosteroids may be relevant to the pathophysiology of self-reported pain symptoms in this veteran cohort, and could represent future pharmacological targets for pain disorders.
Collapse
Affiliation(s)
- Jason D Kilts
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bishop T, Marchand F, Young AR, Lewin GR, McMahon SB. Ultraviolet-B-induced mechanical hyperalgesia: A role for peripheral sensitisation. Pain 2010; 150:141-152. [DOI: 10.1016/j.pain.2010.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 03/29/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
|
10
|
Washburn SN, Patton BC, Ferguson AR, Hudson KL, Grau JW. Exposure to intermittent nociceptive stimulation under pentobarbital anesthesia disrupts spinal cord function in rats. Psychopharmacology (Berl) 2007; 192:243-52. [PMID: 17297638 PMCID: PMC3222461 DOI: 10.1007/s00213-007-0707-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Spinal cord plasticity can be assessed in spinal rats using an instrumental learning paradigm in which subjects learn an instrumental response, hindlimb flexion, to minimize shock exposure. Prior exposure to uncontrollable intermittent stimulation blocks learning in spinal rats but has no effect if given before spinal transection, suggesting that supraspinal systems modulate nociceptive input to the spinal cord, rendering it less susceptible to the detrimental consequences of uncontrollable stimulation. OBJECTIVE The present study examines whether disrupting brain function with pentobarbital blocks descending inhibitory systems that normally modulate nociceptive input, making the spinal cord more sensitive to the adverse effect of uncontrollable intermittent stimulation. MATERIALS AND METHODS Male Sprague-Dawley rats received uncontrollable intermittent stimulation during pentobarbital anesthesia after (experiment 1) or before (experiment 2) spinal cord transection. They were then tested for instrumental learning at a later time point. Experiment 3 examined whether these manipulations affected nociceptive (thermal) thresholds. RESULTS Experiment 1 showed that pentobarbital had no effect on the induction of the learning deficit after spinal cord transection. Experiment 2 showed that intact rats anesthetized during uncontrollable intermittent stimulation failed to learn when later transected and tested for instrumental learning. Experiment 3 found that uncontrollable intermittent stimulation induced an antinociception in intact subjects that was blocked by pentobarbital. CONCLUSIONS The results suggest a surgical dose of pentobarbital (50 mg/kg) suppresses supraspinal (experiment 2) but not spinal (experiment 1) systems that modulate nociceptive input to the spinal cord by blocking the antinociception that is induced by this input (experiment 3).
Collapse
Affiliation(s)
- Stephanie N Washburn
- Psychology Department, Texas A&M University, College Station, TX 77843-4235, USA.
| | | | | | | | | |
Collapse
|
11
|
Mechlin B, Morrow AL, Maixner W, Girdler SS. The relationship of allopregnanolone immunoreactivity and HPA-axis measures to experimental pain sensitivity: Evidence for ethnic differences. Pain 2007; 131:142-52. [PMID: 17292548 PMCID: PMC2034286 DOI: 10.1016/j.pain.2006.12.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/29/2006] [Accepted: 12/27/2006] [Indexed: 11/29/2022]
Abstract
In animal models, allopregnanolone (ALLO) negatively modulates the hypothalamic-pituitary-adrenal (HPA) axis and has been shown to exert analgesic effects. The purpose of this study was to assess the relationship between plasma ALLO immunoreactivity (ALLO-ir), HPA-axis measures, and pain sensitivity in humans. Forty-five African Americans (21 men, 24 women) and 39 non-Hispanic Whites (20 men, 19 women) were tested for pain sensitivity to tourniquet ischemia, thermal heat, and cold pressor tests. Plasma ALLO-ir, cortisol, and beta-endorphin concentrations were taken following an extended rest period. Lower concentrations of ALLO-ir were associated with increased pain tolerance to all three pain tests and increased pain threshold to the thermal heat pain task in the non-Hispanic Whites only (rs=-.35 to -.49, ps<.05). Also, only in the non-Hispanic Whites was cortisol associated with thermal heat tolerance (r=+.39, p<.05) and threshold (r=+.50, p<.01) and cold pressor tolerance (r=+.32, p<.05), and were beta-endorphin concentrations associated with cold pressor tolerance (r=+.33, p<.05). Mediational analyses revealed that higher cortisol levels mediated the relationship between lower ALLO-ir and increased thermal heat pain threshold in the non-Hispanic Whites only. These results suggest that lower ALLO-ir concentrations are associated with decreased pain sensitivity in humans, especially in non-Hispanic Whites, and that this relationship may be mediated by HPA-axis function.
Collapse
Affiliation(s)
- Beth Mechlin
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC 27599, USA
- University of North Carolina at Chapel Hill, Department of Psychology, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC 27599, USA
| | - William Maixner
- University of North Carolina at Chapel Hill, Department of Dentistry, Chapel Hill, NC 27599, USA
| | - Susan S. Girdler
- University of North Carolina at Chapel Hill, Department of Psychiatry, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Grau JW, Crown ED, Ferguson AR, Washburn SN, Hook MA, Miranda RC. Instrumental learning within the spinal cord: underlying mechanisms and implications for recovery after injury. ACTA ACUST UNITED AC 2007; 5:191-239. [PMID: 17099112 DOI: 10.1177/1534582306289738] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using spinally transected rats, research has shown that neurons within the L4-S2 spinal cord are sensitive to response-outcome (instrumental) relations. This learning depends on a form of N-methyl-D-aspartate (NMDA)-mediated plasticity. Instrumental training enables subsequent learning, and this effect has been linked to the expression of brain-derived neurotrophic factor. Rats given uncontrollable stimulation later exhibit impaired instrumental learning, and this deficit lasts up to 48 hr. The induction of the deficit can be blocked by prior training with controllable shock, the concurrent presentation of a tonic stimulus that induces antinociception, or pretreatment with an NMDA or gamma-aminobutyric acid-A antagonist. The expression of the deficit depends on a kappa opioid. Uncontrollable stimulation enhances mechanical reactivity (allodynia), and treatments that induce allodynia (e.g., inflammation) inhibit learning. In intact animals, descending serotonergic neurons exert a protective effect that blocks the adverse consequences of uncontrollable stimulation. Uncontrollable, but not controllable, stimulation impairs the recovery of function after a contusion injury.
Collapse
Affiliation(s)
- James W Grau
- Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
A great deal of effort has been expended in attempting to define the role of GABA in mediating the transmission and perception of pain. Pursuit of this question has been stimulated by the fact that GABAergic neurons are widely distributed throughout the central nervous system, including regions of the spinal cord dorsal horn known to be important for transmitting pain impulses to the brain. In addition, GABA neurons and receptors are found in supraspinal sites known to coordinate the perception and response to painful stimuli and this neurotransmitter system has been shown to regulate control of sensory information processing in the spinal cord. The discovery that GABA receptor agonists display antinociceptive properties in a variety of animal models of pain has provided an impetus for developing such agents for this purpose. It has been shown that GABA receptor agonists, as well as inhibitors of GABA uptake or metabolism, are clinically effective in treating this symptom. However, even with an enhanced understanding of the relationship between GABAergic transmission and pain, it has proven difficult to exploit these findings in designing novel analgesics that can be employed for the routine management of pain. Work in this area has revealed a host of reasons why GABAergic drugs have, to date, been of limited utility in the management of pain. Chief among these are the side effects associated with such agents, in particular sedation. These limitations are likely due to the simultaneous activation of GABA receptors throughout the neuraxis, most of which are not involved in the transmission or perception of pain. This makes it difficult to fully exploit the antinociceptive properties of GABAergic drugs before untoward effects intervene. The discovery of molecularly and pharmacologically distinct GABAA receptors may open the way to developing subtype selective agents that target those receptors most intimately involved in the transmission and perception of pain. The more limited repertoire of GABAB receptor subunits makes it more difficult to develop subtype selective agents for this site. Nonetheless, a GABAB agonist, CGP 35024, has been identified that induces antinociceptive responses at doses well below those that cause sedation (Patel et al., 2001). It has also been reported that, unlike baclofen, tolerance to antinociceptive responses is not observed with CGP 44532, a more potent GABAB receptor agonist (Enna et al., 1998). While the reasons for these differences in responses to members of the same class remain unknown, these findings suggest it may be possible to design a GABAB agonist with a superior clinical profile than existing agents. Besides the challenges associated with identifying subtype selective GABAA and GABAB receptor agonists, the development of GABA analgesics has been hindered by the fact that the responsiveness of these receptor systems appear to vary with the type and duration of pain being treated and the mode of drug administration. Further studies are necessary to more precisely define the types of pain most amenable to treatment with GABAergic drugs. Inasmuch as the antinociceptive responses to these agents in laboratory animals are mediated, at least in part, through activation or inhibition of other neurotransmitter and neuromodulator systems, it is conceivable that GABA agonists will be most efficacious as analgesics when administered in combination with other agents. The results of anatomical, biochemical, molecular, and pharmacological studies support the notion that generalized activation of GABA receptor systems dampens the response to painful stimuli. The data leave little doubt that, under certain circumstances, stimulation of neuroanatomically discreet GABA receptor sites could be of benefit in the management of pain. Continued research in this area is warranted given the limited choices, and clinical difficulties, associated with conventional analgesics.
Collapse
Affiliation(s)
- S J Enna
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
14
|
da Motta PG, Veiga APC, Francischi JN, Tatsuo MAKF. Evidence for participation of GABA(A) receptors in a rat model of secondary hyperalgesia. Eur J Pharmacol 2004; 483:233-9. [PMID: 14729112 DOI: 10.1016/j.ejphar.2003.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the involvement of endogenous gamma-aminobutyric acid (GABA) in the modulation of secondary hyperalgesia induced by intraplantar (i.pl.) injection of 5% formalin in the rat tail-flick test. Intraplantar injection of gabamimetic drugs such as gabapentin (150-600 microg/site) or phenobarbital (20-80 microg/site) reversed secondary hyperalgesia, as measured by an increase in the tail-flick latency, thus displaying a peripheral antihyperalgesic effect. Central inhibition of the secondary hyperalgesia response by gabapentin was obtained following injection of either 200 microg intrathecally (i.t.) or 50 mg intraperitoneally (i.p.). The effects induced by gabamimetics were blocked locally or centrally by prior treatment with the specific GABA(A) receptor antagonist, bicuculline (80 ng/paw or 20 ng, i.t.). These data indicate the participation of endogenous GABA in the modulation of secondary hyperalgesia, through either a peripheral and/or a central action. They also indicate that GABA(A) receptors might be involved since a specific antagonist of these receptors (bicuculline) blocked this response.
Collapse
Affiliation(s)
- Patricia G da Motta
- Departamento de Farmacologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus da Pampulha, Belo Horizonte, Minas Gerais 31270-100, Brazil
| | | | | | | |
Collapse
|
15
|
Barbiturate Hyperalgesia Revisited. Reg Anesth Pain Med 2004. [DOI: 10.1097/00115550-200401000-00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|