1
|
Klose SM, De Souza DP, Devlin JM, Bushell R, Browning GF, Vaz PK. A "plus one" strategy impacts replication of felid alphaherpesvirus 1, Mycoplasma and Chlamydia, and the metabolism of coinfected feline cells. mSystems 2024; 9:e0085224. [PMID: 39315777 PMCID: PMC11495031 DOI: 10.1128/msystems.00852-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Coinfections are known to play an important role in disease progression and severity. Coinfections are common in cats, but no coinfection studies have investigated the in vitro dynamics between feline viral and bacterial pathogens. In this study, we performed co-culture and invasion assays to investigate the ability of common feline bacterial respiratory pathogens, Chlamydia felis and Mycoplasma felis, to replicate in and invade into Crandell-Rees feline kidney cells. We subsequently investigated how coinfection of these feline cells with each bacterium (C. felis or M. felis) and the common feline viral pathogen, felid alphaherpesvirus 1 (FHV-1), affects replication of each agent in this cell culture system. We also investigated the metabolic impact of each co-pathogen using metabolomic analysis of infected and coinfected cells. C. felis was able to invade and replicate in CRFKs, while M. felis had little capacity to invade. During coinfection, FHV-1 replication was minimally affected by the presence of either bacterial pathogen, but bacterial replication kinetics were more affected, particularly in M. felis. Both C. felis and M. felis replicated to higher levels in the presence of a secondary pathogen. Coinfections resulted in reprogramming of the glycolysis pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle. The distinct metabolic profiles of coinfected cells compared to those of cells infected with just one of these three pathogens, as well as the impact of coinfections on viral or bacterial load, suggest strong interactions between these three pathogens and possible synergistic mechanisms enhancing virulence that need further investigation.IMPORTANCEIn the natural world, respiratory pathogens coexist within their hosts, but their dynamics and interactions remain largely unexplored. Herpesviruses, mycoplasmas, and chlamydias are common and significant causes of acute and chronic respiratory and system disease in animals and people, and these diseases are increasingly found to be polymicrobial. This study investigates how coinfection of feline cells between three respiratory pathogens of cats impact each other as well as the host innate metabolic response to infection. Each of these pathogens have been implicated in the induction of feline upper respiratory tract disease in cats, which is the leading cause of euthanasia in shelters. Understanding how coinfection impacts co-pathogenesis and host responses is critical for improving disease management.
Collapse
Affiliation(s)
- Sara M. Klose
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhys Bushell
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Pobeguts OV, Galaymina MA, Sikamov KV, Urazaeva DR, Avshalumov AS, Mikhailycheva MV, Babenko VV, Smirnov IP, Gorbachev AY. Unraveling the adaptive strategies of Mycoplasma hominis through proteogenomic profiling of clinical isolates. Front Cell Infect Microbiol 2024; 14:1398706. [PMID: 38756231 PMCID: PMC11096450 DOI: 10.3389/fcimb.2024.1398706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Mycoplasma hominis (M. hominis) belongs to the class Mollicutes, characterized by a very small genome size, reduction of metabolic pathways, including transcription factors, and the absence of a cell wall. Despite this, they adapt well not only to specific niches within the host organism but can also spread throughout the body, colonizing various organs and tissues. The adaptation mechanisms of M. hominis, as well as their regulatory pathways, are poorly understood. It is known that, when adapting to adverse conditions, Mycoplasmas can undergo phenotypic switches that may persist for several generations. Methods To investigate the adaptive properties of M. hominis related to survival in the host, we conducted a comparative phenotypic and proteogenomic analysis of eight clinical isolates of M. hominis obtained from patients with urogenital infections and the laboratory strain H-34. Results We have shown that clinical isolates differ in phenotypic features from the laboratory strain, form biofilms more effectively and show resistance to ofloxacin. The comparative proteogenomic analysis revealed that, unlike the laboratory strain, the clinical isolates possess several features related to stress survival: they switch carbon metabolism, activating the energetically least advantageous pathway of nucleoside utilization, which allows slowing down cellular processes and transitioning to a starvation state; they reconfigure the repertoire of membrane proteins; they have integrative conjugative elements in their genomes, which are key mediators of horizontal gene transfer. The upregulation of the methylating subunit of the restriction-modification (RM) system type I and the additional components of RM systems found in clinical isolates suggest that DNA methylation may play a role in regulating the adaptation mechanisms of M. hominis in the host organism. It has been shown that based on the proteogenomic profile, namely the genome sequence, protein content, composition of the RM systems and additional subunits HsdM, HsdS and HsdR, composition and number of transposable elements, as well as the sequence of the main variable antigen Vaa, we can divide clinical isolates into two phenotypes: typical colonies (TC), which have a high growth rate, and atypical (aTC) mini-colonies, which have a slow growth rate and exhibit properties similar to persisters. Discussion We believe that the key mechanism of adaptation of M. hominis in the host is phenotypic restructuring, leading to a slowing down cellular processes and the formation of small atypical colonies. This is due to a switch in carbon metabolism and activation the pathway of nucleoside utilization. We hypothesize that DNA methylation may play a role in regulating this switch.
Collapse
Affiliation(s)
- Olga V. Pobeguts
- Department of Molecular Biology and Genetics, Federal State Budgetary Institution Lopukhin Federal Research and Clinical Center of Physical-chemical Medicine Federal Medical Biological Agency, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Knobloch S, Skirnisdóttir S, Dubois M, Mayolle L, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. The gut microbiome of farmed Arctic char ( Salvelinus alpinus) is shaped by feeding stage and nutrient presence. FEMS MICROBES 2024; 5:xtae011. [PMID: 38745980 PMCID: PMC11092275 DOI: 10.1093/femsmc/xtae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiome plays an important role in maintaining health and productivity of farmed fish. However, the functional role of most gut microorganisms remains unknown. Identifying the stable members of the gut microbiota and understanding their functional roles could aid in the selection of positive traits or act as a proxy for fish health in aquaculture. Here, we analyse the gut microbial community of farmed juvenile Arctic char (Salvelinus alpinus) and reconstruct the metabolic potential of its main symbionts. The gut microbiota of Arctic char undergoes a succession in community composition during the first weeks post-hatch, with a decrease in Shannon diversity and the establishment of three dominant bacterial taxa. The genome of the most abundant bacterium, a Mycoplasma sp., shows adaptation to rapid growth in the nutrient-rich gut environment. The second most abundant taxon, a Brevinema sp., has versatile metabolic potential, including genes involved in host mucin degradation and utilization. However, during periods of absent gut content, a Ruminococcaceae bacterium becomes dominant, possibly outgrowing all other bacteria through the production of secondary metabolites involved in quorum sensing and cross-inhibition while benefiting the host through short-chain fatty acid production. Whereas Mycoplasma is often present as a symbiont in farmed salmonids, we show that the Ruminococcaceae species is also detected in wild Arctic char, suggesting a close evolutionary relationship between the host and this symbiotic bacterium.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Food Technology, University of Applied Sciences Fulda, Leipziger Strasse 123, 36037 Fulda, Germany
| | | | - Marianne Dubois
- ESBS/University of Strasbourg, 300 Bd Sébastien Brant, 67085 Strasbourg, France
| | - Lucie Mayolle
- University of Technology of Compiègne, Rue Roger Couttolenc, 60203 Compiègne, France
| | - Laetitia Kolypczuk
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Françoise Leroi
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Alexandra Leeper
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Arboretveien 6, 1430 Ås, Norway
- Iceland Ocean Cluster, Department of Research and Innovation, Grandagarður 16, 101 Reykjavík, Iceland
| | - Delphine Passerini
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, BP 21105, F-44000 Nantes, France
| | - Viggó Þ Marteinsson
- Matís ohf., Microbiology Research Group, Vínlandsleið 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Sæmundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
4
|
Hain E, Adejumo H, Anger B, Orenstein J, Blaney L. Advances in antimicrobial activity analysis of fluoroquinolone, macrolide, sulfonamide, and tetracycline antibiotics for environmental applications through improved bacteria selection. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125686. [PMID: 34088184 DOI: 10.1016/j.jhazmat.2021.125686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The widespread use of antibiotics has led to their ubiquitous presence in water and wastewater and raised concerns about antimicrobial resistance. Clinical antibiotic susceptibility assays have been repurposed to measure removal of antimicrobial activity during water and wastewater treatment processes. The corresponding protocols have mainly employed growth inhibition of Escherichia coli. The present work focused on optimizing bacteria selection to improve the sensitivity of residual antimicrobial activity measurements by broth microdilution assays. Thirteen antibiotics from four classes (i.e., fluoroquinolones, macrolides, sulfonamides, tetracyclines) were investigated against three gram-negative organisms, namely E. coli, Mycoplasma microti, and Pseudomonas fluorescens. The minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) were calculated for each antibiotic-bacteria pair. P. fluorescens produces a fluorescent siderophore, pyoverdine, that was used to assess sublethal effects and further enhance the sensitivity of antimicrobial activity measurements. The optimal antibiotic-bacteria pairs were as follows: fluoroquinolone-E. coli (growth inhibition); macrolide- and sulfonamide-M. microti (growth inhibition); and, tetracycline-P. fluorescens (pyoverdine inhibition). Compared to E. coli growth inhibition, the sensitivity of antimicrobial activity analysis was improved by up to 728, 19, and 2.7 times for macrolides (tylosin), sulfonamides (sulfamethoxazole), and tetracyclines (chlortetracycline), facilitating application of these bioassays at environmentally-relevant conditions.
Collapse
Affiliation(s)
- Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Hollie Adejumo
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA; University of Michigan, Department of Civil and Environmental Engineering, 2350 Hayward Street, 2105 GG Brown Building, Ann Arbor, MI 48109-2125, USA
| | - Bridget Anger
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Joseph Orenstein
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA.
| |
Collapse
|
5
|
Lachance J, Matteau D, Brodeur J, Lloyd CJ, Mih N, King ZA, Knight TF, Feist AM, Monk JM, Palsson BO, Jacques P, Rodrigue S. Genome-scale metabolic modeling reveals key features of a minimal gene set. Mol Syst Biol 2021; 17:e10099. [PMID: 34288418 PMCID: PMC8290834 DOI: 10.15252/msb.202010099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Mesoplasma florum, a fast-growing near-minimal organism, is a compelling model to explore rational genome designs. Using sequence and structural homology, the set of metabolic functions its genome encodes was identified, allowing the reconstruction of a metabolic network representing ˜ 30% of its protein-coding genes. Growth medium simplification enabled substrate uptake and product secretion rate quantification which, along with experimental biomass composition, were integrated as species-specific constraints to produce the functional iJL208 genome-scale model (GEM) of metabolism. Genome-wide expression and essentiality datasets as well as growth data on various carbohydrates were used to validate and refine iJL208. Discrepancies between model predictions and observations were mechanistically explained using protein structures and network analysis. iJL208 was also used to propose an in silico reduced genome. Comparing this prediction to the minimal cell JCVI-syn3.0 and its parent JCVI-syn1.0 revealed key features of a minimal gene set. iJL208 is a stepping-stone toward model-driven whole-genome engineering.
Collapse
Affiliation(s)
| | - Dominick Matteau
- Département de BiologieUniversité de SherbrookeSherbrookeQCCanada
| | - Joëlle Brodeur
- Département de BiologieUniversité de SherbrookeSherbrookeQCCanada
| | - Colton J Lloyd
- Department of BioengineeringUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Nathan Mih
- Department of BioengineeringUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Zachary A King
- Department of BioengineeringUniversity of CaliforniaSan Diego, La JollaCAUSA
| | | | - Adam M Feist
- Department of BioengineeringUniversity of CaliforniaSan Diego, La JollaCAUSA
- Department of PediatricsUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Jonathan M Monk
- Department of BioengineeringUniversity of CaliforniaSan Diego, La JollaCAUSA
| | - Bernhard O Palsson
- Department of BioengineeringUniversity of CaliforniaSan Diego, La JollaCAUSA
- Department of PediatricsUniversity of CaliforniaSan Diego, La JollaCAUSA
- Bioinformatics and Systems Biology ProgramUniversity of CaliforniaSan Diego, La JollaCAUSA
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | | | | |
Collapse
|
6
|
Awadh AA, Le Gresley A, Forster-Wilkins G, Kelly AF, Fielder MD. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance. Sci Rep 2021; 11:5650. [PMID: 33707544 PMCID: PMC7952918 DOI: 10.1038/s41598-021-84326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasmas are fastidious microorganisms, typically characterised by their restricted metabolism and minimalist genome. Although there is reported evidence that some mycoplasmas can develop biofilms little is known about any differences in metabolism in these organisms between the growth states. A systematic metabolomics approach may help clarify differences associated between planktonic and biofilm associated mycoplasmas. In the current study, the metabolomics of two different mycoplasmas of clinical importance (Mycoplasma pneumoniae and Mycoplasma fermentans) were examined using a novel approach involving nuclear magnetic resonance spectroscopy and principle component analysis. Characterisation of metabolic changes was facilitated through the generation of high-density metabolite data and diffusion-ordered spectroscopy that provided the size and structural information of the molecules under examination. This enabled the discrimination between biofilms and planktonic states for the metabolomic profiles of both organisms. This work identified clear biofilm/planktonic differences in metabolite composition for both clinical mycoplasmas and the outcomes serve to establish a baseline understanding of the changes in metabolism observed in these pathogens in their different growth states. This may offer insight into how these organisms are capable of exploiting and persisting in different niches and so facilitate their survival in the clinical setting.
Collapse
Affiliation(s)
- Ammar A. Awadh
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Adam Le Gresley
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Gary Forster-Wilkins
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Alison F. Kelly
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Mark D. Fielder
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| |
Collapse
|
7
|
Henthorn CR, Chris Minion F, Sahin O. Utilization of macrophage extracellular trap nucleotides by Mycoplasma hyopneumoniae. MICROBIOLOGY-SGM 2019; 164:1394-1404. [PMID: 30383520 DOI: 10.1099/mic.0.000717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia in swine, an important disease worldwide. It has finite biosynthetic capabilities, including a deficit in de novo nucleotide synthesis. The source(s) for nucleotides in vivo are unknown, but mycoplasmas are known to carry membrane-bound nucleases thought to participate in the acquisition of nucleotides from host genomic DNA. Recent research has demonstrated that neutrophils can produce extracellular traps (NETs), chromatin NETs decorated with granular proteins to interact with and eliminate pathogens. We hypothesized that M. hyopneumoniae could utilize its membrane nuclease to obtain nucleotides from extracellular traps to construct its own DNA. Using the human monocytic cell line THP-1, we induced macrophage extracellular traps (METs), which are structurally similar to NETs. The thymidine analogue ethynyl deoxyuridine (EdU) was incorporated into THP-1 DNA and METs were induced. When incubated with M. hyopneumoniae, METs were degraded and the modified nucleotide label could be co-localized within M. hyopneumoniae DNA. When the nucleases were inhibited, MET degradation and nucleotide transfer were also inhibited. Controls confirmed that the EdU originated directly from the METs and not from free nucleotides arising from intracellular pools released during extrusion of the chromosomal DNA. M. hyopneumoniae incorporated labelled nucleotides more efficiently when 'fed' on METs than from free nucleotides in the medium, suggesting a tight linkage between nuclease degradation of DNA and nucleotide transport. These results strongly suggest that M. hyopneumoniae could degrade extracellular traps formed in vivo during infection and incorporate those host nucleotides into its own DNA.
Collapse
Affiliation(s)
- Clair R Henthorn
- †Present address: Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA.,1Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - F Chris Minion
- 3Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames IA, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA
| | - Orhan Sahin
- 1Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
8
|
Formylated N-terminal methionine is absent from the Mycoplasma hyopneumoniae proteome: Implications for translation initiation. Int J Med Microbiol 2019; 309:288-298. [PMID: 31126750 DOI: 10.1016/j.ijmm.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/28/2019] [Accepted: 03/17/2019] [Indexed: 12/31/2022] Open
Abstract
N-terminal methionine excision (NME) is a proteolytic pathway that cleaves the N-termini of proteins, a process that influences where proteins localise in the cell and their turnover rates. In bacteria, protein biosynthesis is initiated by formylated methionine start tRNA (fMet-tRNAfMet). The formyl group is attached by formyltransferase (FMT) and is subsequently removed by peptide deformylase (PDF) in most but not all proteins. Methionine aminopeptidase then cleaves deformylated methionine to complete the process. Components of NME, particularly PDF, are promising therapeutic targets for bacterial pathogens. In Mycoplasma hyopneumoniae, a genome-reduced, major respiratory pathogen of swine, pdf and fmt are absent from its genome. Our bioinformatic analysis uncovered additional enzymes involved in formylated N-terminal methionine (fnMet) processing missing in fourteen mycoplasma species, including M. hyopneumoniae but not in Mycoplasma pneumoniae, a major respiratory pathogen of humans. Consistent with our bioinformatic studies, an analysis of in-house tryptic peptide libraries confirmed the absence of fnMet in M. hyopneumoniae proteins but, as expected fnMet peptides were detected in the proteome of M. pneumoniae. Additionally, computational molecular modelling of M. hyopneumoniae translation initiation factors reveal structural and sequence differences in areas known to interact with fMet-tRNAfMet. Our data suggests that some mycoplasmas have evolved a translation process that does not require fnMet.
Collapse
|
9
|
Silva JK, Marques LM, Timenetsky J, de Farias ST. Ureaplasma diversum protein interaction networks: evidence of horizontal gene transfer and evolution of reduced genomes among Mollicutes. Can J Microbiol 2019; 65:596-612. [PMID: 31018106 DOI: 10.1139/cjm-2018-0688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ureaplasma diversum is a member of the Mollicutes class responsible for urogenital tract infection in cattle and small ruminants. Studies indicate that the process of horizontal gene transfer, the exchange of genetic material among different species, has a crucial role in mollicute evolution, affecting the group's characteristic genomic reduction process and simplification of metabolic pathways. Using bioinformatics tools and the STRING database of known and predicted protein interactions, we constructed the protein-protein interaction network of U. diversum and compared it with the networks of other members of the Mollicutes class. We also investigated horizontal gene transfer events in subnetworks of interest involved in purine and pyrimidine metabolism and urease function, chosen because of their intrinsic importance for host colonization and virulence. We identified horizontal gene transfer events among Mollicutes and from Ureaplasma to Staphylococcus aureus and Corynebacterium, bacterial groups that colonize the urogenital niche. The overall tendency of genome reduction and simplification in the Mollicutes is echoed in their protein interaction networks, which tend to be more generalized and less selective. Our data suggest that the process was permitted (or enabled) by an increase in host dependence and the available gene repertoire in the urogenital tract shared via horizontal gene transfer.
Collapse
Affiliation(s)
- Joana Kästle Silva
- a Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Lucas Miranda Marques
- b Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,c Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jorge Timenetsky
- c Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Roachford O, Nelson KE, Mohapatra BR. Virulence and molecular adaptation of human urogenital mycoplasmas: a review. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1607556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Orville Roachford
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | | | - Bidyut Ranjan Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| |
Collapse
|
11
|
Analysis and validation of the pho regulon in the tacrolimus-producer strain Streptomyces tsukubaensis: differences with the model organism Streptomyces coelicolor. Appl Microbiol Biotechnol 2018; 102:7029-7045. [PMID: 29948118 DOI: 10.1007/s00253-018-9140-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
Abstract
Inorganic and organic phosphate controls both primary and secondary metabolism in Streptomyces genus. Metabolism regulation by phosphate in Streptomyces species is mediated by the PhoR-PhoP two-component system. Response regulator PhoP binds to conserved sequences of 11 nucleotides called direct repeat units (DRus), whose organization and conservation determine the binding of PhoP to distinct promoters. Streptomyces tsukubaensis is the industrial producer of the clinical immunosuppressant tacrolimus (FK506). A bioinformatic genome analysis detected several genes with conserved PHO boxes involved in phosphate scavenging and transport, nitrogen regulation, and secondary metabolite production. In this article, the PhoP regulation has been confirmed by electrophoretic mobility shift assays (EMSA) of the most relevant members of the traditional pho regulon such as the two-component system PhoR-P or genes involved in high-affinity phosphate transport (pstSCAB) and low-affinity phosphate transport (pit). However, the PhoP control over phosphatase genes in S. tsukubaensis is significantly different from the pattern reported in the model bacteria Streptomyces coelicolor. Thus, neither the alkaline phosphatase PhoA nor PhoD is regulated by PhoP. On the contrary, the binding of PhoP to the promoter of a novel putative phosphatase PhoX was confirmed. A crosstalk of the PhoP and GlnR regulators, which balances phosphate and nitrogen utilization, also occurs in S. tsukubaensis but slightly modified. Finally, PhoP regulates genes, like afsS, that link phosphate control and secondary metabolite production in S. tsukubaensis. In summary, there are notable differences between the regulation of specific genes of the pho regulon in S. tsukubaensis and the model organism S. coelicolor.
Collapse
|
12
|
Comparative Metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum Reveals Fundamental Differences in Active Metabolic Pathways and Suggests Novel Gene Annotations. mSystems 2017; 2:mSystems00055-17. [PMID: 29034329 PMCID: PMC5634790 DOI: 10.1128/msystems.00055-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/11/2017] [Indexed: 11/25/2022] Open
Abstract
Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms. Mycoplasmas are simple, but successful parasites that have the smallest genome of any free-living cell and are thought to have a highly streamlined cellular metabolism. Here, we have undertaken a detailed metabolomic analysis of two species, Mycoplasma bovis and Mycoplasma gallisepticum, which cause economically important diseases in cattle and poultry, respectively. Untargeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses of mycoplasma metabolite extracts revealed significant differences in the steady-state levels of many metabolites in central carbon metabolism, while 13C stable isotope labeling studies revealed marked differences in carbon source utilization. These data were mapped onto in silico metabolic networks predicted from genome wide annotations. The analyses elucidated distinct differences, including a clear difference in glucose utilization, with a marked decrease in glucose uptake and glycolysis in M. bovis compared to M. gallisepticum, which may reflect differing host nutrient availabilities. The 13C-labeling patterns also revealed several functional metabolic pathways that were previously unannotated in these species, allowing us to assign putative enzyme functions to the products of a number of genes of unknown function, especially in M. bovis. This study demonstrates the considerable potential of metabolomic analyses to assist in characterizing significant differences in the metabolism of different bacterial species and in improving genome annotation. IMPORTANCE Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms.
Collapse
|
13
|
Roachford OSE, Nelson KE, Mohapatra BR. Comparative genomics of four Mycoplasma species of the human urogenital tract: Analysis of their core genomes and virulence genes. Int J Med Microbiol 2017; 307:508-520. [PMID: 28927691 DOI: 10.1016/j.ijmm.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/23/2022] Open
Abstract
The variation in Mycoplasma lipoproteins attributed to genome rearrangements and genetic insertions leads to phenotypic plasticity that allows for the evasion of the host's defence system and pathogenesis. This paper compared for the first time the genomes of four human urogenital Mycoplasma species (M. penetrans HF-2, M. fermentans JER, M. genitalium G37 and M. hominis PG21) to categorise the metabolic functions of the core genes and to assess the effects of tandem repeats, phage-like genetic elements and prophages on the virulence genes. The results of this comparative in silico genomic analysis revealed that the genes constituting their core genomes can be separated into three distinct categories: nuclear metabolism, protein metabolism and energy generation each making up 52%, 31% and 23%, respectively. The genomes have repeat sequences ranging from 3.7% in M. hominis PG21 to 9.5% in M. fermentans JER. Tandem repeats (mostly minisatellites) and phage-like proteins (including DNA gyrases/topoisomerases) were randomly distributed in the Mycoplasma genomes. Here, we identified a coiled-coil structure containing protein in M. penetrans HF-2 which is significantly similar to the Mem protein of M. fermentans ɸMFV1. Therefore, a Mycoplasma prophage seems to be embedded within M. penetrans HF-2 unannotated genome. To the best of our knowledge, no Mycoplasma phages or prophages have been detected in M. penetrans. This study is important not only in understanding the complex genetic factors involved in phenotypic plasticity and virulence in the relatively understudied Mycoplasma species but also in elucidating the effective arrangement of their redundant minimal genomes.
Collapse
Affiliation(s)
- Orville St E Roachford
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown BB 11000, Barbados.
| | - Karen E Nelson
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD 20850, USA
| | - Bidyut R Mohapatra
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown BB 11000, Barbados
| |
Collapse
|
14
|
Zhan J, Liu M, Wu C, Su X, Zhan K, Zhao GQ. Effects of alfalfa flavonoids extract on the microbial flora of dairy cow rumen. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1261-1269. [PMID: 28183168 PMCID: PMC5582282 DOI: 10.5713/ajas.16.0839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/03/2017] [Accepted: 01/28/2017] [Indexed: 01/06/2023]
Abstract
Objective The effect of flavonoids from alfalfa on the microbial flora was determined using molecular techniques of 16S ribosome deoxyribonucleic acid (rDNA) analysis. Methods Four primiparous Holstein heifers fitted with ruminal cannulas were used in a 4×4 Latin square design and fed a total mixed ration to which alfalfa flavonoids extract (AFE) was added at the rates of 0 (A, control), 20 (B), 60 (C), or 100 (D) mg per kg of heifer BW. Results The number of operational taxonomic units in heifers given higher levels of flavonoid extract (C and D) was higher than for the two other treatments. The Shannon, Ace, and Chao indices for treatment C were significantly higher than for the other treatments (p<0.05). The number of phyla and genera increased linearly with increasing dietary supplementation of AFE (p<0.05). The principal co-ordinates analysis plot showed substantial differences in the microbial flora for the four treatments. The microbial flora in treatment A was similar to that in B, C, and D were similar by the weighted analysis. The richness of Tenericutes at the phylum level tended to increase with increasing AFE (p = 0.10). The proportion of Euryarchaeota at the phylum level increased linearly, whereas the proportion of Fusobacteria decreased linearly with increasing AFE supplementation (p = 0.04). The percentage of Mogibacterium, Pyramidobacter, and Asteroleplasma at the genus level decreased linearly with increasing AFE (p<0.05). The abundance of Spirochaeta, Succinivibrio, and Suttonella at the genus level tended to decrease linearly with increasing AFE (0.05<p<0.10). Conclusion Including AFE in the diet of dairy cows may alter the microbial composition of the rumen; however its effect on nutrient digestibility remains to be determined.
Collapse
Affiliation(s)
- Jinshun Zhan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.,Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Sciences, Nanchang 330200 China
| | - Mingmei Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.,Jiangsu Joint Institute of Technology of Profession of Huai'an Bio-engineering Branch, Huai'an 223200, China
| | - Caixia Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoshuang Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guo Qi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Cattani AM, Siqueira FM, Guedes RLM, Schrank IS. Repetitive Elements in Mycoplasma hyopneumoniae Transcriptional Regulation. PLoS One 2016; 11:e0168626. [PMID: 28005945 PMCID: PMC5179023 DOI: 10.1371/journal.pone.0168626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/02/2016] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.
Collapse
Affiliation(s)
- Amanda Malvessi Cattani
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Franciele Maboni Siqueira
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Lucas Muniz Guedes
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Irene Silveira Schrank
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Centro de Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
16
|
Seward EA, Kelly S. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms. Genome Biol 2016; 17:226. [PMID: 27842572 PMCID: PMC5109750 DOI: 10.1186/s13059-016-1087-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. RESULTS Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. CONCLUSIONS Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.
Collapse
Affiliation(s)
- Emily A Seward
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
17
|
Ferrarini MG, Siqueira FM, Mucha SG, Palama TL, Jobard É, Elena-Herrmann B, R Vasconcelos AT, Tardy F, Schrank IS, Zaha A, Sagot MF. Insights on the virulence of swine respiratory tract mycoplasmas through genome-scale metabolic modeling. BMC Genomics 2016; 17:353. [PMID: 27178561 PMCID: PMC4866288 DOI: 10.1186/s12864-016-2644-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/22/2016] [Indexed: 12/24/2022] Open
Abstract
Background The respiratory tract of swine is colonized by several bacteria among which are three Mycoplasma species: Mycoplasma flocculare, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis. While colonization by M. flocculare is virtually asymptomatic, M. hyopneumoniae is the causative agent of enzootic pneumonia and M. hyorhinis is present in cases of pneumonia, polyserositis and arthritis. The genomic resemblance among these three Mycoplasma species combined with their different levels of pathogenicity is an indication that they have unknown mechanisms of virulence and differential expression, as for most mycoplasmas. Methods In this work, we performed whole-genome metabolic network reconstructions for these three mycoplasmas. Cultivation tests and metabolomic experiments through nuclear magnetic resonance spectroscopy (NMR) were also performed to acquire experimental data and further refine the models reconstructed in silico. Results Even though the refined models have similar metabolic capabilities, interesting differences include a wider range of carbohydrate uptake in M. hyorhinis, which in turn may also explain why this species is a widely contaminant in cell cultures. In addition, the myo-inositol catabolism is exclusive to M. hyopneumoniae and may be an important trait for virulence. However, the most important difference seems to be related to glycerol conversion to dihydroxyacetone-phosphate, which produces toxic hydrogen peroxide. This activity, missing only in M. flocculare, may be directly involved in cytotoxicity, as already described for two lung pathogenic mycoplasmas, namely Mycoplasma pneumoniae in human and Mycoplasma mycoides subsp. mycoides in ruminants. Metabolomic data suggest that even though these mycoplasmas are extremely similar in terms of genome and metabolism, distinct products and reaction rates may be the result of differential expression throughout the species. Conclusions We were able to infer from the reconstructed networks that the lack of pathogenicity of M. flocculare if compared to the highly pathogenic M. hyopneumoniae may be related to its incapacity to produce cytotoxic hydrogen peroxide. Moreover, the ability of M. hyorhinis to grow in diverse sites and even in different hosts may be a reflection of its enhanced and wider carbohydrate uptake. Altogether, the metabolic differences highlighted in silico and in vitro provide important insights to the different levels of pathogenicity observed in each of the studied species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2644-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana G Ferrarini
- ERABLE, Inria, 43, Bd du 11 Novembre 1918, Villeurbanne, France.,CBiot, UFRGS, Av Bento Gon'calves, Porto Alegre, 9500, Brazil.,Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, 43, Bd du 11 Novembre 1918, Villeurbanne, France
| | | | - Scheila G Mucha
- CBiot, UFRGS, Av Bento Gon'calves, Porto Alegre, 9500, Brazil
| | - Tony L Palama
- Université de Lyon, Institut des Sciences Analytiques (CNRS, ENS Lyon, Université Lyon 1), 5, Rue de la Doua, Villeurbanne, France.,Current address: LISBP - INSA Toulouse, Toulouse, France
| | - Élodie Jobard
- Université de Lyon, Institut des Sciences Analytiques (CNRS, ENS Lyon, Université Lyon 1), 5, Rue de la Doua, Villeurbanne, France
| | - Bénédicte Elena-Herrmann
- Université de Lyon, Institut des Sciences Analytiques (CNRS, ENS Lyon, Université Lyon 1), 5, Rue de la Doua, Villeurbanne, France.,Université de Lyon, Centre Léon Bérard, Département d'oncologie médicale, 28, rue Laënnec, Lyon, France
| | - Ana T R Vasconcelos
- Laboratório Nacional de Computaćão Científica, Av. Getúlio Vargas, 333, Petrópolis, Brazil
| | - Florence Tardy
- Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31, Av Tony Garnier, Lyon, France.,Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, 1 Avenue Bourgelat, Marcy L'Étoile, France
| | - Irene S Schrank
- CBiot, UFRGS, Av Bento Gon'calves, Porto Alegre, 9500, Brazil
| | - Arnaldo Zaha
- CBiot, UFRGS, Av Bento Gon'calves, Porto Alegre, 9500, Brazil
| | - Marie-France Sagot
- ERABLE, Inria, 43, Bd du 11 Novembre 1918, Villeurbanne, France. .,Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, 43, Bd du 11 Novembre 1918, Villeurbanne, France.
| |
Collapse
|
18
|
Phenotypic characterization of Mycoplasma synoviae induced changes in the metabolic and sensitivity profile of in vitro infected chicken chondrocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613730. [PMID: 25243158 PMCID: PMC4160629 DOI: 10.1155/2014/613730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/09/2014] [Accepted: 08/10/2014] [Indexed: 11/18/2022]
Abstract
In infectious synovitis caused by Mycoplasma synoviae chicken chondrocytes (CCH) may come into direct contact with these bacteria that are also capable of invading CCH in vitro. In this study, phenotype microarrays were used to evaluate the influence of Mycoplasma synoviae on the global metabolic activity of CCH. Therefore, CCH were cultured in the presence of 504 individual compounds, spotted in wells of 11 phenotype microarrays for eukaryotic cells, and exposed to Mycoplasma synoviae membranes or viable Mycoplasma synoviae. Metabolic activity and sensitivity of normal cells versus infected cells were evaluated. Metabolic profiles of CCH treated with viable Mycoplasma synoviae or its membranes were significantly different from those of CCH alone. CCH treated with Mycoplasma synoviae membranes were able to use 48 carbon/nitrogen sources not used by CCH alone. Treatment also influenced ion uptake in CCH and intensified the sensitivity to 13 hormones, 5 immune mediators, and 29 cytotoxic chemicals. CCH were even more sensitive to hormones/immune mediators when exposed to viable Mycoplasma synoviae. Our results indicate that exposure to Mycoplasma synoviae or its membranes induces a wide range of metabolic and sensitivity modifications in CCH that can contribute to pathological processes in the development of infectious synovitis.
Collapse
|
19
|
Herren JK, Paredes JC, Schüpfer F, Arafah K, Bulet P, Lemaitre B. Insect endosymbiont proliferation is limited by lipid availability. eLife 2014; 3:e02964. [PMID: 25027439 PMCID: PMC4123717 DOI: 10.7554/elife.02964] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spiroplasma poulsonii is a maternally transmitted bacterial endosymbiont that is naturally associated with Drosophila melanogaster. S. poulsonii resides extracellularly in the hemolymph, where it must acquire metabolites to sustain proliferation. In this study, we find that Spiroplasma proliferation specifically depletes host hemolymph diacylglyceride, the major lipid class transported by the lipoprotein, Lpp. RNAi-mediated knockdown of Lpp expression, which reduces the amount of circulating lipids, inhibits Spiroplasma proliferation demonstrating that bacterial proliferation requires hemolymph-lipids. Altogether, our study shows that an insect endosymbiont acquires specific lipidic metabolites from the transport lipoproteins in the hemolymph of its host. In addition, we show that the proliferation of this endosymbiont is limited by the availability of hemolymph lipids. This feature could limit endosymbiont over-proliferation under conditions of host nutrient limitation as lipid availability is strongly influenced by the nutritional state. DOI:http://dx.doi.org/10.7554/eLife.02964.001 All animals host a large number of harmless microbes. Often the two partners involved in these interactions will depend on each other to thrive: microbes support important host functions and in return the host provides a safe place to live and a continuous supply of food. Many microbes that are intimately associated with animals have lost the ability to gain nutrients from sources other than their host and are unable to survive on their own. However, in many cases, the source and the type of nutrients provided to the microbes are unknown. One of the most common microbial species found in insects is Spiroplasma. This microbe lives in very large numbers in the fluid that fills the body cavities of insects, called the hemolymph. The microbes are transmitted from mother to offspring, and in some circumstances can provide benefits to the insects; for instance, Spiroplasma-infested flies appear to be protected against infection by some parasites. Unfortunately, as it is difficult to study insect–microbe relationships, little else is known about the physiological interactions between these two species. Herren et al. studied the association between Spiroplasma and the fly Drosophila melanogaster. Under normal conditions, Spiroplasma only reduces the life span of the infested fly. This indicates that Spiroplasma has a low impact on the general fitness of its host, only negatively affecting the survival and egg laying ability of old flies. When flies had limited access to nutrients, the number of Spiroplasma they carried was reduced, without the flies losing fitness. This suggests that Spiroplasma growth is dependent on something in the flies' diet. To understand which nutrients are important for the growth of Spiroplasma in Drosophila, Herren et al. analyzed the hemolymph of flies and found that there are fewer fatty-molecules, called lipids, when nutrients are limited. Healthy flies carrying Spiroplasma also have fewer lipids in their hemolymph, suggesting that these are what Spiroplasma feed on. Indeed, inactivating a protein required by the fly to transport lipids to the hemolymph reduced the growth of Spiroplasma in these flies. Herren et al. concluded that the growth of Spiroplasma inside its host is limited by the availability of lipids in the hemolymph. Since this is dependent on diet, the dependence on lipids couples the growth of Spiroplasma to the nutritional state of its host. Herren et al. speculate that this mechanism reduces the fitness cost of harboring the microbes and prevents the damaging consequence of an uncontrolled proliferation of the microbes. Moreover, Spiroplasma's preference for lipids may explain why it helps to protect flies against parasitic infection, as many parasites also rely on lipids for their growth. Herren et al. suggest this strategy could also be used in other animal–microbe associations. DOI:http://dx.doi.org/10.7554/eLife.02964.002
Collapse
Affiliation(s)
- Jeremy K Herren
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Juan C Paredes
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Karim Arafah
- Platform BioPark Archamps, Saint Julien en Genevois, France
| | - Philippe Bulet
- Platform BioPark Archamps, Saint Julien en Genevois, France Université Joseph Fourier, AGIM FRE CNRS, La Tronche, France
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
20
|
Semi-automated curation of metabolic models via flux balance analysis: a case study with Mycoplasma gallisepticum. PLoS Comput Biol 2013; 9:e1003208. [PMID: 24039564 PMCID: PMC3764002 DOI: 10.1371/journal.pcbi.1003208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
Abstract
Primarily used for metabolic engineering and synthetic biology, genome-scale metabolic modeling shows tremendous potential as a tool for fundamental research and curation of metabolism. Through a novel integration of flux balance analysis and genetic algorithms, a strategy to curate metabolic networks and facilitate identification of metabolic pathways that may not be directly inferable solely from genome annotation was developed. Specifically, metabolites involved in unknown reactions can be determined, and potentially erroneous pathways can be identified. The procedure developed allows for new fundamental insight into metabolism, as well as acting as a semi-automated curation methodology for genome-scale metabolic modeling. To validate the methodology, a genome-scale metabolic model for the bacterium Mycoplasma gallisepticum was created. Several reactions not predicted by the genome annotation were postulated and validated via the literature. The model predicted an average growth rate of 0.358±0.12, closely matching the experimentally determined growth rate of M. gallisepticum of 0.244±0.03. This work presents a powerful algorithm for facilitating the identification and curation of previously known and new metabolic pathways, as well as presenting the first genome-scale reconstruction of M. gallisepticum. Flux balance analysis (FBA) is a powerful approach for genome-scale metabolic modeling. It provides metabolic engineers with a tool for manipulating, predicting, and optimizing metabolism for biotechnological and biomedical purposes. However, we posit that it can also be used as tool for fundamental research in understanding and curating metabolic networks. Specifically, by using a genetic algorithm integrated with FBA, we developed a curation approach to identify missing reactions, incomplete reactions, and erroneous reactions. Additionally, it was possible to take advantage of the ensemble information from the genetic algorithm to identify the most critical reactions for curation. We tested our strategy using Mycoplasma gallisepticum as our model organism. Using the genome annotation as the basis, the preliminary genome-scale metabolic model consisted of 446 metabolites involved in 380 reactions. Carrying out our analysis, we found over 80 incorrect reactions and 16 missing reactions. Based upon the guidance of the algorithm, we were able to curate and resolve all discrepancies. The model predicted an average bacterial growth rate of 0.358±0.12 h−1 compared to the experimentally observed 0.244±0.03 h−1. Thus, our approach facilitated the curation of a genome-scale metabolic network and generated a high quality metabolic model.
Collapse
|
21
|
Optimization of an antibiotic sensitivity assay for Mycoplasma hyosynoviae and susceptibility profiles of field isolates from 1997 to 2011. Vet Microbiol 2012; 158:104-8. [PMID: 22397937 DOI: 10.1016/j.vetmic.2012.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 11/20/2022]
Abstract
Mycoplasma hyosynoviae is a common agent responsible for polyarthritis leading to decreased production in swine herds worldwide. Antimicrobial agents are used to combat infections; however breakpoints for M. hyosynoviae have not yet been established. A number of methods have previously been utilized to analyze minimum inhibitory concentrations (MICs) for antibiotics against M. hyosynoviae; however these techniques as currently described are not easily standardized between laboratories. A dry microbroth dilution method was conducted to compare the minimum inhibitory concentrations (MICs) for 18 antibiotics, representative of different classes, against 24 recent isolates (23 field isolates and the type strain) of M. hyosynoviae. The MICs were determined using standard, commercially available 96-well Sensititre(®) plates containing various freeze-dried antibiotics at a range of concentrations appropriate to their potency. Clindamycin (CLI), a lincosamide antibiotic, showed the highest activity and most consistent inhibition for all isolates with an MIC(50) of ≤ 0.12 μg/ml. Tiamulin (TIA), a pleuromutilin derivative, exhibited an MIC(50) of ≤ 0.25 μg/ml. The isolates had similar levels of susceptibility to the quinolones, enrofloxacin (ENRO) and danofloxacin (DANO), exhibiting an MIC(50) of 0.25 μg/ml and 0.5 μg/ml, respectively. For the macrolides, the MIC(50) for tylosin (TYLT) and tilmicosin (TIL) was ≤ 0.25 μg/ml and ≤ 2 μg/ml respectively, but was ≤ 16 μg/ml for tulathromycin (TUL). For the aminoglycosides, the MIC(50) for gentamicin (GEN) was ≤ 0.5 μg/ml, while spectinomycin (SPE) and neomycin (NEO) had an MIC(50) of ≤ 4 μg/ml. The tetracyclines, oxytetracycline (OXY) and chlortetracycline (CTET) both had an MIC(50) of ≤ 2 μg/ml. Florfenicol (FFN) exhibited a MIC(50) of ≤ 1 μg/ml. All isolates were resistant to penicillin (PEN), ampicillin (AMP), ceftiofur (TIO), trimethoprim/sulfamethoxazole (SXT), and sulphadimethoxine (SDM) at all concentrations. Within the isolates tested, there was a range of sensitivity detected, with some isolates being overall more resistant while others appeared more susceptible. Further research is required to demonstrate how this MIC data correlates to clinical efficacy of the various antibiotics in the field.
Collapse
|