1
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
2
|
Bisht N, Dalal V, Tewari L. Molecular modeling and dynamics simulation of alcohol dehydrogenase enzyme from high efficacy cellulosic ethanol-producing yeast mutant strain Pichia kudriavzevii BGY1-γm. J Biomol Struct Dyn 2022; 40:12022-12036. [PMID: 34424128 DOI: 10.1080/07391102.2021.1967196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major constraints limiting the use of abundantly available lignocellulosic biomass as potential feedstock for alcohol industry is the lack of C6/C5 co-sugar fermenting yeast. The present study explores a mutant yeast Pichia kudriavzevii BGY1-γm as a potential strain for bioconversion of glucose/xylose sugars of green biomass into ethanol under batch fermentation. The mutant strain having higher alcohol dehydrogenase activity (11.31%) showed significantly higher ethanol concentration during co-fermentation of glucose/xylose sugars (14.2%) as compared to the native strain. Based on 99% sequence similarity of ADH encoding gene from the mutant with the gene sequences from other yeast strains, the ADH enzyme was identified as ADH-1 type. The study reveals first three-dimensional model of ADH-1 utilizing glucose/xylose sugars from P. kudriavzevii BGY1-γm (PkADH mutant). The refined and validated model of PkADH mutant was used for molecular docking against the substrate (acetaldehyde) and product (ethanol). Molecular docking results showed that substrate and product exhibited a binding affinity of -4.55 and -4.5 kcal/mol with PkADH mutant. Acetaldehyde and ethanol interacted at the active site of PkADH mutant via hydrogen bonds (Ser42, His69 and Asp163) and hydrophobic interactions (Cys40, Ser42, His69, Cys95, Trp123 and Asp163) to form the stable protein-ligand complex. Molecular dynamics analysis revealed that PkADH-mutant acetaldehyde and PkADH-mutant ethanol complexes were more stable than PkADH mutant. MMPBSA binding energy confirmed that binding of substrate and product results in the formation of a lower energy stable protein-ligand complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neha Bisht
- Department of Microbiology, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Vikram Dalal
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lakshmi Tewari
- Department of Microbiology, College of Basic Sciences & Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| |
Collapse
|
3
|
Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee PJ. Screening and Growth Characterization of Non-conventional Yeasts in a Hemicellulosic Hydrolysate. Front Bioeng Biotechnol 2021; 9:659472. [PMID: 33996782 PMCID: PMC8116571 DOI: 10.3389/fbioe.2021.659472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomass is an attractive raw material for the sustainable production of chemicals and materials using microbial cell factories. Most of the existing bioprocesses focus on second-generation ethanol production using genetically modified Saccharomyces cerevisiae, however, this microorganism is naturally unable to consume xylose. Moreover, extensive metabolic engineering has to be carried out to achieve high production levels of industrially relevant building blocks. Hence, the use of non-Saccharomyces species, or non-conventional yeasts, bearing native metabolic routes, allows conversion of a wide range of substrates into different products, and higher tolerance to inhibitors improves the efficiency of biorefineries. In this study, nine non-conventional yeast strains were selected and screened on a diluted hemicellulosic hydrolysate from Birch. Kluyveromyces marxianus CBS 6556, Scheffersomyces stipitis CBS 5773, Lipomyces starkeyi DSM 70295, and Rhodotorula toruloides CCT 7815 were selected for further characterization, where their growth and substrate consumption patterns were analyzed under industrially relevant substrate concentrations and controlled environmental conditions in bioreactors. K. marxianus CBS 6556 performed poorly under higher hydrolysate concentrations, although this yeast was determined among the fastest-growing yeasts on diluted hydrolysate. S. stipitis CBS 5773 demonstrated a low growth and biomass production while consuming glucose, while during the xylose-phase, the specific growth and sugar co-consumption rates were among the highest of this study (0.17 h–1 and 0.37 g/gdw*h, respectively). L. starkeyi DSM 70295 and R. toruloides CCT 7815 were the fastest to consume the provided sugars at high hydrolysate conditions, finishing them within 54 and 30 h, respectively. R. toruloides CCT 7815 performed the best of all four studied strains and tested conditions, showing the highest specific growth (0.23 h–1), substrate co-consumption (0.73 ± 0.02 g/gdw*h), and xylose consumption (0.22 g/gdw*h) rates. Furthermore, R. toruloides CCT 7815 was able to produce 10.95 ± 1.37 gL–1 and 1.72 ± 0.04 mgL–1 of lipids and carotenoids, respectively, under non-optimized cultivation conditions. The study provides novel information on selecting suitable host strains for biorefinery processes, provides detailed information on substrate consumption patterns, and pinpoints to bottlenecks possible to address using metabolic engineering or adaptive evolution experiments.
Collapse
Affiliation(s)
| | - Daria Aborneva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
4
|
Mesquita TJB, Campani G, Giordano RC, Zangirolami TC, Horta ACL. Machine learning applied for metabolic flux-based control of micro-aerated fermentations in bioreactors. Biotechnol Bioeng 2021; 118:2076-2091. [PMID: 33615444 DOI: 10.1002/bit.27721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Various bio-based processes depend on controlled micro-aerobic conditions to achieve a satisfactory product yield. However, the limiting oxygen concentration varies according to the micro-organism employed, while for industrial applications, there is no cost-effective way of measuring it at low levels. This study proposes a machine learning procedure within a metabolic flux-based control strategy (SUPERSYS_MCU) to address this issue. The control strategy used simulations of a genome-scale metabolic model to generate a surrogate model in the form of an artificial neural network, to be used in a micro-aerobic fermentation strategy (MF-ANN). The meta-model provided setpoints to the controller, allowing adjustment of the inlet air flow to control the oxygen uptake rate. The strategy was evaluated in micro-aerobic batch cultures employing industrial Saccharomyces cerevisiae yeast, with defined medium and glucose as the carbon source, as a case study. The performance of the proposed control scheme was compared with a conventional fermentation and with three previously reported micro-aeration strategies, including respiratory quotient-based control and constant air flow rate. Due to maintenance of the oxidative balance at the anaerobiosis threshold, the MF-ANN provided volumetric ethanol productivity of 4.16 g·L-1 ·h-1 and a yield of 0.48 gethanol .gsubstrate -1 , which were higher than the values achieved for the other conditions studied (maximum of 3.4 g·L-1 ·h-1 and 0.35-0.40 gethanol ·gsubstrate -1 , respectively). Due to its modular character, the MF-ANN strategy could be adapted to other micro-aerated bioprocesses.
Collapse
Affiliation(s)
- Thiago J B Mesquita
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo, Brazil
| | - Gilson Campani
- Department of Engineering, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo, Brazil
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo, Brazil
| | - Antonio C L Horta
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
5
|
Nosrati-Ghods N, Harrison ST, Isafiade AJ, Tai SL. Analysis of ethanol production from xylose using Pichia stipitis in microaerobic conditions through experimental observations and kinetic modelling. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Rojas-Chamorro JA, Romero-García JM, Cara C, Romero I, Castro E. Improved ethanol production from the slurry of pretreated brewers' spent grain through different co-fermentation strategies. BIORESOURCE TECHNOLOGY 2020; 296:122367. [PMID: 31727558 DOI: 10.1016/j.biortech.2019.122367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to bioconvert all sugars in BSG into ethanol using a process scheme that includes the enzymatic hydrolysis of the whole slurry resulting from the pretreatment of BSG with phosphoric and sulfuric acid using previously optimised conditions, followed by the co-fermentation of the mixed sugars. More than 90% of the sugars in raw BSG were recovered in the pretreatment and the subsequent enzymatic hydrolysis of the whole slurry. The co-fermentation of the enzymatic hydrolysates with Escherichia coli was then compared with that the co-culture of Scheffersomyces stipitis and Saccharomyces cerevisiae, which resulted in lower ethanol production. The co-fermentation strategy with a single microorganism (E. coli) when BSG was pretreated with phosphoric acid resulted into the highest ethanol concentration, 39 g/L, which means that 222 L of ethanol can be obtained from a ton of BSG without detoxification requirements.
Collapse
Affiliation(s)
- J A Rojas-Chamorro
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain
| | - J M Romero-García
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| | - C Cara
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| | - I Romero
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain.
| | - E Castro
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
7
|
Palakawong Na Ayutthaya P, Charoenrat T, Krusong W, Pornpukdeewattana S. Repeated cultures of Saccharomyces cerevisiae SC90 to tolerate inhibitors generated during cassava processing waste hydrolysis for bioethanol production. 3 Biotech 2019; 9:76. [PMID: 30800587 PMCID: PMC6370576 DOI: 10.1007/s13205-019-1607-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Large amount of cassava pulp is produced as by-product of industrial tapioca production. The value-added process of this low-cost waste is to use it as a substrate for bioethanol production. However, during the pulp pretreatment by acidification combined with steam explosion, many yeast inhibitors including acetic acid, formic acid, levulinic acid, furfural and 5-hydroxymethylfurfural are generated and these compounds have negative effects on the subsequent fermentation step. Therefore, the objective of this study was to investigate whether the repeated cultures of Saccharomyces cerevisiae SC90 could alleviate this problem. To obtain the inhibitor tolerable cells, the repeated culture was performed by growing yeast cells to a specific growth rate (µ) of 0.22 h-1 or higher (80% of the µ in control) and then transferring them to progressively higher concentrations of hydrolysate ranging from 20 to 100% (v/v). The results showed a tendency of longer lag phase as well as time to reach maximum cell number (t maxc) with an increase in hydrolysate concentration. However, the repeated culture at the same hydrolysate concentration could shorten both lag period and t maxc. Interestingly, the growth and fermentation efficiency of adapted cells in 100% hydrolysate were significantly higher (p ≤ 0.05) than those of non-adapted cells by 38% and 27%, respectively.
Collapse
Affiliation(s)
- Pakathamon Palakawong Na Ayutthaya
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani, 12120 Thailand
| | - Warawut Krusong
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Soisuda Pornpukdeewattana
- Division of Fermentation Technology, Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| |
Collapse
|
8
|
Dasgupta D, Junghare V, Nautiyal AK, Jana A, Hazra S, Ghosh D. Xylitol Production from Lignocellulosic Pentosans: A Rational Strain Engineering Approach toward a Multiproduct Biorefinery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1173-1186. [PMID: 30618252 DOI: 10.1021/acs.jafc.8b05509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Kluyveromyces marxianus IIPE453 can utilize biomass-derived fermentable sugars for xylitol and ethanol fermentation. In this study, the xylitol production in the native strain was improved by overexpression of endogenous d-xylose reductase gene. A suitable expression cassette harboring the gene of interest was constructed and incorporated in the native yeast. qPCR analysis demonstrated the 2.1-fold enhancement in d-xylose reductase transcript levels in the modified strain with 1.62-fold enhancement in overall xylitol yield without affecting its ethanol fermenting capacity. Material balance analysis on 2 kg of sugar cane bagasse-derived fermentable sugars illustrated an excess of 58.62 ± 0.15 g of xylitol production by transformed strain in comparison to the wild variety with similar ethanol yield. The modified strain can be suitably used as a single biocatalyst for multiproduct biorefinery application.
Collapse
Affiliation(s)
- Diptarka Dasgupta
- Biotechnology Conversion Area, Bio Fuels Division , CSIR-Indian Institute of Petroleum , Dehradun , Uttarakhand 248005 , India
| | | | - Abhilek K Nautiyal
- Biotechnology Conversion Area, Bio Fuels Division , CSIR-Indian Institute of Petroleum , Dehradun , Uttarakhand 248005 , India
| | - Arijit Jana
- Biotechnology Conversion Area, Bio Fuels Division , CSIR-Indian Institute of Petroleum , Dehradun , Uttarakhand 248005 , India
| | | | - Debashish Ghosh
- Biotechnology Conversion Area, Bio Fuels Division , CSIR-Indian Institute of Petroleum , Dehradun , Uttarakhand 248005 , India
| |
Collapse
|
9
|
Two-Stage Aeration Fermentation Strategy to Improve Bioethanol Production by Scheffersomyces stipitis. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4040097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hardwood spent sulfite liquor (HSSL) is a by-product from pulp industry with a high concentration of pentose sugars, besides some hexoses suitable for bioethanol production by Scheffersomyces stipitis. The establishment of optimal aeration process conditions that results in specific microaerophilic conditions required by S. stipitis is the main challenge for ethanol production. The present study aimed to improve the ethanol production from HSSL by S. stipitis through a two-stage aeration fermentation. Experiments with controlled dissolved oxygen tension (DOT) in the first stage and oxygen restriction in the second stage were carried out. The best results were obtained with DOT control at 50% in the first stage, where the increase of oxygen availability provided faster growth and higher biomass yield, and no oxygen supply with an agitation rate of 250 rpm, in the second stage allowed a successful induction of ethanol production. Fermentation using 60% of HSSL (v/v) as substrate for S. stipitis provided a maximum specific growth rate of 0.07 h−1, an ethanol productivity of 0.04 g L h−1 and an ethanol yield of 0.39 g g−1, respectively. This work showed a successful two-stage aeration strategy as a promising aeration alternative for bioethanol production from HSSL by S. stipitis.
Collapse
|
10
|
Nosrati-Ghods N, Harrison STL, Isafiade AJ, Tai SL. Ethanol from Biomass Hydrolysates by Efficient Fermentation of Glucose and Xylose - A Review. CHEMBIOENG REVIEWS 2018. [DOI: 10.1002/cben.201800009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Nosaibeh Nosrati-Ghods
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Adeniyi J. Isafiade
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| | - Siew L. Tai
- University of Cape Town; Faculty of Engineering and the Built Environment; Department of Chemical Engineering; Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
11
|
Althuri A, Chintagunta AD, Sherpa KC, Banerjee R. Simultaneous Saccharification and Fermentation of Lignocellulosic Biomass. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2018. [DOI: 10.1007/978-3-319-67678-4_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Enhanced Production of Bioethanol by Fermentation of Autohydrolyzed and C4mimOAc-Treated Sugarcane Bagasse Employing Various Yeast Strains. ENERGIES 2017. [DOI: 10.3390/en10081207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Silva DDV, Dussán KJ, Hernández V, Silva SSD, Cardona CA, Felipe MDGDA. Effect of volumetric oxygen transfer coefficient (k L a) on ethanol production performance by Scheffersomyces stipitis on hemicellulosic sugarcane bagasse hydrolysate. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Characterization of a Novel Xylanase Gene from Rumen Content of Hu Sheep. Appl Biochem Biotechnol 2015; 177:1424-36. [DOI: 10.1007/s12010-015-1823-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/18/2015] [Indexed: 01/10/2023]
|
15
|
Negro MJ, Alvarez C, Ballesteros I, Romero I, Ballesteros M, Castro E, Manzanares P, Moya M, Oliva JM. Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric acid as catalyst. BIORESOURCE TECHNOLOGY 2014; 153:101-107. [PMID: 24345569 DOI: 10.1016/j.biortech.2013.11.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 06/03/2023]
Abstract
In this work, the effect of phosphoric acid (1% w/w) in steam explosion pretreatment of water extracted olive tree pruning at 175°C and 195°C was evaluated. The objective is to produce ethanol from all sugars (mainly glucose and xylose) contained in the pretreated material. The water insoluble fraction obtained after pretreatment was used as substrate in a simultaneous saccharification and fermentation (SSF) process by a commercial strain of Saccharomyces cerevisiae. The liquid fraction, containing mainly xylose, was detoxified by alkali and ion-exchange resin and then fermented by the xylose fermenting yeast Scheffersomyces stipitis. Ethanol yields reached in a SSF process were close to 80% when using 15% (w/w) substrate consistency and about 70% of theoretical when using prehydrolysates detoxified by ion-exchange resins. Considering sugars recovery and ethanol yields about 160g of ethanol from kg of water extracted olive tree pruning could be obtained.
Collapse
Affiliation(s)
- M J Negro
- Biofuels Unit, DER-CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - C Alvarez
- Biofuels Unit, DER-CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - I Ballesteros
- Biofuels Unit, DER-CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - I Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaen, Campus Las Lagunillas, 23071 Jaen, Spain
| | - M Ballesteros
- Biofuels Unit, DER-CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - E Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaen, Campus Las Lagunillas, 23071 Jaen, Spain
| | - P Manzanares
- Biofuels Unit, DER-CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - M Moya
- Department of Chemical, Environmental and Materials Engineering, University of Jaen, Campus Las Lagunillas, 23071 Jaen, Spain
| | - J M Oliva
- Biofuels Unit, DER-CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Siso MIG, Becerra M, Maceiras ML, Vázquez ÁV, Cerdán ME. The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnol Lett 2012; 34:2161-73. [DOI: 10.1007/s10529-012-1039-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
|
17
|
Unrean P, Nguyen NHA. Rational optimization of culture conditions for the most efficient ethanol production inScheffersomyces stipitisusing design of experiments. Biotechnol Prog 2012; 28:1119-25. [DOI: 10.1002/btpr.1595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/25/2012] [Indexed: 11/08/2022]
|
18
|
Unrean P, Nguyen NHA. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions. Appl Microbiol Biotechnol 2012; 94:1387-98. [PMID: 22526806 DOI: 10.1007/s00253-012-4059-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 11/26/2022]
Abstract
Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.
Collapse
Affiliation(s)
- Pornkamol Unrean
- Biochemical Engineering and Pilot Plant Research and Development Unit, King Mongkut's University of Technology Thonburi, Bangkhuntien, Bangkok, Thailand.
| | | |
Collapse
|
19
|
Liu X, Jensen PR, Workman M. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. BIORESOURCE TECHNOLOGY 2012; 104:579-86. [PMID: 22093973 DOI: 10.1016/j.biortech.2011.10.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 05/21/2023]
Abstract
Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5% (v/v) crude glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive bioethanol production process, potentially improving economics and reducing waste from industrial biodiesel production.
Collapse
Affiliation(s)
- Xiaoying Liu
- Center for Systems Microbiology, Department of Systems Biology, Building 301, Matematiktorvet, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
20
|
Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products. Appl Microbiol Biotechnol 2011; 93:95-106. [DOI: 10.1007/s00253-011-3686-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/22/2011] [Accepted: 10/28/2011] [Indexed: 11/25/2022]
|