1
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
2
|
Mustafa MI, Mohammed A. Developing recombinant antibodies by phage display technology to neutralize viral infectious diseases. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100140. [PMID: 38182043 DOI: 10.1016/j.slasd.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The use of recombinant antibodies developed through phage display technology offers a promising approach for combating viral infectious diseases. By specifically targeting antigens on viral surfaces, these antibodies have the potential to reduce the severity of infections or even prevent them altogether. With the emergence of new and more virulent strains of viruses, it is crucial to develop innovative methods to counteract them. Phage display technology has proven successful in generating recombinant antibodies capable of targeting specific viral antigens, thereby providing a powerful tool to fight viral infections. In this mini-review article, we examine the development of these antibodies using phage display technology, and discuss the associated challenges and opportunities in developing novel treatments for viral infectious diseases. Furthermore, we provide an overview of phage display technology. As these methods continue to evolve and improve, novel and sophisticated tools based on phage display and peptide display systems are constantly emerging, offering exciting prospects for solving scientific, medical, and technological problems related to viral infectious diseases in the near future.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic university, Omdurman, Sudan
| |
Collapse
|
3
|
Zhang YW, Zheng N, Chou DHC. Serine-mediated hydrazone ligation displaying insulin-like peptides on M13 phage pIII. Org Biomol Chem 2023; 21:8902-8909. [PMID: 37905463 DOI: 10.1039/d3ob01487h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Phage display has emerged as a tool for the discovery of therapeutic antibodies and proteins. However, the effective display and engineering of structurally complex proteins, such as insulin, pose significant challenges due to the sequence of insulin, which is composed of two peptide chains linked by three disulfide bonds. In this study, we developed a new approach for the display of insulin-like peptides on M13 phage pIII, employing N-terminal serine-mediated hydrazone ligation. The insulin-displaying phage retains the biological binding affinity of human insulin. To address the viability loss after ligation, we introduced a trypsin-cleavable spacer on pIII, enabling insulin-displayed phage library selection. This method offers a general pathway for the display of structurally complex proteins on pIII, enhancing the practicality of selecting chemically modified phage libraries and opening avenues for the engineering of new insulin analogs for the treatment of diabetes by using phage display.
Collapse
Affiliation(s)
- Yi Wolf Zhang
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
4
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Lim HT, Kok BH, Leow CY, Leow CH. Exploring shark VNAR antibody against infectious diseases using phage display technology. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108986. [PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
Collapse
Affiliation(s)
- Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
6
|
Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS. Generation of peptides using phage display technology for cancer diagnosis and molecular imaging. Mol Biol Rep 2023; 50:4653-4664. [PMID: 37014570 PMCID: PMC10072011 DOI: 10.1007/s11033-023-08380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
Collapse
Affiliation(s)
- Hai Shin Pung
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Woei Kean Ng
- Faculty of Medicine, AIMST University, Bedong, Kedah, 08100, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
7
|
Lin WT, How SC, Lin WZ, Chen FH, Liao WC, Ma IC, Wang SSS, Hou SY. Using flow cytometry to develop a competitive assay for the detection of biotin. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Pirkalkhoran S, Grabowska WR, Kashkoli HH, Mirhassani R, Guiliano D, Dolphin C, Khalili H. Bioengineering of Antibody Fragments: Challenges and Opportunities. Bioengineering (Basel) 2023; 10:bioengineering10020122. [PMID: 36829616 PMCID: PMC9952581 DOI: 10.3390/bioengineering10020122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antibody fragments are used in the clinic as important therapeutic proteins for treatment of indications where better tissue penetration and less immunogenic molecules are needed. Several expression platforms have been employed for the production of these recombinant proteins, from which E. coli and CHO cell-based systems have emerged as the most promising hosts for higher expression. Because antibody fragments such as Fabs and scFvs are smaller than traditional antibody structures and do not require specific patterns of glycosylation decoration for therapeutic efficacy, it is possible to express them in systems with reduced post-translational modification capacity and high expression yield, for example, in plant and insect cell-based systems. In this review, we describe different bioengineering technologies along with their opportunities and difficulties to manufacture antibody fragments with consideration of stability, efficacy and safety for humans. There is still potential for a new production technology with a view of being simple, fast and cost-effective while maintaining the stability and efficacy of biotherapeutic fragments.
Collapse
Affiliation(s)
- Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | | | | | | - David Guiliano
- School of Life Science, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK
| | - Colin Dolphin
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | - Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
- Correspondence:
| |
Collapse
|
9
|
Characterization of the Binding Behavior of Specific Cobalt and Nickel Ion-Binding Peptides Identified by Phage Surface Display. SEPARATIONS 2022. [DOI: 10.3390/separations9110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In recent years, the application focus of phage surface display (PSD) technology has been extended to the identification of metal ion-selective peptides. In previous studies, two phage clones—a nickel-binding one with the peptide motif CNAKHHPRCGGG and a cobalt-binding one with the peptide motif CTQMLGQLCGGG—were isolated, and their binding ability to metal-loaded NTA agarose beads was investigated. Here, the free cyclic peptides are characterized by UV/VIS spectroscopy with respect to their binding capacity for the respective target ion and in crossover experiments for the other ion by isothermal titration calorimetry (ITC) in different buffer systems. This revealed differences in selectivity and affinity. The cobalt-specific peptide is very sensitive to different buffers; it has a 20-fold higher affinity for cobalt and nickel under suitable conditions. The nickel-specific peptide binds more moderately and robustly in different buffers but only selectively to nickel.
Collapse
|
10
|
de Freitas LS, Queiroz MAF, Machado LFA, Vallinoto ACR, Ishak MDOG, Santos FDAA, Goulart LR, Ishak R. Bioprospecting by Phage Display of Mimetic Peptides of Chlamydia trachomatis for Use in Laboratory Diagnosis. Infect Drug Resist 2022; 15:4935-4945. [PMID: 36065279 PMCID: PMC9440705 DOI: 10.2147/idr.s369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chlamydia trachomatis infection is a major public health problem and the most common sexually transmitted infection in the world. Although highly prevalent, 70% to 80% of cases are asymptomatic and undiagnosed. Purpose To overcome some limitations in terms of rapid diagnosis, phage display technology was used to bioprospect peptide mimetics of C. trachomatis immunoreactive and immunogenic antigens to be selected for the production of synthetic peptides. Methods Initially, IgG from 22 individuals with C. trachomatis and 30 negative controls was coupled to G protein magnetic beads. The phage display technique consisted of biopanning, genetic sequencing, bioinformatics analysis and phage ELISA. Results Clones G1, H5, C6 and H7 were selected for testing with individual samples positive and negative for C. trachomatis. Reactions were statistically significant (p < 0.05), with a sensitivity of 90.91, a specificity of 54.55, and AUC values >0.8. One-dimensional analysis with C. trachomatis components indicated that the G1 clone aligned with cell wall-associated hydrolase domain-containing protein, the H5 clone aligned with glycerol-3-phosphate acyltransferase PlsX protein, the C6 clone aligned with a transposase and inactivated derivatives, and the H7 clone aligned with GTP-binding protein. Molecular modeling and three-dimensional analysis indicated the best fit of the four clones with a protein known as chlamydial protease/proteasome-like activity factor (CPAF), an important virulence factor of the bacterium. Conclusion The peptides produced by phage display are related to the metabolic pathways of C. trachomatis, indicating that they can be used to understand the pathogenesis of the infection. Because of their high sensitivity and AUC values, the peptides present considerable potential for use in platforms for screening C. trachomatis infections.
Collapse
Affiliation(s)
- Larissa Silva de Freitas
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
- Correspondence: Maria Alice Freitas Queiroz, Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil, Tel +55 91 3201-7587, Email
| | | | | | | | - Fabiana de Almeida Araújo Santos
- Laboratory of Nanobiotechnology, Genetics and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Genetics and Biochemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
11
|
Liu C, Pan Y, Chen J, Liu J, Hou Y, Shan Y. Quantitative detection of Ganodermati lucidum immunomodulatory protein-8 by a peptide-antigen-antibody sandwich ELISA. J Microbiol Methods 2022; 199:106518. [PMID: 35700851 DOI: 10.1016/j.mimet.2022.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
In order to rapidly determine the concentration of recombinant Ganoderma lucidum immunomodulatory protein-8 (rLZ-8) at a lower cost, a peptide-antigen-antibody sandwich ELISA method was developed based on a dodecapeptide LTPHKHHKHLHA with higher affinity for rLZ-8, which was identified from phage display after four rounds of screening. The binding mode between rLZ-8 and the peptide ligand was further simulated and revealed by molecular docking. Standard addition and repetitive testing were carried out to evaluate the accuracy, reproducibility and feasibility of the developed ELISA detection method. The method based on this peptide ligand was then successfully applied in the quantitative determination of rLZ-8 concentrations in fermentation broth. In summary, the peptide-antigen-antibody sandwich ELISA method developed here could be conveniently applied in the detection of rLZ-8 during fermentation and might provide new insights for the detection of other specific proteins.
Collapse
Affiliation(s)
- Chuanzhi Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jia Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yue Hou
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
12
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
13
|
Non-Antibody-Based Binders for the Enrichment of Proteins for Analysis by Mass Spectrometry. Biomolecules 2021; 11:biom11121791. [PMID: 34944435 PMCID: PMC8698613 DOI: 10.3390/biom11121791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
There is often a need to isolate proteins from body fluids, such as plasma or serum, prior to further analysis with (targeted) mass spectrometry. Although immunoglobulin or antibody-based binders have been successful in this regard, they possess certain disadvantages, which stimulated the development and validation of alternative, non-antibody-based binders. These binders are based on different protein scaffolds and are often selected and optimized using phage or other display technologies. This review focuses on several non-antibody-based binders in the context of enriching proteins for subsequent liquid chromatography-mass spectrometry (LC-MS) analysis and compares them to antibodies. In addition, we give a brief introduction to approaches for the immobilization of binders. The combination of non-antibody-based binders and targeted mass spectrometry is promising in areas, like regulated bioanalysis of therapeutic proteins or the quantification of biomarkers. However, the rather limited commercial availability of these binders presents a bottleneck that needs to be addressed.
Collapse
|
14
|
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2021; 46:6407522. [PMID: 34673942 DOI: 10.1093/femsre/fuab052] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 "for the phage display of peptides and antibodies". In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
15
|
Wang F, Li N, Zhang Y, Sun X, Hu M, Zhao Y, Fan J. Preparation and Directed Evolution of Anti-Ciprofloxacin ScFv for Immunoassay in Animal-Derived Food. Foods 2021; 10:foods10081933. [PMID: 34441715 PMCID: PMC8394695 DOI: 10.3390/foods10081933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
An immunized mouse phage display scFv library with a capacity of 3.34 × 109 CFU/mL was constructed and used for screening of recombinant anti-ciprofloxacin single-chain antibody for the detection of ciprofloxacin (CIP) in animal-derived food. After four rounds of bio-panning, 25 positives were isolated and identified successfully. The highest positive scFv-22 was expressed in E. coli BL21. Then, its recognition mechanisms were studied using the molecular docking method. The result showed the amino acid residue Val160 was the key residue for the binding of scFv to CIP. Based on the results of virtual mutation, the scFv antibody was evolved by directional mutagenesis of contact amino acid residue Val160 to Ser. After the expression and purification, an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) based on the parental and mutant scFv was established for CIP, respectively. The IC50 value of the assay established with the ScFv mutant was 1.58 ng/mL, while the parental scFv was 26.23 ng/mL; this result showed highly increased affinity, with up to 16.6-fold improved sensitivity. The mean recovery for CIP ranged from 73.80% to 123.35%, with 10.46% relative standard deviation between the intra-assay and the inter-assay. The RSD values ranged between 1.49% and 9.81%. The results indicate that we obtained a highly sensitive anti-CIP scFv by the phage library construction and directional evolution, and the scFv-based IC-ELISA is suitable for the detection of CIP residue in animal-derived edible tissues.
Collapse
Affiliation(s)
- Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, Zhengzhou 450002, China; (Y.Z.); (X.S.); (M.H.)
- Correspondence:
| | - Ning Li
- Department of Food Nutrition and Health, College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou 450000, China; (N.L.); (Y.Z.)
| | - Yunshang Zhang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, Zhengzhou 450002, China; (Y.Z.); (X.S.); (M.H.)
| | - Xuefeng Sun
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, Zhengzhou 450002, China; (Y.Z.); (X.S.); (M.H.)
| | - Man Hu
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, Zhengzhou 450002, China; (Y.Z.); (X.S.); (M.H.)
| | - Yali Zhao
- Department of Food Nutrition and Health, College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou 450000, China; (N.L.); (Y.Z.)
| | - Jianming Fan
- China College of Public Health, Zhengzhou University, 100#Kexue Avenue, Zhengzhou 450001, China;
| |
Collapse
|
16
|
Choraria A, Somasundaram R, Janani S, Rajendran S, Oukkache N, Michael A. Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1942063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ankit Choraria
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| | | | - S. Janani
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Selvakumar Rajendran
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
| | - Naoual Oukkache
- Venoms and Toxins Laboratory, Institute Pasteur of Morocco, Casablanca, Morocco
| | - A. Michael
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| |
Collapse
|
17
|
Lin WZ, Ma IC, Wang JP, Hsieh PC, Liu CC, Hou SY. Highly sensitive protein detection using recombinant spores and lateral flow immunoassay. Anal Bioanal Chem 2021; 413:2235-2246. [PMID: 33608751 DOI: 10.1007/s00216-021-03195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/28/2022]
Abstract
Lateral flow immunoassays (LFIs) can be used to detect intact bacteria or spores; when gold nanoparticles (AuNPs) are used as the signal reporters, the detection limits are very low. Spore-based surface display has been widely studied for enzyme immobilization and live-nontoxic oral vaccines. In this study, recombinant spores were used to improve the sensitivity of a LFI. We developed a test kit that combines streptavidin-displayed spores with a LFI assay for rapid protein detection. The recombinant spores served as a signal amplifier and AuNPs were used as the signal reporters. For detection of β-galactosidase, which was used as the model protein, the detection limit was about 10-15 mol, while that of the conventional LFI is about 10-12 mol. In both methods, nanogold was used as the colorimetric signal and could be observed with the naked eye. This method improved LFI sensitivity without sacrificing its advantages. Furthermore, enhanced green fluorescent protein (eGFP) was also displayed on the surface of the streptavidin-displayed spores. Without AuNPs, the fluorescent recombinant spores acted as the signal, which could be detected by a fluorescence detector, such as a fluorescence microscope. The detection limit was 10-16 mol under fluorescence microscopy whose magnification was 25-fold. Therefore, in conclusion, in this proof of concept study, the detection limits of both proposed methods were far superior to those of traditional LFI assay.
Collapse
Affiliation(s)
- Wen-Zhi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, 11490, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, 11490, Taiwan
| | - I-Cheng Ma
- Graduate Institute of Chemical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Jun-Pei Wang
- Graduate Institute of Chemical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Ping-Chun Hsieh
- Graduate Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Cheng-Che Liu
- Graduate Institute of Physiology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shao-Yi Hou
- Graduate Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
| |
Collapse
|
18
|
Somasundaram R, Choraria A, Antonysamy M. An approach towards development of monoclonal IgY antibodies against SARS CoV-2 spike protein (S) using phage display method: A review. Int Immunopharmacol 2020; 85:106654. [PMID: 32512271 PMCID: PMC7266779 DOI: 10.1016/j.intimp.2020.106654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
The present state of diagnostic and therapeutic developmental race for vaccines against the SARS CoV-2 (nCOVID-19) focuses on prevention and control of this global pandemic which also represents a critical challenge to the global health community. Although development of novel vaccines can prevent the SARS CoV-2 infections, it is still impeded by several other factors and therefore novel approaches towards treatment and management of this disease is the urgent need. Passive immunotherapy plays a vital role as a possible alternative to meet this challenge and among various antibody sources, chicken egg yolk antibodies (IgY) can be used as an alternative to mammalian antibodies which have been previously studied against SARS CoV outbreak in China. In this review, we discuss the strategies for the use of chicken egg yolk (IgY) antibodies in the development of rapid diagnosis and immunotherapy against SARS CoV-2. Also, IgY antibodies have previously been used against various respiratory bacterial and viral infections in humans and animals. Compared to mammalian antibodies (IgG), chicken egg yolk antibodies (IgY) have greater binding affinity to specific antigens, ease of extraction and lower production costs, hence possessing remarkable pathogen-neutralizing activity of pathogens in respiratory and lungs. We provide an overall importance for the use of monoclonal chicken egg yolk antibodies (IgY) using phage display method describing their potential passive immunotherapeutic application for the treatment and prevention of SARS CoV-2 infection which is simple, fast and safe way of approach for treating patients effectively.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Antibody Affinity
- Antibody Specificity
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Testing
- Cell Surface Display Techniques
- Chickens
- Clinical Laboratory Techniques
- Coronavirus Infections/diagnosis
- Coronavirus Infections/therapy
- Egg Yolk
- Forecasting
- Humans
- Immunization, Passive
- Immunoglobulins/immunology
- Mammals/immunology
- Models, Molecular
- Pandemics
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/therapy
- RNA, Viral/genetics
- SARS-CoV-2
- Single-Chain Antibodies/immunology
- Species Specificity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- COVID-19 Serotherapy
Collapse
Affiliation(s)
| | - Ankit Choraria
- Department of Microbiology, PSG College of Arts & Science, Coimbatore, TN, India.
| | - Michael Antonysamy
- Department of Microbiology, PSG College of Arts & Science, Coimbatore, TN, India.
| |
Collapse
|
19
|
Xu H, Cao B, Li Y, Mao C. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1623. [PMID: 32147974 DOI: 10.1002/wnan.1623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Display of a peptide or protein of interest on the filamentous phage (also known as bacteriophage), a biological nanofiber, has opened a new route for disease diagnosis and therapy as well as proteomics. Earlier phage display was widely used in protein-protein or antigen-antibody studies. In recent years, its application in nanomedicine is becoming increasingly popular and encouraging. We aim to review the current status in this research direction. For better understanding, we start with a brief introduction of basic biology and structure of the filamentous phage. We present the principle of phage display and library construction method on the basis of the filamentous phage. We summarize the use of the phage displayed peptide library for selecting peptides with high affinity against cells or tissues. We then review the recent applications of the selected cell or tissue targeting peptides in developing new targeting probes and therapeutics to advance the early diagnosis and targeted therapy of different diseases in nanomedicine. We also discuss the integration of antibody phage display and modern proteomics in discovering new biomarkers or target proteins for disease diagnosis and therapy. Finally, we propose an outlook for further advancing the potential impact of phage display on future nanomedicine. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Hong Xu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
20
|
Magnetic bead-based semi-automated phage display panning strategy for the directed evolution of antibodies. Methods Enzymol 2019; 630:159-178. [PMID: 31931984 DOI: 10.1016/bs.mie.2019.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed evolution is a proven approach to fine tune or modify biomolecules for various applications ranging from research to industry. The process of evolution requires methods that are capable of not only generating genetic diversity but also to distinguish the variants of desired characteristics. One method that is synonymous with directed evolution of proteins is phage display. Here, we present a protocol describing the application of magnetic nanoparticles coupled with a processor to carry out the identification of monoclonal antibodies (mAbs) from a diverse antibody library via phage display. Target antigens are coupled to magnetic nanoparticles as the solid phase for the isolation of the binding mAbs via affinity. A gradual enrichment in clones would result in increasing ELISA readouts with increasing rounds of panning. During monoclonal level analysis, positivity can be deduced with comparison to background and controls. The biopanning process can also be adopted for the directed evolution of enzymes, scaffold proteins or even peptides.
Collapse
|
21
|
Zambrano-Mila MS, Sánchez Blacio KE, Santiago Vispo N. Peptide Phage Display: Molecular Principles and Biomedical Applications. Ther Innov Regul Sci 2019. [DOI: 10.1177/2168479019837624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marlon S. Zambrano-Mila
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | | | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
22
|
Phage vaccines displaying YGKDVKDLFDYAQE epitope induce protection against systemic candidiasis in mouse model. Vaccine 2018; 36:5717-5724. [PMID: 30111514 DOI: 10.1016/j.vaccine.2018.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 07/29/2018] [Accepted: 08/05/2018] [Indexed: 01/29/2023]
Abstract
Candida albicans is a common commensal and opportunistic fungal pathogen in human, which poses threat to human health, especially in immunocompromised patients. Unfortunately, few effective prophylactic and therapeutic strategies were applied to clinic practice. Recently, the peptide YGKDVKDLFDYAQE from Fructose-bisphosphate aldolase 1 (Fba1), as a vaccine, was reported to induce protection effects against systemic candidiasis. Here, we displayed this epitope peptide on the coat proteins (pIII or pVIII) of filamentous phage, and investigated their protective effects against C. albicans infections. Mice were immunized with recombinant phages (designated as phage-3F and phage-8F) or protein (rFba1), then challenged with C. albicans yeast cells via lateral tail vein. Results demonstrated that the recombinant phages as well as rFba1 apparently induced humoral and cellular immune responses, reduced fungal burden and relieved kidney damage in infected mice and significantly improved their survival rates. Briefly, all these findings indicated that the recombinant phages displaying the epitope YGKDVKDLFDYAQE have the potential to be developed into a new vaccine against C. albicans infections.
Collapse
|
23
|
Fan G, Dundas CM, Zhang C, Lynd NA, Keitz BK. Sequence-Dependent Peptide Surface Functionalization of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18601-18609. [PMID: 29762004 DOI: 10.1021/acsami.8b05148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a noncovalent surface functionalization technique for water-stable metal-organic frameworks using short peptide sequences identified via phage display. Specific frameworks-binding peptides were identified for crystalline Zn(MeIM)2 (MeIM: 2-methylimidazole, ZIF-8), semiamorphous Fe-BTC (BTC: 1,3,5-benzene-tricarboxylate), and Al(OH)(C4H2O4) (MIL-53(Al)-FA, FA: fumaric acid), and their thermodynamic binding affinities and specificities were measured. Electron microscopy, powder X-ray diffraction, and gas adsorption analysis confirmed that the peptide-functionalized frameworks retained similar characteristics compared to their as-synthesized counterparts. Confocal laser-scanning microscopy demonstrated that peptide was localized on the surface of the frameworks, whereas surface area measurements showed no evidence of pore blockage. Finally, we measured the pH-dependent release of fluorescein from peptide-functionalized frameworks and discovered that peptide binding can attenuate fluorescein release by improving framework stability under low pH conditions. Our results demonstrate that phage display can be used as a general method to identify specific peptide sequences with strong binding affinity to water-stable metal-organic frameworks and that these peptides can alter drug release kinetics by affecting framework stability in aqueous environments.
Collapse
|
24
|
Dong S, Bo Z, Zhang C, Feng J, Liu X. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library. Appl Microbiol Biotechnol 2018; 102:3363-3374. [DOI: 10.1007/s00253-018-8797-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
|
25
|
Omar N, Hamidon NH, Yunus MH, Noordin R, Choong YS, Lim TS. Generation and selection of naïve Fab library for parasitic antigen: Anti‐
Bm
SXP antibodies for lymphatic filariasis. Biotechnol Appl Biochem 2017; 65:346-354. [DOI: 10.1002/bab.1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 08/16/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Noorsharmimi Omar
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Nurul Hamizah Hamidon
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Muhammad Hafiznur Yunus
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular MedicineUniversiti Sains Malaysia Minden Penang Malaysia
- Analytical Biochemistry Research CentreUniversiti Sains Malaysia Penang Malaysia
| |
Collapse
|
26
|
Rami A, Behdani M, Yardehnavi N, Habibi-Anbouhi M, Kazemi-Lomedasht F. An overview on application of phage display technique in immunological studies. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
27
|
Solís-Lucero G, Manoutcharian K, Hernández-López J, Ascencio F. Injected phage-displayed-VP28 vaccine reduces shrimp Litopenaeus vannamei mortality by white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2016; 55:401-406. [PMID: 27241285 DOI: 10.1016/j.fsi.2016.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Abstract
White spot syndrome virus (WSSV) is the most important viral pathogen for the global shrimp industry causing mass mortalities with huge economic losses. Recombinant phages are capable of expressing foreign peptides on viral coat surface and act as antigenic peptide carriers bearing a phage-displayed vaccine. In this study, the full-length VP28 protein of WSSV, widely known as potential vaccine against infection in shrimp, was successfully cloned and expressed on M13 filamentous phage. The functionality and efficacy of this vaccine immunogen was demonstrated through immunoassay and in vivo challenge studies. In ELISA assay phage-displayed VP28 was bind to Litopenaeus vannamei immobilized hemocyte in contrast to wild-type M13 phage. Shrimps were injected with 2 × 10(10) cfu animal(-1) single dose of VP28-M13 and M13 once and 48 h later intramuscularly challenged with WSSV to test the efficacy of the vaccine against the infection. All dead challenged shrimps were PCR WSSV-positive. The accumulative mortality of the vaccinated and challenged shrimp groups was significantly lower (36.67%) than the unvaccinated group (66.67%). Individual phenoloxidase and superoxide dismutase activity was assayed on 8 and 48 h post-vaccination. No significant difference was found in those immunological parameters among groups at any sampled time evaluated. For the first time, phage display technology was used to express a recombinant vaccine for shrimp. The highest percentage of relative survival in vaccinated shrimp (RPS = 44.99%) suggest that the recombinant phage can be used successfully to display and deliver VP28 for farmed marine crustaceans.
Collapse
Affiliation(s)
- G Solís-Lucero
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S., 23096, Mexico.
| | - K Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México, Distrito Federal, 04510, Mexico.
| | - J Hernández-López
- Centro de Investigaciones Biológicas del Noroeste, Calle Hermosa #101, Fracc. Los Ángeles, Hermosillo, Sonora, CP 83206, Mexico.
| | - F Ascencio
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S., 23096, Mexico.
| |
Collapse
|
28
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Scibilia S, Lentini G, Fazio E, Franco D, Neri F, Mezzasalma AM, Guglielmino SPP. Self-assembly of silver nanoparticles and bacteriophage. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Library construction, selection and modification strategies to generate therapeutic peptide-based modulators of protein-protein interactions. Future Med Chem 2015; 6:2073-92. [PMID: 25531969 DOI: 10.4155/fmc.14.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the modern age of proteomics, vast numbers of protein-protein interactions (PPIs) are being identified as causative agents in pathogenesis, and are thus attractive therapeutic targets for intervention. Although traditionally regarded unfavorably as druggable agents relative to small molecules, peptides in recent years have gained considerable attention. Their previous dismissal had been largely due to the susceptibility of unmodified peptides to the barriers and pressures exerted by the circulation, immune system, proteases, membranes and other stresses. However, recent advances in high-throughput peptide isolation techniques, as well as a huge variety of direct modification options and approaches to allow targeted delivery, mean that peptides and their mimetics can now be designed to circumvent many of these traditional barriers. As a result, an increasing number of peptide-based drugs are reaching clinical trials and patients beyond.
Collapse
|
31
|
Epitope Fingerprinting for Recognition of the Polyclonal Serum Autoantibodies of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:267989. [PMID: 26417591 PMCID: PMC4568325 DOI: 10.1155/2015/267989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Autoantibodies (aAb) associated with Alzheimer's disease (AD) have not been sufficiently characterized and their exact involvement is undefined. The use of information technology and computerized analysis with phage display technology was used, in the present research, to map the epitope of putative self-antigens in AD patients. A 12-mer random peptide library, displayed on M13 phages, was screened using IgG from AD patients with two repetitions. Seventy-one peptides were isolated; however, only 10 were positive using the Elisa assay technique (Elisa Index > 1). The results showed that the epitope regions of the immunoreactive peptides, identified by phage display analysis, were on the exposed surfaces of the proteins. The putative antigens MAST1, Enah, MAO-A, X11/MINT1, HGF, SNX14, ARHGAP 11A, APC, and CENTG3, which have been associated with AD or have functions in neural tissue, may indicate possible therapeutic targets.
Collapse
|
32
|
Tethering of Epidermal Growth Factor (EGF) to Beta Tricalcium Phosphate (βTCP) via Fusion to a High Affinity, Multimeric βTCP-Binding Peptide: Effects on Human Multipotent Stromal Cells/Connective Tissue Progenitors. PLoS One 2015; 10:e0129600. [PMID: 26121597 PMCID: PMC4488278 DOI: 10.1371/journal.pone.0129600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/11/2015] [Indexed: 12/14/2022] Open
Abstract
Transplantation of freshly-aspirated autologous bone marrow, together with a scaffold, is a promising clinical alternative to harvest and transplantation of autologous bone for treatment of large defects. However, survival proliferation, and osteogenic differentiation of the marrow-resident stem and progenitor cells with osteogenic potential can be limited in large defects by the inflammatory microenvironment. Previous studies using EGF tethered to synthetic polymer substrates have demonstrated that surface-tethered EGF can protect human bone marrow-derived osteogenic stem and progenitor cells from pro-death inflammatory cues and enhance their proliferation without detriment to subsequent osteogenic differentiation. The objective of this study was to identify a facile means of tethering EGF to clinically-relevant βTCP scaffolds and to demonstrate the bioactivity of EGF tethered to βTCP using stimulation of the proliferative response of human bone-marrow derived mesenchymal stem cells (hBMSC) as a phenotypic metric. We used a phage display library and panned against βTCP and composites of βTCP with a degradable polyester biomaterial, together with orthogonal blocking schemes, to identify a 12-amino acid consensus binding peptide sequence, LLADTTHHRPWT, with high affinity for βTCP. When a single copy of this βTCP-binding peptide sequence was fused to EGF via a flexible peptide tether domain and expressed recombinantly in E. coli together with a maltose-binding domain to aid purification, the resulting fusion protein exhibited modest affinity for βTCP. However, a fusion protein containing a linear concatamer containing 10 repeats of the binding motif the resulting fusion protein showed high affinity stable binding to βTCP, with only 25% of the protein released after 7 days at 37oC. The fusion protein was bioactive, as assessed by its abilities to activate kinase signaling pathways downstream of the EGF receptor when presented in soluble form, and to enhance the proliferation of hBMSC when presented in tethered form on commercial βTCP bone regeneration scaffolds.
Collapse
|
33
|
Phage-AgNPs complex as SERS probe for U937 cell identification. Biosens Bioelectron 2015; 74:398-405. [PMID: 26164011 DOI: 10.1016/j.bios.2015.05.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
The early diagnosis of malignancy is the most critical factor for patient survival and the treatment of cancer. In particular, leukemic cells are highly heterogeneous, and there is a need to develop new rapid and accurate detection systems for early diagnosis and monitoring of minimal residual disease. This study reports the utilization of molecular networks consisting of entire bacteriophage structure, displaying specific peptides, directly assembled with silver nanoparticles as a new Surface Enhanced Raman Spectroscopy (SERS) probe for U937 cells identification in vitro. A 9-mer pVIII M13 phage display library is screened against U937 to identify peptides that selectively recognize these cells. Then, phage clone is assembled with silver nanoparticles and the resulting network is used to obtain a SERS signal on cell-type specific molecular targets. The proposed strategy could be a very sensitive tool for the design of biosensors for highly specific and selective identification of hematological cancer cells and for detection of minimal residual disease in a significant proportion of human blood malignancy.
Collapse
|
34
|
Abstract
INTRODUCTION Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. AREAS COVERED This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. EXPERT OPINION Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
Collapse
Affiliation(s)
- Kobra Omidfar
- Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Biosensor Research Center , Tehran , Iran
| | | |
Collapse
|
35
|
Wei Y, Huang D, Wang K, Du J, Hu Y. A synthetic peptide inhibits human ovarian cancer cell motility. RSC Adv 2015. [DOI: 10.1039/c5ra08755d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthetic SV-peptide inhibits cancer cell migration through inhibition of FAK–Rho signaling and influences the small G protein family expression.
Collapse
Affiliation(s)
- Yan Wei
- College of Mechanics
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Di Huang
- College of Mechanics
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Kaiqun Wang
- College of Mechanics
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Jingjing Du
- College of Mechanics
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Yinchun Hu
- College of Mechanics
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| |
Collapse
|
36
|
Rajaram K, Vermeeren V, Somers K, Somers V, Michiels L. Construction of helper plasmid-mediated dual-display phage for autoantibody screening in serum. Appl Microbiol Biotechnol 2014; 98:6365-73. [PMID: 24764015 PMCID: PMC4072019 DOI: 10.1007/s00253-014-5713-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/01/2022]
Abstract
M13 filamentous bacteriophage has been used in displaying disease-specific antibodies, biomarkers, and peptides. One of the major drawbacks of using phage in diagnostic assays is the aspecific adsorption of proteins leading to a high background signal and decreasing sensitivity. To deal with this, we developed a genetically pure, exchangeable dual-display phage system in which biomarkers and streptavidin-binding protein (SBP) are displayed at opposite ends of the phage. This approach allows for sample purification, using streptavidin-coated magnetic beads resulting in a higher sensitivity of signal detection assays. Our dual-display cassette system approach also allows for easy exchange of both the anchor protein (SBP) and the displayed biomarker. The presented principle is applied for the detection of antibody reactivity against UH-RA.21 which is a good candidate biomarker for rheumatoid arthritis (RA). The applicability of dual-display phage preparation using a helper plasmid system is demonstrated, and its increased sensitivity in phage ELISA assays using patient serum samples is shown.
Collapse
Affiliation(s)
- Kaushik Rajaram
- Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium,
| | | | | | | | | |
Collapse
|
37
|
Zhang X, Xu C, Zhang C, Liu Y, Xie Y, Liu X. Established a new double antibodies sandwich enzyme-linked immunosorbent assay for detecting Bacillus thuringiensis (Bt) Cry1Ab toxin based single-chain variable fragments from a naïve mouse phage displayed library. Toxicon 2014; 81:13-22. [DOI: 10.1016/j.toxicon.2014.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/17/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
38
|
Mendoza-Figueroa JS, Soriano-García M, Valle-Castillo LB, Méndez-Lozano J. Peptides and Peptidomics: A Tool with Potential in Control of Plant Viral Diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.49060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Petrenko VA, Jayanna PK. Phage protein-targeted cancer nanomedicines. FEBS Lett 2013; 588:341-9. [PMID: 24269681 DOI: 10.1016/j.febslet.2013.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/10/2013] [Indexed: 12/17/2022]
Abstract
Nanoencapsulation of anticancer drugs improves their therapeutic indices by virtue of the enhanced permeation and retention effect which achieves passive targeting of nanoparticles in tumors. This effect can be significantly enhanced by active targeting of nanovehicles to tumors. Numerous ligands have been proposed and used in various studies with peptides being considered attractive alternatives to antibodies. This is further reinforced by the availability of peptide phage display libraries which offer an unlimited reservoir of target-specific probes. In particular landscape phages with multivalent display of target-specific peptides which enable the phage particle itself to become a nanoplatform creates a paradigm for high throughput selection of nanoprobes setting the stage for personalized cancer management. Despite its promise, this conjugate of combinatorial chemistry and nanotechnology has not made a significant clinical impact in cancer management due to a lack of using robust processes that facilitate scale-up and manufacturing. To this end we proposed the use of phage fusion protein as the navigating modules of novel targeted nanomedicine platforms which are described in this review.
Collapse
Affiliation(s)
- V A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, United States.
| | - P K Jayanna
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, United States
| |
Collapse
|
40
|
Development of specific scFv antibodies to detect neurocysticercosis antigens and potential applications in immunodiagnosis. Immunol Lett 2013; 156:59-67. [DOI: 10.1016/j.imlet.2013.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022]
|
41
|
Wei Y, Yin G, Ma C, Liao X, Chen X, Huang Z, Yao Y. Inhibiting the motility and invasion of cancer cells by biomineralization. Med Hypotheses 2013; 81:169-71. [DOI: 10.1016/j.mehy.2013.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023]
|
42
|
Thornton CR, Wills OE. Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security. Crit Rev Microbiol 2013; 41:27-51. [PMID: 23734714 DOI: 10.3109/1040841x.2013.788995] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Filamentous fungi (moulds), yeast-like fungi, and oomycetes cause life-threatening infections of humans and animals and are a major constraint to global food security, constituting a significant economic burden to both agriculture and medicine. As well as causing localized or systemic infections, certain species are potent producers of allergens and toxins that exacerbate respiratory diseases or cause cancer and organ damage. We review the pathogenic and toxigenic organisms that are etiologic agents of both animal and plant diseases or that have recently emerged as serious pathogens of immunocompromised individuals. The use of hybridoma and phage display technologies and their success in generating monoclonal antibodies for the detection and control of fungal and oomycete pathogens are explored. Monoclonal antibodies hold enormous potential for the development of rapid and specific tests for the diagnosis of human mycoses, however, unlike plant pathology, their use in medical mycology remains to be fully exploited.
Collapse
|
43
|
Ma K, Wang DD, Lin Y, Wang J, Petrenko V, Mao C. Synergetic Targeted Delivery of Sleeping-Beauty Transposon System to Mesenchymal Stem Cells Using LPD Nanoparticles Modified with a Phage-Displayed Targeting Peptide. ADVANCED FUNCTIONAL MATERIALS 2013; 23:1172-1181. [PMID: 23885226 PMCID: PMC3718568 DOI: 10.1002/adfm.201102963] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
An important criterion for effective gene therapy is sufficient chromosomal integration activity. The Sleeping Beauty (SB) transposon system is a plasmid system allowing efficient insertion of transgenes into the host genome. However, such efficient insertion occurs only after the system is delivered to nuclei. Since transposons do not have the transducing abilities of viral vectors, efficient delivery of this system first into cells and then into cell nuclei is still a challenge. Here, a phage display technique using a major coat displayed phage library is employed to identify a peptide (VTAMEPGQ) that can home to rat mesenchymal stem cells (rMSCs). A nanoparticle, called liposome protamine/DNA lipoplex (LPD), is electrostatically assembled from cationic liposomes and an anionic complex of protamine, DNA and targeting peptides. Various peptides are enveloped inside the LPD to improve its targeting capability for rMSCs and nuclei. The rMSC-targeting peptide and nuclear localization signal (NLS) peptide can execute the synergetic effect to promote transfection action of LPD. The homing peptide directs the LPD to target the MSCs, whereas the NLS peptide directs transposon to accumulate into nuclei once LPD is internalized inside the cells, leading to increased gene expression. This suggests that rMSC-targeting peptide and NLS peptide within LPD can target to rMSCs and then guide transposon into nuclei. After entering the nuclei, SB transposon increase the insertion rates into cellular chromosomes. The targeting LPD does not show obvious cell toxicity and influence on the differentiation potential of rMSCs. Therefore, the integration of SB transposon and LPD system is a promising nonviral gene delivery vector in stem cell therapy.
Collapse
Affiliation(s)
- Kun Ma
- Department of Chemistry and Biochemistry University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Dong-Dong Wang
- Department of Chemistry and Biochemistry University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Yiyang Lin
- Department of Chemistry and Biochemistry University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Jianglin Wang
- Department of Chemistry and Biochemistry University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Valery Petrenko
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry University of Oklahoma, Stephenson Life Sciences Research Center, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|
44
|
Murata VM, Schmidt MCB, Kalil J, Tsuruta LR, Moro AM. Anti-Digoxin Fab Variants Generated by Phage Display. Mol Biotechnol 2013; 54:269-77. [DOI: 10.1007/s12033-012-9564-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Inhibiting Effects of a Cyclic Peptide CNGRC on Proliferation and Migration of Tumor Cells In Vitro. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9327-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Zhang X, Liu Y, Zhang C, Wang Y, Xu C, Liu X. Rapid isolation of single-chain antibodies from a human synthetic phage display library for detection of Bacillus thuringiensis (Bt) Cry1B toxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 81:84-90. [PMID: 22627013 DOI: 10.1016/j.ecoenv.2012.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/21/2012] [Accepted: 04/21/2012] [Indexed: 06/01/2023]
Abstract
Single chain variable fragment antibody (scFv) is capable of binding its target antigens and is one of the most popular recombinant antibodies format for many applications. In this study, a large human synthetic phage displayed library (Tomlinson J) was employed to generate scFvs against Cry1B toxin by affinity panning. After four rounds of panning, six monoclonal phage particles capable of binding with the Cry1B were isolated, sequenced and characterized by Enzyme-Linked Immunosorbent Assay (ELISA). Two of the identified novel anti-Cry1B scFvs, namely H9 and B12, were expressed in Escherichia coli HB2151 and purified by Ni metal ion affinity chromatography. Sodium dodecyl sulfate polyacrylamine gel electrophoresis (SDS-PAGE) indicated that the relative molecular mass of scFv was estimated at 30 kDa. The purified scFv-H9 was used to develop an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for Cry1B toxin. The linear range of detection for standards in this ic-ELISA was approximately 0.19-1.1 μg mL⁻¹ and 50% inhibition of control (IC₅₀) was 0.84 μg mL⁻¹ for Cry1B. The affinity of scfv-H9 was (1.95±0.12) × 10⁷ M⁻¹ and showed cross-reactivity with Cry1Ab toxin and Cry1Ac toxin (8.53% and 7.58%, respectively), higher cross-reactivity (12.8%) with Cry1C toxin. The average recoveries of Cry1B toxin from spiked leaf and rice samples were in the range 89.5-96.4%, and 88.5-95.6%, respectively, with a coefficient of variation (C.V) less than 6.0%. These results showed promising applications of scfv-H9 for detecting Cry1B toxin in agricultural and environmental samples.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, 210095 Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
47
|
Ryan E, Garland MJ, Singh TRR, Bambury E, O’Dea J, Migalska K, Gorman SP, McCarthy HO, Gilmore BF, Donnelly RF. Microneedle-mediated transdermal bacteriophage delivery. Eur J Pharm Sci 2012; 47:297-304. [PMID: 22750416 PMCID: PMC3778942 DOI: 10.1016/j.ejps.2012.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 01/16/2023]
Abstract
Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific T4 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 × 106 PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 × 103 PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 × 103 PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses.
Collapse
Affiliation(s)
- Elizabeth Ryan
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Martin J. Garland
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thakur Raghu Raj Singh
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eoin Bambury
- Crospon Ireland, Galway Business Park, Dangan, Galway, Ireland
| | - John O’Dea
- Crospon Ireland, Galway Business Park, Dangan, Galway, Ireland
| | - Katarzyna Migalska
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Sean P. Gorman
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brendan F. Gilmore
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Corresponding author. Tel.: +44 (0) 28 90 972 251; fax: +44 (0) 28 90 247 794.
| |
Collapse
|
48
|
Single chain variable fragment antibodies against Shiga toxins isolated from a human antibody phage display library. Vaccine 2011; 29:5340-6. [DOI: 10.1016/j.vaccine.2011.05.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 11/22/2022]
|
49
|
Lee NK, Kim MK, Choi JH, Kim EB, Lee HG, Kang SK, Choi YJ. Identification of a peptide sequence targeting mammary vasculature via RPLP0 during lactation. Peptides 2010; 31:2247-54. [PMID: 20863866 DOI: 10.1016/j.peptides.2010.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/13/2010] [Accepted: 09/13/2010] [Indexed: 11/20/2022]
Abstract
To find novel targeting moieties to lactating mammary gland, in vivo phage display screening was conducted with lactating rats and a peptide ligand, CLHQHNQMC (designated as MG1), which specifically homes to the mammary tissue during lactation, was identified through the consecutive in vivo biopannings. MG1 peptide ligand showed specific binding affinity to lactating mammary tissue without any preference to other organs tested in ex vivo and in vivo validation, and microscopy analysis revealed that systemically introduced MG1 could be specifically localized in the lactating mammary gland associated with mammary epithelia and alveolar vasculature. Based on the observation that binding of MG1-encoding phage to lactating mammary gland was competitively inhibited by synthetic MG1 peptide ligand, we attempted to identify a counterpart molecule corresponding to specific recognition of the MG1 and the acidic Ribosomal Protein Large P0 (RPLP0) was selected as a candidate receptor for MG1 by peptide affinity pull-down assay with protein extracts from lactating mammary tissue. We demonstrated specific expression of RPLP0 in mammary tissue, especially during lactation, by immunoblotting assays and also demonstrated that MG1 peptide ligand could be bound to, and internalized into, the cells effectively via specific interaction with RPLP0 by analysis using an in vitro endothelial cell model. The overall results suggest that the MG1 has a specific affinity with RPLP0 which are dominantly expressed on the mammary vasculature during lactation and this specific affinity enables the MG1 would be served as an effective homing ligand to deliver functional molecules to the lactating mammary gland.
Collapse
Affiliation(s)
- Nam Kyung Lee
- Laboratory of Animal Cell Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Yoo MK, Kang SK, Choi JH, Park IK, Na HS, Lee HC, Kim EB, Lee NK, Nah JW, Choi YJ, Cho CS. Targeted delivery of chitosan nanoparticles to Peyer’s patch using M cell-homing peptide selected by phage display technique. Biomaterials 2010; 31:7738-47. [DOI: 10.1016/j.biomaterials.2010.06.059] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 06/28/2010] [Indexed: 11/29/2022]
|