1
|
Khan MZ, Ma Y, Ma J, Xiao J, Liu Y, Liu S, Khan A, Khan IM, Cao Z. Association of DGAT1 With Cattle, Buffalo, Goat, and Sheep Milk and Meat Production Traits. Front Vet Sci 2021; 8:712470. [PMID: 34485439 PMCID: PMC8415568 DOI: 10.3389/fvets.2021.712470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Milk fatty acids are essential for many dairy product productions, while intramuscular fat (IMF) is associated with the quality of meat. The triacylglycerols (TAGs) are the major components of IMF and milk fat. Therefore, understanding the polymorphisms and genes linked to fat synthesis is important for animal production. Identifying quantitative trait loci (QTLs) and genes associated with milk and meat production traits has been the objective of various mapping studies in the last decade. Consistently, the QTLs on chromosomes 14, 15, and 9 have been found to be associated with milk and meat production traits in cattle, goat, and buffalo and sheep, respectively. Diacylglycerol O-acyltransferase 1 (DGAT1) gene has been reported on chromosomes 14, 15, and 9 in cattle, goat, and buffalo and sheep, respectively. Being a key role in fat metabolism and TAG synthesis, the DGAT1 has obtained considerable attention especially in animal milk production. In addition to milk production, DGAT1 has also been a subject of interest in animal meat production. Several polymorphisms have been documented in DGAT1 in various animal species including cattle, buffalo, goat, and sheep for their association with milk production traits. In addition, the DGAT1 has also been studied for their role in meat production traits in cattle, sheep, and goat. However, very limited studies have been conducted in cattle for association of DGAT1 with meat production traits in cattle. Moreover, not a single study reported the association of DGAT1 with meat production traits in buffalo; thus, further studies are warranted to fulfill this huge gap. Keeping in view the important role of DGAT1 in animal production, the current review article was designed to highlight the major development and new insights on DGAT1 effect on milk and meat production traits in cattle, buffalo, sheep, and goat. Moreover, we have also highlighted the possible future contributions of DGAT1 for the studied species.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Chen CX, Sun LN, Hou XX, Du PC, Wang XL, Du XC, Yu YF, Cai RK, Yu L, Li TJ, Luo MN, Shen Y, Lu C, Li Q, Zhang C, Gao HF, Ma X, Lin H, Cao ZF. Prevention and Control of Pathogens Based on Big-Data Mining and Visualization Analysis. Front Mol Biosci 2021; 7:626595. [PMID: 33718431 PMCID: PMC7947816 DOI: 10.3389/fmolb.2020.626595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Morbidity and mortality caused by infectious diseases rank first among all human illnesses. Many pathogenic mechanisms remain unclear, while misuse of antibiotics has led to the emergence of drug-resistant strains. Infectious diseases spread rapidly and pathogens mutate quickly, posing new threats to human health. However, with the increasing use of high-throughput screening of pathogen genomes, research based on big data mining and visualization analysis has gradually become a hot topic for studies of infectious disease prevention and control. In this paper, the framework was performed on four infectious pathogens (Fusobacterium, Streptococcus, Neisseria, and Streptococcus salivarius) through five functions: 1) genome annotation, 2) phylogeny analysis based on core genome, 3) analysis of structure differences between genomes, 4) prediction of virulence genes/factors with their pathogenic mechanisms, and 5) prediction of resistance genes/factors with their signaling pathways. The experiments were carried out from three angles: phylogeny (macro perspective), structure differences of genomes (micro perspective), and virulence and drug-resistance characteristics (prediction perspective). Therefore, the framework can not only provide evidence to support the rapid identification of new or unknown pathogens and thus plays a role in the prevention and control of infectious diseases, but also help to recommend the most appropriate strains for clinical and scientific research. This paper presented a new genome information visualization analysis process framework based on big data mining technology with the accommodation of the depth and breadth of pathogens in molecular level research.
Collapse
Affiliation(s)
- Cui-Xia Chen
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Li-Na Sun
- National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xue-Xin Hou
- National Institute for Communicable Disease Control and Prevention, Beijing, China
| | | | - Xiao-Long Wang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Chen Du
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Fei Yu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Rui-Kun Cai
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Lei Yu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Tian-Jun Li
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Min-Na Luo
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Yue Shen
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Chao Lu
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Qian Li
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Chuan Zhang
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Hua-Fang Gao
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zong-Fu Cao
- National Research Institute for Family Planning, Beijing, China.,National Center of Human Genetic Resources, Beijing, China
| |
Collapse
|