1
|
Koloti LE, Nkuna R, Matambo TS. Impact of current anthropogenic activities on Blesbokspruit wetland microbiome and functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170010. [PMID: 38219994 DOI: 10.1016/j.scitotenv.2024.170010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Till present, natural wetlands have been continuously subjected to intensive pollution stress in recent years, mainly because of the rapidly growing industrialization and urbanization that are associated with a myriad of anthropogenic activities and land use practices. These man-made sources of pollution change the chemical properties of the natural wetlands, which in turn alter their microbial ecological biodiversity and functions. For the first time, the impact of the current anthropogenic activities and land use practices on the Blesbokspruit wetland chemical status and their consequential effect on the microbial structure and functions were investigated. Sites of high pollution intensity were identified using geographic information systems mapping (GISMapping) and the wetland microbiome and functional profile were studied through the use of high throughput shotgun metagenomics sequencing analysis. The predominant phyla that stemmed along the Blesbokspruit wetland were found to be Proteobacteria which was more dominant in water (93 %) than in the sediments (89 %), followed by firmicutes which was more abundant in sediments (9 %) than in water (6 %), and Bacteroidetes were relatively low in abundance within both the sediments (2 %) and the overlying water (1 %). The genera Klebsiella (70.4 %-28.2 %), Citrobacter (52.0 %-30.6 %), Escherichia (51.0 %-8.4 %), and Lynsinibacillus (9.3 %-1.5 %) were observed in most water and sediment samples. Within the six polluted sites, Site 2 was found to be the most highly polluted site in the Blesbokspruit wetland with very high COD (900 mg/L), TOC (11.60 mg/L), NO3- (39.74 mg/L), NO2- (12.64 mg/L), PO43 (4.14 mg/L), Fl- (143.88 mg/L), Cl- (145.95 mg/L) concentrations recorded in the water and high levels of TOC (0.37 mg/L), TC (6.92 %), TN (1.82 %), TS (0.53 %) in sediments. The microbial community structure and functions were found to be strongly influenced by the high organic content from the intense agricultural activities and sewage spillages and heavy metals from the mining activities nearby.
Collapse
Affiliation(s)
- Lebohang E Koloti
- Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa, Christiaan De Wet/Pioneer, P.O. Box X6, FL 1710, South Africa
| | - Rosina Nkuna
- Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa, Christiaan De Wet/Pioneer, P.O. Box X6, FL 1710, South Africa
| | - Tonderayi S Matambo
- Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa, Christiaan De Wet/Pioneer, P.O. Box X6, FL 1710, South Africa; Centre of Competence in Environmental Biotechnology, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan De Wet/Pioneer, P.O. Box X6, FL 1710, South Africa.
| |
Collapse
|
2
|
Bisi-Johnson MA, Adedeji AA, Sulaiman AA, Adefisoye MA, Okoh AI. Isolation and genotypic characterization of extended-spectrum beta-lactamase-producing Escherichia coli O157:H7 and Aeromonas hydrophila from selected freshwater sources in Southwest Nigeria. Sci Rep 2023; 13:10746. [PMID: 37400612 DOI: 10.1038/s41598-023-38014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
The proliferation of antibiotic-resistant bacteria and antimicrobial resistance is a pressing public health challenge because of their possible transfer to humans via contact with polluted water sources. In this study, three freshwater resources were assessed for important physicochemical characteristics as well as heterotrophic and coliform bacteria and as potential reservoirs for extended-spectrum beta-lactamase (ESBL) strains. The physicochemical characteristics ranged from 7.0 to 8.3; 25 to 30 °C, 0.4 to 93 mg/L, 0.53 to 8.80 mg/L and 53 to 240 mg/L for pH, temperature, dissolved oxygen (DO), biological oxygen demand (BOD5) and total dissolved solids, respectively. The physicochemical characteristics mostly align with guidelines except for the DO and BOD5 in some instances. Seventy-six (76) Aeromonas hydrophila and 65 Escherichia coli O157: H7 isolates were identified by preliminary biochemical analysis and PCR from the three sites. Among these, A. hydrophila displayed higher frequencies of antimicrobial resistance, with all 76 (100%) isolates completely resistant to cefuroxime and cefotaxime and with MARI ≥ 0.61. The test isolates showed more than 80% resistance against five of the ten test antimicrobials, with resistance against cefixime, a cephalosporin antibiotic being the highest at 95% (134/141). The frequency of the detection of the resistance genes in the A. hydrophila isolates generally ranged between 0% (blaSHV) and 26.3% (blaCTX-M), while the frequency of detection among the E. coli O157:H7 isolates ranged between 4.6% (blaCTX-M) and 58.4% (blaTEM). Our findings indicate that the distribution of antibiotic-resistant bacteria with diverse ESBL-producing capabilities and virulence genes in freshwater sources potentially threatens public health and the environment.
Collapse
Affiliation(s)
| | - Atilade A Adedeji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adebayo A Sulaiman
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Martins A Adefisoye
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan-Remo, Nigeria.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Sharma A, Chanu TI, Nayak SK, Jahageerdar S, Krishna G. Pathogenesis of Aeromonas caviae in Clariasmagur. Microb Pathog 2022; 169:105662. [PMID: 35781004 DOI: 10.1016/j.micpath.2022.105662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Aeromonas spp. is a pathogenic bacteria that potentially cause infection in farmed fish, including Catfishes. In the present study, dominant bacteria were isolated from diseased Clarias magur and tentatively named BLBM-05. Based on morphological, physiological, and biochemical features as well as 16S rRNA gene sequence and gyrB gene sequences (Gen Bank accession number: MT973994.1 and MZ398017.1), the bacteria in the isolate was found to be Aeromonas caviae. Further, the isolate was screened for five known virulence genes, namely β-hemolysin, lafA, exu, ompA1 and ascV. Among them, three virulence genes related to pathogenicity, including aerolysin (aer), outer membrane protein (ompA1), lateral flagella (lafA), were identified in the A. caviae isolate. The median lethal dosage (LD50) of the BLBM-05 isolate for magur was determined as 1.53x106 CFU/mL. The histopathological analysis showed that the BLBM-05 isolate induced considerable histological lesions in the magur fish, including necrosis, hemolysis of erythrocytes, myolysis, hemorrhage, and desquamation in the intestinal tissue, tissue loosening, and infiltration of inflammatory cells. Drug sensitivity test showed that the isolate was susceptible to Gentamicin, Ceftazidine, Ceftrioxone, Amikacin, Tetracycline, Meropener and Oxytetracycline. The present results provide a scientific basis to identify A. caviae further, a line of treatment for magur infected by this pathogen.
Collapse
Affiliation(s)
- Arun Sharma
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, Maharashtra, 400061, India.
| | - Thongam Ibemcha Chanu
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, Maharashtra, 400061, India
| | - Sunil Kumar Nayak
- ICAR-Central Institute of Fisheries Education, Powarkheda Centre, Hoshangabad, Madhya Pradesh, 461110, India
| | - Shrinivas Jahageerdar
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, Maharashtra, 400061, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai, Maharashtra, 400061, India
| |
Collapse
|
4
|
Liu F, Yuwono C, Tay ACY, Wehrhahn MC, Riordan SM, Zhang L. Analysis of global Aeromonas veronii genomes provides novel information on source of infection and virulence in human gastrointestinal diseases. BMC Genomics 2022; 23:166. [PMID: 35227192 PMCID: PMC8883699 DOI: 10.1186/s12864-022-08402-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background Aeromonas veronii is a Gram-negative rod-shaped motile bacterium that inhabits mainly freshwater environments. A. veronii is a pathogen of aquatic animals, causing diseases in fish. A. veronii is also an emerging human enteric pathogen, causing mainly gastroenteritis with various severities and also often being detected in patients with inflammatory bowel disease. Currently, limited information is available on the genomic information of A. veronii strains that cause human gastrointestinal diseases. Here we sequenced, assembled and analysed 25 genomes (one complete genome and 24 draft genomes) of A. veronii strains isolated from patients with gastrointestinal diseases using combine sequencing technologies from Illumina and Oxford Nanopore. We also conducted comparative analysis of genomes of 168 global A. veronii strains isolated from different sources. Results We found that most of the A. veronii strains isolated from patients with gastrointestinal diseases were closely related to each other, and the remaining were closely related to strains from other sources. Nearly 300 putative virulence factors were identified. Aerolysin, microbial collagenase and multiple hemolysins were present in all strains isolated from patients with gastrointestinal diseases. Type III Secretory System (T3SS) in A. veronii was in AVI-1 genomic island identified in this study, most likely acquired via horizontal transfer from other Aeromonas species. T3SS was significantly less present in A. veronii strains isolated from patients with gastrointestinal diseases as compared to strains isolated from fish and domestic animals. Conclusions This study provides novel information on source of infection and virulence of A. veronii in human gastrointestinal diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08402-1.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alfred Chin Yen Tay
- Helicobacter Research Laboratory, School of Pathology and Laboratory Medicine, Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Australia
| | - Michael C Wehrhahn
- Douglass Hanly Moir Pathology, 14 Giffnock Ave, Macquarie Park, NSW, 2113, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
5
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Cosme F, Inês A, Vilela A. Consumer's acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Food Res Int 2022; 151:110842. [PMID: 34980381 DOI: 10.1016/j.foodres.2021.110842] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Human gut microbiota is a protective agent of intestinal and systemic health, and its modulation is of great interest for human wellbeing. In the world of biotics, besides probiotics, prebiotics, and synbiotics, also appears the denomination of "postbiotics" and "psychobiotics". Fermented dairy products are, traditionally, the major source of probiotics. Nevertheless, due to the increasing number of lactose-intolerant individuals and strict vegetarians, there is a need for innovative non-dairy products. Non-dairy biotics are being included in the normal diet and due to technological advances, many products are created using non-conventional food matrices like kombucha tea, herbal tea, baking mix, and cereal-based products. The microorganisms most used as probiotics in many of the non-dairy products are strains belonging to the genera Bifidobacterium, Enterococcus, Lactobacillus, Lactococcus, Streptococcus, and Bacillus, and some yeast strains namely Saccharomyces cerevisiae var. boulardii. Recently, several other yeasts have been described as having probiotic properties. This review describes gut-derived effects in humans of possible microorganisms, such as yeasts, and bacteria, isolated from non-dairy fermented and non-fermented foods and beverages. The microorganisms responsible for the processing of these non-dairy fermented products, together with the prebiotics, form a class of nutrients that have been proven to be beneficial for our gut health.
Collapse
Affiliation(s)
- Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - António Inês
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alice Vilela
- Chemistry Research Centre-Vila Real (CQ-VR), Dep. of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
7
|
Chen JS, Hsu GJ, Hsu BM, Yang PY, Kuo YJ, Wang JL, Hussain B, Huang SW. Prevalence, virulence-gene profiles, antimicrobial resistance, and genetic diversity of human pathogenic Aeromonas spp. from shellfish and aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117361. [PMID: 34004475 DOI: 10.1016/j.envpol.2021.117361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Aeromonas are found in various habitats, particularly in aquatic environments. This study examined the presence of the most common human pathogenic Aeromonas species (Aeromonas caviae, A. hydrophila, and A. veronii) in surface water, sea water, and shellfish. The detection rates in fishing harbour seawater, shellfish farming seawater, and a river basin were 33.3%, 26.4%, and 29.4%, respectively, and high prevalence was observed in summer. The detection rates in shellfish procured from a fish market and shellfish farm were 34.9% and 13.3%, respectively. The most abundant species of human pathogenic Aeromonas detected via water sampling was A. caviae, whereas that obtained via shellfish sampling was A. veronii. The prevalence of human pathogenic Aeromonas in river water was lower in fishing harbours and in the estuary shellfish farming area. Here, 25 isolates of human pathogenic Aeromonas species were isolated from 257 samples and divided among 16 virulence profiles. The high virulence gene-carrying isolates (more than six genes) belonged to A. hydrophila. The shellfish-sourced isolates had the highest detection rates of act, aerA, and fla genes than of other virulence genes, and vice versa for seawater-sourced isolates. The Aeromonas isolates showed high levels of resistance to ampicillin-sulbactam; however, none were resistant to cefepime, ciprofloxacin, or gentamicin. The incidence of multiple drug resistance (MDR) in Aeromonas isolates was 20%. In this study, phylogenetic analysis with 16S rRNA sequencing, biochemical tests and enterobacterial repetitive intergenic consensus-polymerase chain reaction fingerprinting facilitated the distinct categorisation of three species of human pathogenic Aeromonas isolates. In addition, A. veronii isolates from the same geographical area were also concentrated in the same cluster. This study provides information on the risk of infection by Aeromonas with MDR and multiple virulence genes isolated from shellfish and aquatic environments.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Center for Innovative on Aging Society, National Chung Cheng University, Chiayi County, Taiwan.
| | - Pei-Yu Yang
- Department of Laboratory, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung, Taiwan; Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
van Bel N, van der Wielen P, Wullings B, van Rijn J, van der Mark E, Ketelaars H, Hijnen W. Aeromonas species from non-chlorinated distribution systems and their competitive planktonic growth in drinking water. Appl Environ Microbiol 2021; 87:AEM.02867-20. [PMID: 33310721 PMCID: PMC8090877 DOI: 10.1128/aem.02867-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Aeromonas is included in the Dutch Drinking Water Decree as an indicator for elevated microbial regrowth in non-chlorinated drinking water distribution systems (DWDS). The temporal and spatial diversity of Aeromonas species in ten DWDS and their planktonic growth characteristics for different carbon sources was investigated. Genotyping of the gyrB gene of isolates showed a non-systematic temporal and spatial variable prevalence of seven different Aeromonas species in these DWDS and no correlation with AOC-P17/NOX and Aeromonas concentrations. Pure cultures of these seven species showed a high affinity to low concentrations (μg/L) of individual amino acids and fatty acids, compounds associated with biomass. Growth occurred at 0.5 μg-C/L of an amino acid mixture. Growth of a mixed community of A. rivuli, A. salmonicida, A. sobria and A. veronii in drinking water occurred in pasteurized samples, however, no growth and decay occurred in competition with the autochthonous bacteria (non-pasteurized samples). This community also failed to grow in non-pasteurized distribution samples from a location with clear increase in planktonic Aeromonas concentrations in the transported drinking water. For competitive planktonic growth of Aeromonas an amino acid concentration of ≥5 μg-C/L is required. AOC-P17/NOX concentrations showed that such concentrations are not expected in Dutch drinking water. Therefore, we suspect that competitive planktonic growth is not the major cause of the observed non-compliance with the Aeromonas standard in non-chlorinated DWSD.Importance The occurrence of the bacterial genus Aeromonas in non-chlorinated drinking water in the Netherlands is regarded as an indication for elevated microbial regrowth in the distribution system. Identification of the prevalent species in ten distribution systems by genotyping yielded seven different species, with A. rivuli, A. veronii and A. sobria as the most dominant ones. Planktonic growth experiments of pure cultures confirmed former published affinity of Aeromonas for certain biomass compounds (amino and fatty acids). In competition with the autochthonous microflora, however, planktonic growth was not observed, only after addition of a threshold amino acid concentration of 5 μg-C/L. Based on our results and further observations we deduced that planktonic growth of Aeromonas in the DWDS is not very likely. Benthic growth in loose deposits and planktonic release is a more plausible explanation for the observed planktonic increase of Aeromonas.
Collapse
Affiliation(s)
- Nikki van Bel
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | - Paul van der Wielen
- KWR Water Research Institute, Nieuwegein, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Bart Wullings
- KWR Water Research Institute, Nieuwegein, the Netherlands
| | | | | | | | - Wim Hijnen
- KWR Water Research Institute, Nieuwegein, the Netherlands
- Evides Water Company, Rotterdam, the Netherlands
| |
Collapse
|
9
|
O'Brien AM, Yu ZH, Luo DY, Laurich J, Passeport E, Frederickson ME. Resilience to multiple stressors in an aquatic plant and its microbiome. AMERICAN JOURNAL OF BOTANY 2020; 107:273-285. [PMID: 31879950 DOI: 10.1002/ajb2.1404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/09/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Outcomes of species interactions, especially mutualisms, are notoriously dependent on environmental context, and environments are changing rapidly. Studies have investigated how mutualisms respond to or ameliorate anthropogenic environmental changes, but most have focused on nutrient pollution or climate change and tested stressors one at a time. Relatively little is known about how mutualisms may be altered by or buffer the effects of multiple chemical contaminants, which differ fundamentally from nutrient or climate stressors and are especially widespread in aquatic habitats. METHODS We investigated the impacts of two contaminants on interactions between the duckweed Lemna minor and its microbiome. Sodium chloride (salt) and benzotriazole (a corrosion inhibitor) often co-occur in runoff to water bodies where duckweeds reside. We tested three L. minor genotypes with and without the culturable portion of their microbiome across field-realistic gradients of salt (3 levels) and benzotriazole (4 levels) in a fully factorial experiment (24 treatments, tested on each genotype) and measured plant and microbial growth. RESULTS Stressors had conditional effects. Salt decreased both plant and microbial growth and decreased plant survival more as benzotriazole concentrations increased. In contrast, benzotriazole did not affect microbial abundance and even benefited plants when salt and microbes were absent, perhaps due to biotransformation into growth-promoting compounds. Microbes did not ameliorate duckweed stressors; microbial inoculation increased plant growth, but not at high salt concentrations. CONCLUSIONS Our results suggest that multiple stressors matter when predicting responses of mutualisms to global change and that beneficial microbes may not always buffer hosts against stress.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Zhu Hao Yu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto
| | - Dian-Ya Luo
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Jason Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Elodie Passeport
- Department of Chemical Engineering and Applied Chemistry, University of Toronto
- Department of Civil and Mineral Engineering, University of Toronto
| | | |
Collapse
|
10
|
Rather MA, Willayat MM, Wani SA, Hussain SA, Shah SA. Enterotoxin gene profile and molecular epidemiology of Aeromonas species from fish and diverse water sources. J Appl Microbiol 2019; 127:921-931. [PMID: 31211898 DOI: 10.1111/jam.14351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
Abstract
AIMS This investigation was undertaken to study the prevalence, enterotoxin gene profile and molecular epidemiology of Aeromonads from various sources of water (182) and fish (173). METHODS AND RESULTS A total of 116 Aeromonas sp. were isolated, of which 48 (26·37%) were from water and 68 (34·62%) were from fish samples collected from retail markets and fish farms. The Aeromonads were recovered from all types of water sources viz. drinking water (13%), surface waters (26%) and fish ponds (69%). The most prevalent species recovered from drinking water was A. hydrophila, from fish ponds it was A. caviae, from surface water sources A. hydrophila and A. caviae were recovered more frequently, and A. hydrophila and A. veronii bv. sobria were isolated predominantly from gills of fish samples. On multiplex PCR analysis for the detection of enterotoxin genes (act, alt, ast), the above mentioned Aeromonas species frequently contained enterotoxin genes, irrespective of their sources. From isolates across all the sources, act (63%) and alt (57%) genes were encountered more frequently than ast (6%). The enterobacterial repetitive intergenic consensus sequences polymerase chain reaction was used for typing of isolates and most of the isolates from water and fish were related, owing to similar ecosystem. CONCLUSION A wide distribution of enterotoxin genes in Aeromonads from water and fish is a potential public health threat and molecular genotyping can be helpful to study epidemiology of the pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY A high proportion of isolates recovered from diverse water sources, particularly potable drinking water and fish samples carried one or more enterotoxin genes thereby indicating a potential pathogenic nature of isolates from these sources. The genetic relatedness was detected amongst many isolates recovered from water sources and fish samples indicating circulation of familiar virulent clones in the aquatic environments.
Collapse
Affiliation(s)
- M A Rather
- Division of Veterinary Public Health and Epidemiology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, J&K, India
| | - M M Willayat
- Division of Veterinary Public Health and Epidemiology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, J&K, India
| | - S A Wani
- Division of Veterinary Microbiology and Immunology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, J&K, India
| | - S A Hussain
- Division of Veterinary Public Health and Epidemiology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, J&K, India
| | - S A Shah
- Division of Veterinary Pathology of Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama, J&K, India
| |
Collapse
|
11
|
Kregiel D, Rygala A, Kolesinska B, Nowacka M, Herc AS, Kowalewska A. Antimicrobial and Antibiofilm N-acetyl-L-cysteine Grafted Siloxane Polymers with Potential for Use in Water Systems. Int J Mol Sci 2019; 20:E2011. [PMID: 31022884 PMCID: PMC6515369 DOI: 10.3390/ijms20082011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 01/28/2023] Open
Abstract
Antibiofilm strategies may be based on the prevention of initial bacterial adhesion, the inhibition of biofilm maturation or biofilm eradication. N-acetyl-L-cysteine (NAC), widely used in medical treatments, offers an interesting approach to biofilm destruction. However, many Eubacteria strains are able to enzymatically decompose the NAC molecule. This is the first report on the action of two hybrid materials, NAC-Si-1 and NAC-Si-2, against bacteria isolated from a water environment: Agrobacterium tumefaciens, Aeromonas hydrophila, Citrobacter freundii, Enterobacter soli, Janthinobacterium lividum and Stenotrophomonas maltophilia. The NAC was grafted onto functional siloxane polymers to reduce its availability to bacterial enzymes. The results confirm the bioactivity of NAC. However, the final effect of its action was environment- and strain-dependent. Moreover, all the tested bacterial strains showed the ability to degrade NAC by various metabolic routes. The NAC polymers were less effective bacterial inhibitors than NAC, but more effective at eradicating mature bacterial biofilms.
Collapse
Affiliation(s)
- Dorota Kregiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Anna Rygala
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Maria Nowacka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Agata S Herc
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
12
|
Ramadan H, Ibrahim N, Samir M, Abd El-Moaty A, Gad T. Aeromonas hydrophilafrom marketed mullet (Mugil cephalus) in Egypt: PCR characterization ofβ-lactam resistance and virulence genes. J Appl Microbiol 2018; 124:1629-1637. [DOI: 10.1111/jam.13734] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Affiliation(s)
- H. Ramadan
- Hygiene and Zoonoses Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura 35516 Egypt
| | - N. Ibrahim
- Bacteriology, Mycology and Immunology Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura 35516 Egypt
| | - M. Samir
- Zoonoses Department; Faculty of Veterinary Medicine; Zagazig University; Zagazig 44511 Egypt
| | - A. Abd El-Moaty
- Bacteriology, Mycology and Immunology Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura 35516 Egypt
| | - T. Gad
- Food Hygiene and Control Department; Faculty of Veterinary Medicine; Mansoura University; Mansoura 35516 Egypt
| |
Collapse
|
13
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
14
|
Mukherjee N, Bartelli D, Patra C, Chauhan BV, Dowd SE, Banerjee P. Microbial Diversity of Source and Point-of-Use Water in Rural Haiti - A Pyrosequencing-Based Metagenomic Survey. PLoS One 2016; 11:e0167353. [PMID: 27936055 PMCID: PMC5147895 DOI: 10.1371/journal.pone.0167353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/12/2016] [Indexed: 12/26/2022] Open
Abstract
Haiti endures the poorest water and sanitation infrastructure in the Western Hemisphere, where waterborne diseases cause significant morbidity and mortality. Most of these diseases are reported to be caused by waterborne pathogens. In this study, we examined the overall bacterial diversity of selected source and point-of-use water from rural areas in Central Plateau, Haiti using pyrosequencing of 16s rRNA genes. Taxonomic composition of water samples revealed an abundance of Firmicutes phyla, followed by Proteobacteria and Bacteroidetes. A total of 38 bacterial families and 60 genera were identified. The presence of several Klebsiella spp. (tentatively, K. pneumoniae, K. variicola and other Klebsiella spp.) was detected in most water samples. Several other human pathogens such as Aeromonas, Bacillus, Clostridium, and Yersinia constituted significantly higher proportion of bacterial communities in the point-of-use water samples compared to source water. Bacterial genera traditionally associated with biofilm formation, such as Chryseobacterium, Fusobacterium, Prevotella, Pseudomonas were found in the point-of-use waters obtained from water filters or domestic water storage containers. Although the pyrosequencing method utilized in this study did not reveal the viability status of these pathogens, the abundance of genetic footprints of the pathogens in water samples indicate the probable risk of bacterial transmission to humans. Therefore, the importance of appropriate handling, purification, and treatment of the source water needed to be clearly communicated to the communities in rural Haiti to ensure the water is safe for their daily use and intake.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
| | - Debra Bartelli
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
| | - Cyril Patra
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
| | - Bhavin V. Chauhan
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
| | - Scot E. Dowd
- Molecular Research LP (MR DNA), Shallowater, Texas, United States of America
| | - Pratik Banerjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Desoto Avenue, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
15
|
Piotrowska M, Popowska M. The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0911-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
Figueira V, Vaz-Moreira I, Silva M, Manaia CM. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. WATER RESEARCH 2011; 45:5599-611. [PMID: 21907383 DOI: 10.1016/j.watres.2011.08.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/13/2011] [Accepted: 08/13/2011] [Indexed: 05/22/2023]
Abstract
The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.
Collapse
Affiliation(s)
- Vânia Figueira
- CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | | | | | | |
Collapse
|