1
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
2
|
Nain A, Kumar M, Banerjee M. Oligomers of hepatitis A virus (HAV) capsid protein VP1 generated in a heterologous expression system. Microb Cell Fact 2022; 21:53. [PMID: 35392916 PMCID: PMC8991588 DOI: 10.1186/s12934-022-01780-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Background The quasi-enveloped picornavirus, Hepatitis A Virus (HAV), causes acute hepatitis in humans and infects approximately 1.5 million individuals a year, which does not include the asymptomatically infected population. Several severe outbreaks in developing nations in recent years have highlighted the reduction in HAV endemicity, which increases the risk of infections in the vulnerable population. The current HAV vaccines are based on growing wildtype or attenuated virus in cell culture, which raises the cost of production. For generation of cheaper, subunit vaccines or strategies for antibody-based diagnostics, production of viral structural proteins in recombinant form in easily accessible expression systems is a priority. Results We attempted several strategies for recombinant production of one of the major capsid proteins VP1, from HAV, in the E. coli expression system. Several efforts resulted in the formation of soluble aggregates or tight association of VP1 with the bacterial chaperone GroEL. Correctly folded VP1 was eventually generated in a discrete oligomeric form upon purification of the protein from inclusion bodies and refolding. The oligomers resemble oligomers of capsid proteins from other picornaviruses and appear to have the correct secondary and antigenic surface structure. Conclusions VP1 oligomers generated in the bacterial expression system can be utilized for understanding the molecular pathway of HAV capsid assembly and may also have potential biomedical usages in prevention and diagnostics of HAV infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01780-x.
Collapse
Affiliation(s)
- Anshu Nain
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Mohit Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
3
|
Dewi KS, Chairunnisa S, Swasthikawati S, Yuliawati, Agustiyanti DF, Mustopa AZ, Kusharyoto W, Ningrum RA. Production of codon-optimized Human papillomavirus type 52 L1 virus-like particles in Pichia pastoris BG10 expression system. Prep Biochem Biotechnol 2022; 53:148-156. [PMID: 35302435 DOI: 10.1080/10826068.2022.2048262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cervical cancer caused by Human papillomavirus (HPV) is one of the most common causes of cancer death in women worldwide. Even though the disease can be avoided by immunization, the expensive price of HPV vaccines makes it hard to be accessed by women in middle-low-income countries. Thus, the development of generic HPV vaccines is needed to address inequalities in life-saving access. This study aimed to develop the HPV52 L1 VLP-based recombinant vaccine using Pichia pastoris expression system. The l1 gene was codon-optimized based on P. pastoris codon usage resulting CAI value of 0.804. The gene was inserted into the pD902 plasmid under the regulation of the AOX1 promoter. The linear plasmid was transformed into P. pastoris BG10 genome and screened in YPD medium containing zeocin antibiotic. Colony of transformant that grown on highest zeocin concentration was characterized by genomic PCR and sequencing. The positive clone was selected and expressed using BMGY/BMMY medium induced with various methanol concentrations. The SDS-PAGE and Western blot analyses showed that 55 kDa L1 protein was successfully expressed using an optimum concentration of 1% methanol. The self-assembly of HPV52 L1 protein was also proven using TEM analysis. Moreover, we also analyzed the B-cell epitope of HPV52 L1 protein based on several criteria, including antigenicity, surface accessibility, flexibility, and hydrophilicity. We assumed that epitope 476GLQARPKLKRPASSAPRTSTKKKKV500 could be developed as an epitope-based vaccine with a neutralizing antibody response toward HPV52 infection. Finally, our study provided the alternative for developing low-cost HPV vaccines, either VLP or epitope-based.
Collapse
Affiliation(s)
- Kartika Sari Dewi
- Research Center for Biotechnology, Research Organization of Life Sciences, National Research and Innovation Agency of The Republic of Indonesia (BRIN), Cibinong Sciences Center, Cibinong, Bogor, Indonesia
| | - Sheila Chairunnisa
- Research Center for Biotechnology, Research Organization of Life Sciences, National Research and Innovation Agency of The Republic of Indonesia (BRIN), Cibinong Sciences Center, Cibinong, Bogor, Indonesia
| | - Sri Swasthikawati
- Research Center for Biotechnology, Research Organization of Life Sciences, National Research and Innovation Agency of The Republic of Indonesia (BRIN), Cibinong Sciences Center, Cibinong, Bogor, Indonesia
| | - Yuliawati
- Research Center for Biotechnology, Research Organization of Life Sciences, National Research and Innovation Agency of The Republic of Indonesia (BRIN), Cibinong Sciences Center, Cibinong, Bogor, Indonesia
| | - Dian Fitria Agustiyanti
- Research Center for Biotechnology, Research Organization of Life Sciences, National Research and Innovation Agency of The Republic of Indonesia (BRIN), Cibinong Sciences Center, Cibinong, Bogor, Indonesia
| | - Apon Zainal Mustopa
- Research Center for Biotechnology, Research Organization of Life Sciences, National Research and Innovation Agency of The Republic of Indonesia (BRIN), Cibinong Sciences Center, Cibinong, Bogor, Indonesia
| | - Wien Kusharyoto
- Research Center for Biotechnology, Research Organization of Life Sciences, National Research and Innovation Agency of The Republic of Indonesia (BRIN), Cibinong Sciences Center, Cibinong, Bogor, Indonesia
| | - Ratih Asmana Ningrum
- Research Center for Biotechnology, Research Organization of Life Sciences, National Research and Innovation Agency of The Republic of Indonesia (BRIN), Cibinong Sciences Center, Cibinong, Bogor, Indonesia
| |
Collapse
|
4
|
Eto Y, Saubi N, Ferrer P, Joseph-Munné J. Expression of Chimeric HPV-HIV Protein L1P18 in Pichia pastoris; Purification and Characterization of the Virus-like Particles. Pharmaceutics 2021; 13:pharmaceutics13111967. [PMID: 34834382 PMCID: PMC8622379 DOI: 10.3390/pharmaceutics13111967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, three human papillomavirus (HPV) vaccines are already licensed and all of them are based on virus-like particles (VLPs) of HPV L1 capsid protein but not worldwide accessible. While about 38.0 million people were living with HIV in 2019, only 68% of HIV-infected individuals were accessing antiretroviral therapy as of the end of June 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against those two viruses are immediately needed. Both HPV and HIV are sexually transmitted infections and one of the main access routes is the mucosal genital tract. Thus, the development of a combined vaccine that would protect against HPV and HIV infections is a logical effort in the fight against these two major global pathogens. In this study, a recombinant Pichia pastoris producing chimeric HPV-HIV L1P18 protein intracellularly was constructed. After cell disruption, the supernatant was collected, and the VLPs were purified by a combination of ammonium sulfate precipitation, size exclusion chromatography, ultracentrifugation, and ultrafiltration. At the end of purification process, the chimeric VLPs were recovered with 96% purity and 9.23% overall yield, and the morphology of VLPs were confirmed by transmission electron microscopy. This work contributes towards the development of an alternative platform for production of a bivalent vaccine against HPV and HIV in P. pastoris.
Collapse
Affiliation(s)
- Yoshiki Eto
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Narcís Saubi
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Correspondence:
| |
Collapse
|
5
|
de Sá Magalhães S, Keshavarz-Moore E. Pichia pastoris ( Komagataella phaffii) as a Cost-Effective Tool for Vaccine Production for Low- and Middle-Income Countries (LMICs). Bioengineering (Basel) 2021; 8:119. [PMID: 34562941 PMCID: PMC8468848 DOI: 10.3390/bioengineering8090119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/26/2023] Open
Abstract
Vaccination is of paramount importance to global health. With the advent of the more recent pandemics, the urgency to expand the range has become even more evident. However, the potential limited availability and affordability of vaccines to resource low- and middle-income countries has created a need for solutions that will ensure cost-effective vaccine production methods for these countries. Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) is one of the most promising candidates for expression of heterologous proteins in vaccines development. It combines the speed and ease of highly efficient prokaryotic platforms with some key capabilities of mammalian systems, potentially reducing manufacturing costs. This review will examine the latest developments in P. pastoris from cell engineering and design to industrial production systems with focus on vaccine development and with reference to specific key case studies.
Collapse
Affiliation(s)
| | - Eli Keshavarz-Moore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| |
Collapse
|
6
|
Kumar R, Kumar P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res 2019; 19:5298404. [PMID: 30668686 DOI: 10.1093/femsyr/foz007] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
In presently licensed vaccines, killed or attenuated organisms act as a source of immunogens except for peptide-based vaccines. These conventional vaccines required a mass culture of associated or related organisms and long incubation periods. Special requirements during storage and transportation further adds to the cost of vaccine preparations. Availability of complete genome sequence, well-established genetic, inherent natural adjuvant and non-pathogenic nature of yeast species viz. Saccharomyces cerevisiae, Pichia pastoris makes them an ideal model system for the development of vaccines both for public health and for on-farm consumption. In this review, we compile the work in this emerging field during last two decades with major emphases on S. cerevisiae and P. pastoris which are routinely used worldwide for expression of heterologous proteins with therapeutic value against infectious diseases along with possible use in cancer therapy. We also pointed towards the developments in use of whole recombinant yeast, yeast surface display and virus-like particles as a novel strategy in the fight against infectious diseases and cancer along with other aspects including suitability of yeast in vaccines preparations, yeast cell wall component as an immune stimulator or modulator and present status of yeast-based vaccines in clinical trials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
7
|
Bredell H, Smith JJ, Görgens JF, van Zyl WH. Expression of unique chimeric human papilloma virus type 16 (HPV-16) L1-L2 proteins in Pichia pastoris and Hansenula polymorpha. Yeast 2018; 35:519-529. [PMID: 29709079 DOI: 10.1002/yea.3318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/02/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is ranked the fourth most common cancer in women worldwide. Despite two prophylactic vaccines being commercially available, they are unaffordable for most women in developing countries. We compared the optimized expression of monomers of the unique HPV type 16 L1-L2 chimeric protein (SAF) in two yeast strains of Pichia pastoris, KM71 (Muts ) and GS115 (Mut+ ), with Hansenula polymorpha NCYC 495 to determine the preferred host in bioreactors. SAF was uniquely created by replacing the h4 helix of the HPV-16 capsid L1 protein with an L2 peptide. Two different feeding strategies in fed-batch cultures of P. pastoris Muts were evaluated: a predetermined feed rate vs. feeding based on the oxygen consumption by maintaining constant dissolved oxygen levels (DO stat). All cultures showed a significant increase in biomass when methanol was fed using the DO stat method. In P. pastoris the SAF concentrations were higher in the Muts strains than in the Mut+ strains. However, H. polymorpha produced the highest level of SAF at 132.10 mg L-1 culture while P. pastoris Muts only produced 23.61 mg L-1 . H. polymorpha showed greater potential for the expression of HPV-16 L1/L2 chimeric proteins despite the track record of P. pastoris as a high-level producer of heterologous proteins.
Collapse
Affiliation(s)
- Helba Bredell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.,Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Jacques J Smith
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.,Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Characterization of the Catalytic Structure of Plant Phytase, Protein Tyrosine Phosphatase-Like Phytase, and Histidine Acid Phytases and Their Biotechnological Applications. Enzyme Res 2018; 2018:8240698. [PMID: 29713527 PMCID: PMC5866894 DOI: 10.1155/2018/8240698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 11/29/2022] Open
Abstract
Phytase plays a prominent role in monogastric animal nutrition due to its ability to improve phytic acid digestion in the gastrointestinal tract, releasing phosphorus and other micronutrients that are important for animal development. Moreover, phytase decreases the amounts of phytic acid and phosphate excreted in feces. Bioinformatics approaches can contribute to the understanding of the catalytic structure of phytase. Analysis of the catalytic structure can reveal enzymatic stability and the polarization and hydrophobicity of amino acids. One important aspect of this type of analysis is the estimation of the number of β-sheets and α-helices in the enzymatic structure. Fermentative processes or genetic engineering methods are employed for phytase production in transgenic plants or microorganisms. To this end, phytase genes are inserted in transgenic crops to improve the bioavailability of phosphorus. This promising technology aims to improve agricultural efficiency and productivity. Thus, the aim of this review is to present the characterization of the catalytic structure of plant and microbial phytases, phytase genes used in transgenic plants and microorganisms, and their biotechnological applications in animal nutrition, which do not impact negatively on environmental degradation.
Collapse
|
9
|
Development of an IP-Free Biotechnology Platform for Constitutive Production of HPV16 L1 Capsid Protein Using the Pichia pastoris PGK1 Promoter. BIOMED RESEARCH INTERNATIONAL 2015; 2015:594120. [PMID: 26090426 PMCID: PMC4450287 DOI: 10.1155/2015/594120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/18/2014] [Accepted: 01/05/2015] [Indexed: 01/07/2023]
Abstract
The human papillomavirus (HPV) L1 major capsid protein, which forms the basis of the currently available vaccines against cervical cancer, self-assembles into virus-like particles (VLPs) when expressed heterologously. We report the development of a biotechnology platform for HPV16 L1 protein expression based on the constitutive PGK1 promoter (PPGK1) from the methylotrophic yeast Pichia pastoris. The L1 gene was cloned under regulation of PPGK1 into pPGKΔ3 expression vector to achieve intracellular expression. In parallel, secretion of the L1 protein was obtained through the use of an alternative vector called pPGKΔ3α, in which a codon optimized α-factor signal sequence was inserted. We devised a work-flow based on the detection of the L1 protein by dot blot, colony blot, and western blot to classify the positive clones. Finally, intracellular HPV VLPs assembly was demonstrated for the first time in yeast cells. This study opens up perspectives for the establishment of an innovative platform for the production of HPV VLPs or other viral antigens for vaccination purposes, based on constitutive expression in P. pastoris.
Collapse
|
10
|
Fazlalipour M, Keyvani H, Monavari SHR, Mollaie HR. Expression, Purification and Immunogenic Description of a Hepatitis C Virus Recombinant CoreE1E2 Protein Expressed by Yeast Pichia pastoris. Jundishapur J Microbiol 2015; 8:e17157. [PMID: 26034544 PMCID: PMC4449863 DOI: 10.5812/jjm.8(4)2015.17157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/14/2014] [Accepted: 07/26/2014] [Indexed: 01/26/2023] Open
Abstract
Background: Gradual development of a useful vaccine can be the main point in the control and eradication of Hepatitis C virus (HCV) infection. Hepatitis C Virus envelope glycoproteins are considered as the main HCV vaccine candidate. Objectives: In this study, the Pichia pastoris expression system was used to express a recombinant HCV CoreE1E2 protein, which consists of Core (269 nt-841nt) E1 (842 nt-1417nt) and E2 (1418 nt-2506nt). Materials and Methods: By a codon optimization technique based on the P. pastoris expression system, we could increase the rate of recombinant proteins. Moreover, the purified protein can efficiently induce anti-CoreE1E2 antibodies in rabbits, and also by developing a homemade Enzyme-Linked ELISA kit we can detect antibody of HCV Iranian patients with genotype 1a. Results: In our study, the virus-like particle of rCoreE1E2 with 70 nm size, was shown by Electron microscopy and proved the self-assembly in vitro in a yeast expression system. Conclusions: These findings of the present study indicate that the recombinant CoreE1E2 glycoprotein is effective in inducing neutralizing antibodies, and is an influential HCV vaccine candidate.
Collapse
Affiliation(s)
- Mehdi Fazlalipour
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
| | - Hossein Keyvani
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Hossein Keyvani, Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-9126222938, E-mail:
| | | | - Hamid Reza Mollaie
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
11
|
Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Bill RM. Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? J Pharm Pharmacol 2014; 67:319-28. [DOI: 10.1111/jphp.12353] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Recombinant protein subunit vaccines are formulated using protein antigens that have been synthesized in heterologous host cells. Several host cells are available for this purpose, ranging from Escherichia coli to mammalian cell lines. This article highlights the benefits of using yeast as the recombinant host.
Key findings
The yeast species, Saccharomyces cerevisiae and Pichia pastoris, have been used to optimize the functional yields of potential antigens for the development of subunit vaccines against a wide range of diseases caused by bacteria and viruses. Saccharomyces cerevisiae has also been used in the manufacture of 11 approved vaccines against hepatitis B virus and one against human papillomavirus; in both cases, the recombinant protein forms highly immunogenic virus-like particles.
Summary
Advances in our understanding of how a yeast cell responds to the metabolic load of producing recombinant proteins will allow us to identify host strains that have improved yield properties and enable the synthesis of more challenging antigens that cannot be produced in other systems. Yeasts therefore have the potential to become important host organisms for the production of recombinant antigens that can be used in the manufacture of subunit vaccines or in new vaccine development.
Collapse
Affiliation(s)
- Roslyn M Bill
- School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
13
|
Silva JG, Coimbra EC, Jesus AL, Mariz FC, Silva KM, Lobato ZI, Campos AC, Coutinho LC, Castro RS, Freitas AC. Secretory expression of Porcine Circovirus Type 2 capsid protein in Pichia pastoris. J Virol Methods 2014; 207:226-31. [DOI: 10.1016/j.jviromet.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/23/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023]
|
14
|
Liu C, Yang X, Yao Y, Huang W, Sun W, Ma Y. Diverse expression levels of two codon-optimized genes that encode human papilloma virus type 16 major protein L1 in Hansenula polymorpha. Biotechnol Lett 2014; 36:937-45. [DOI: 10.1007/s10529-014-1455-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/07/2014] [Indexed: 12/01/2022]
|
15
|
Weinacker D, Rabert C, Zepeda AB, Figueroa CA, Pessoa A, Farías JG. Applications of recombinant Pichia pastoris in the healthcare industry. Braz J Microbiol 2013; 44:1043-8. [PMID: 24688491 PMCID: PMC3958167 DOI: 10.1590/s1517-83822013000400004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/04/2013] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the establishment and development of the biotech industry has improved exponentially, allowing the commercial production of biopharmaceutical proteins. Nowadays, new recombinant protein production is considered a multibillion-dollar market, in which about 25% of commercial pharmaceuticals are biopharmaceuticals. But to achieve a competitive production process is not an easy task. Any production process has to be highly productive, efficient and economic. Despite that the perfect host is still not discovered, several research groups have chosen Pichia pastoris as expression system for the production of their protein because of its many features. The attempt of this review is to embrace several research lines that have adopted Pichia pastoris as their expression system to produce a protein on an industrial scale in the health care industry.
Collapse
Affiliation(s)
- Daniel Weinacker
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Claudia Rabert
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Andrea B. Zepeda
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Carolina A. Figueroa
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jorge G. Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
16
|
de Arruda Coutinho LC, de Jesus ALS, de Paiva Fontes KFL, Coimbra EC, Mariz FC, de Freitas AC, de Cássia Carvalho Maia R, de Castro RS. Production of Equine Infectious Anemia Virus (EIAV) antigen in Pichia pastoris. J Virol Methods 2013; 191:95-100. [DOI: 10.1016/j.jviromet.2013.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/21/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022]
|
17
|
Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 2012; 31:58-83. [PMID: 23142589 PMCID: PMC7115575 DOI: 10.1016/j.vaccine.2012.10.083] [Citation(s) in RCA: 417] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/13/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022]
Abstract
Virus-like particles (VLPs) are a class of subunit vaccines that differentiate themselves from soluble recombinant antigens by stronger protective immunogenicity associated with the VLP structure. Like parental viruses, VLPs can be either non-enveloped or enveloped, and they can form following expression of one or several viral structural proteins in a recombinant heterologous system. Depending on the complexity of the VLP, it can be produced in either a prokaryotic or eukaryotic expression system using target-encoding recombinant vectors, or in some cases can be assembled in cell-free conditions. To date, a wide variety of VLP-based candidate vaccines targeting various viral, bacterial, parasitic and fungal pathogens, as well as non-infectious diseases, have been produced in different expression systems. Some VLPs have entered clinical development and a few have been licensed and commercialized. This article reviews VLP-based vaccines produced in different systems, their immunogenicity in animal models and their status in clinical development.
Collapse
Affiliation(s)
- Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| | | | | |
Collapse
|