1
|
Park SC, Wiest MJ, Yan V, Wong PT, Schotsaert M. Induction of protective immune responses at respiratory mucosal sites. Hum Vaccin Immunother 2024; 20:2368288. [PMID: 38953250 PMCID: PMC11221474 DOI: 10.1080/21645515.2024.2368288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Many pathogens enter the host through mucosal sites. Thus, interfering with pathogen entry through local neutralization at mucosal sites therefore is an effective strategy for preventing disease. Mucosally administered vaccines have the potential to induce protective immune responses at mucosal sites. This manuscript delves into some of the latest developments in mucosal vaccination, particularly focusing on advancements in adjuvant technologies and the role of these adjuvants in enhancing vaccine efficacy against respiratory pathogens. It highlights the anatomical and immunological complexities of the respiratory mucosal immune system, emphasizing the significance of mucosal secretory IgA and tissue-resident memory T cells in local immune responses. We further discuss the differences between immune responses induced through traditional parenteral vaccination approaches vs. mucosal administration strategies, and explore the protective advantages offered by immunization through mucosal routes.
Collapse
Affiliation(s)
- Seok-Chan Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Wiest
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Vivian Yan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Zhang LZ, Du RJ, Wang D, Qin J, Yu C, Zhang L, Zhu HD. Enteral Route Nanomedicine for Cancer Therapy. Int J Nanomedicine 2024; 19:9889-9919. [PMID: 39351000 PMCID: PMC11439897 DOI: 10.2147/ijn.s482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier-portal vein/intestinal lymphatic vessels-systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanomedicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation of oral anticancer nanomedicines.
Collapse
Affiliation(s)
- Lin-Zhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Rui-Jie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Juan Qin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Adamczyk-Popławska M, Golec P, Piekarowicz A, Kwiatek A. The potential for bacteriophages and prophage elements in fighting and preventing the gonorrhea. Crit Rev Microbiol 2024; 50:769-784. [PMID: 37897236 DOI: 10.1080/1040841x.2023.2274849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
Bacteriophages are the most numerous entities on earth and are found everywhere their bacterial hosts live. As natural bacteria killers, phages are extensively investigated as a potential cure for bacterial infections. Neisseria gonorrhoeae (the gonococcus) is the etiologic agent of a sexually transmitted disease: gonorrhea. The rapid increase of resistance of N. gonorrhoeae to antibiotics urges scientists to look for alternative treatments to combat gonococcal infections. Phage therapy has not been tested as an anti-gonococcal therapy so far. To date, no lytic phage has been discovered against N. gonorrhoeae. Nevertheless, gonococcal genomes contain both dsDNA and ssDNA prophages, and viral particle induction has been documented. In this review, we consider literature data about the attempts of hunting for a bacteriophage specific for gonococci - the gonophage. We also discuss the potential application of prophage elements in the fight against N. gonorrhoeae. Temperate phages may be useful in preventing and treating gonorrhea as a scaffold for anti-gonococcal vaccine development and as a source of lytic enzymes with anti-gonococcal activity.
Collapse
Affiliation(s)
- Monika Adamczyk-Popławska
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Andrzej Piekarowicz
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Shamshirgaran MA, Golchin M. Necrotic enteritis in chickens: a comprehensive review of vaccine advancements over the last two decades. Avian Pathol 2024:1-46. [PMID: 39190009 DOI: 10.1080/03079457.2024.2398028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to poultry, leading to progressive deterioration of the small intestine, reduced performance, and increased mortality rates, causing economic losses in the poultry industry. The elimination of antimicrobial agents from chicken feed has imposed a need to explore alternative approaches for NE control, with vaccination emerging as a promising strategy to counteract the detrimental consequences associated with NE. This comprehensive study presents an overview of the extensive efforts made in NE vaccination from 2004 to2023. The study focuses on the development and evaluation of vaccine candidates designed to combat NE. Rigorous evaluations were conducted in both laboratory animals and broiler chickens, the target population, to assess the vaccines' capacity to elicit an immune response and provide substantial protection against toxin challenges and experimental NE infections. The review encompasses the design of vaccine candidates, the antigens employed, in vivo immune responses, and the efficacy of these vaccines in protecting birds from experimental NE infection. This review contributes to the existing knowledge of NE vaccination strategies, offering valuable insights for future research and development in this field.
Collapse
Affiliation(s)
- Mohammad Ali Shamshirgaran
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
5
|
Kirthika P, Senevirathne A, Park S, Aganja RP, Kim IS, Tae HJ, Lee JH. Intracellular Survival and Pathogenicity Modulation of Salmonella Lon, CpxR, and RfaL Mutants Used as Live Bacterial Vectors under Abiotic Stress, Unveiling the Link between Stress Response and Virulence in Epithelial Cells. Int J Mol Sci 2024; 25:9056. [PMID: 39201742 PMCID: PMC11354574 DOI: 10.3390/ijms25169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
In the current study, two Salmonella Typhimurium strains, JOL 912 and JOL 1800, were engineered from the wild-type JOL 401 strain through in-frame deletions of the lon and cpxR genes, with JOL 1800 also lacking rfaL. These deletions significantly attenuated the strains, impairing their intracellular survival and creating unique immunological profiles. This study investigates the response of these strains to various abiotic stress conditions commonly experienced in vivo, including temperature, acidity, osmotic, and oxidative stress. Notably, cold stress induced a non-significant trend towards increased invasion by Salmonella compared to other stressors. Despite the observed attenuation, no significant alterations in entry mechanisms (trigger vs. zipper) were noted between these strains, although variations were evident depending on the host cell type. Both strains effectively localized within the cytoplasm, demonstrating their ability to invade and interact with the intracellular environment. Immunologically, JOL 912 elicited a robust response, marked by substantial activation of nuclear factor kappa B (NF-kB), and chemokines, interleukin 8 (CXCL 8) and interleukin 10 (CXCL 10), comparable to the wild-type JOL 401 (over a fourfold increase compared to JOL 1800). In contrast, JOL 1800 exhibited a minimal immune response. Additionally, these attenuations influenced the expression of cyclins D1 and B1 and caspases 3 and 7, indicating cell cycle arrest at the G2/M phase and promotion of the G0/G1 to S phase transition, alongside apoptosis in infected cells. These findings provide valuable insights into the mechanisms governing the association, internalization, and survival of Salmonella mutants, enhancing our understanding of their regulatory effects on host cell physiology.
Collapse
Affiliation(s)
- Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| | - Sungwoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| | - In-Shik Kim
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan 54596, Republic of Korea; (I.-S.K.); (H.-J.T.)
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan 54596, Republic of Korea; (I.-S.K.); (H.-J.T.)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| |
Collapse
|
6
|
Heggie A, Thurston TLM, Ellis T. Microbial messengers: nucleic acid delivery by bacteria. Trends Biotechnol 2024:S0167-7799(24)00188-4. [PMID: 39117490 DOI: 10.1016/j.tibtech.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The demand for diverse nucleic acid delivery vectors, driven by recent biotechnological breakthroughs, offers opportunities for continuous improvements in efficiency, safety, and delivery capacity. With their enhanced safety and substantial cargo capacity, bacterial vectors offer significant potential across a variety of applications. In this review, we explore methods to engineer bacteria for nucleic acid delivery, including strategies such as engineering attenuated strains, lysis circuits, and conjugation machinery. Moreover, we explore pioneering techniques, such as manipulating nanoparticle (NP) coatings and outer membrane vesicles (OMVs), representing the next frontier in bacterial vector engineering. We foresee these advancements in bacteria-mediated nucleic acid delivery, through combining bacterial pathogenesis with engineering biology techniques, as a pivotal step forward in the evolution of nucleic acid delivery technologies.
Collapse
Affiliation(s)
- Alison Heggie
- Centre for Bacterial Resistance Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Teresa L M Thurston
- Centre for Bacterial Resistance Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10338-9. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
8
|
Bansal G, Ghanem M, Sears KT, Galen JE, Tennant SM. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 2024:eesp00042023. [PMID: 39023252 DOI: 10.1128/ecosalplus.esp-0004-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Salmonella enterica is a diverse species that infects both humans and animals. S. enterica subspecies enterica consists of more than 1,500 serovars. Unlike typhoidal Salmonella serovars which are human host-restricted, non-typhoidal Salmonella (NTS) serovars are associated with foodborne illnesses worldwide and are transmitted via the food chain. Additionally, NTS serovars can cause disease in livestock animals causing significant economic losses. Salmonella is a well-studied model organism that is easy to manipulate and evaluate in animal models of infection. Advances in genetic engineering approaches in recent years have led to the development of Salmonella vaccines for both humans and animals. In this review, we focus on current progress of recombinant live-attenuated Salmonella vaccines, their use as a source of antigens for parenteral vaccines, their use as live-vector vaccines to deliver foreign antigens, and their use as therapeutic cancer vaccines in humans. We also describe development of live-attenuated Salmonella vaccines and live-vector vaccines for use in animals.
Collapse
Affiliation(s)
- Garima Bansal
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mostafa Ghanem
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Khandra T Sears
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James E Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Piri-Gharaghie T, Ghajari G, Rezaeizadeh G, Adil M, Mahdi MH. A novel vaccine strategy against Brucellosis using Brucella abortus multi-epitope OMPs vaccine based on Lactococcus lactis live bacterial vectors. Int Immunopharmacol 2024; 134:112204. [PMID: 38703567 DOI: 10.1016/j.intimp.2024.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Brucella infections typically occur in mucosal membranes, emphasizing the need for mucosal vaccinations. This study evaluated the effectiveness of orally administering Lactococcus lactis (L. lactis) for producing the Brucella abortus multi-epitope OMPs peptide. A multi-epitope plasmid was generated through a reverse vaccinology method, and mice were administered the genetically modified L. lactis orally as a vaccine. The plasmid underwent digestion, synthesizing a 39 kDa-sized protein known as OMPs by the target group. The sera of mice that were administered the pNZ8124-OMPs-L. lactis vaccine exhibited a notable presence of IgG1 antibodies specific to outer membrane proteins (OMPs), heightened levels of interferon (IFN-λ) and tumor necrosis factor alpha (TNF-α), and enhanced transcription rates of interleukin 4 (IL-4) and interleukin 10 (IL-10). The spleen sections from the pNZ8124-OMPs-L. lactis and IRIBA group had less morphological damage associated with inflammation, infiltration of lymphocytes, and lesions to the spleen. The findings present a novel approach to utilizing the food-grade, non-pathogenic L. lactis as a protein cell factory to synthesize innovative immunological candidate OMPs. This approach offers a distinctive way to evaluate experimental medicinal items' practicality, safety, affordability, and long-term sustainability.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Faculty of Biological Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
10
|
Vemula S, Bonala S, Vadde NK, Natu JZ, Basha R, Vadde R, Ahmad S. Drug resistance and immunotherapy in gynecologic cancers. Life Sci 2023; 332:122104. [PMID: 37730109 DOI: 10.1016/j.lfs.2023.122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Gynecologic malignancies (GMs) are relatively less focused cancers by oncologists and researchers. The five-year survival rate of patients with GMs remained almost the same during the last decade. The development of drug resistance GMs makes it even more challenging to tackle due to tumor heterogeneity, genomic instability, viral/non-viral antigens, and etiological tumor origin. A precision medicine approach, including gene therapies, is under testing to restore tumor responsiveness to therapeutics and immunotherapy. With more data being uncovered, immunotherapy is emerging as a viable alternative for achieving promising results. This review highlights the drug resistance mechanisms and immunotherapeutic approaches to managing GMs better. The approval of immune therapeutic drugs in recent years shifted this notion. It provided hope for researchers, clinicians, and patients with GMs to experience the anti-cancer benefits of these therapies.
Collapse
Affiliation(s)
| | | | | | - Jay Z Natu
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Raasil Basha
- Department of Biology-Environmental Health, Missouri Southern State University, Joplin, MO, USA
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India.
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Gynecologic Oncology Program, Orlando, FL, USA.
| |
Collapse
|
11
|
Ding YD, Shu LZ, He RS, Chen KY, Deng YJ, Zhou ZB, Xiong Y, Deng H. Listeria monocytogenes: a promising vector for tumor immunotherapy. Front Immunol 2023; 14:1278011. [PMID: 37868979 PMCID: PMC10587691 DOI: 10.3389/fimmu.2023.1278011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer receives enduring international attention due to its extremely high morbidity and mortality. Immunotherapy, which is generally expected to overcome the limits of traditional treatments, serves as a promising direction for patients with recurrent or metastatic malignancies. Bacteria-based vectors such as Listeria monocytogenes take advantage of their unique characteristics, including preferential infection of host antigen presenting cells, intracellular growth within immune cells, and intercellular dissemination, to further improve the efficacy and minimize off-target effects of tailed immune treatments. Listeria monocytogenes can reshape the tumor microenvironment to bolster the anti-tumor effects both through the enhancement of T cells activity and a decrease in the frequency and population of immunosuppressive cells. Modified Listeria monocytogenes has been employed as a tool to elicit immune responses against different tumor cells. Currently, Listeria monocytogenes vaccine alone is insufficient to treat all patients effectively, which can be addressed if combined with other treatments, such as immune checkpoint inhibitors, reactivated adoptive cell therapy, and radiotherapy. This review summarizes the recent advances in the molecular mechanisms underlying the involvement of Listeria monocytogenes vaccine in anti-tumor immunity, and discusses the most concerned issues for future research.
Collapse
Affiliation(s)
- Yi-Dan Ding
- Medical College, Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Rui-Shan He
- Medical College, Nanchang University, Nanchang, China
| | - Kai-Yun Chen
- Office of Clinical Trials Administration, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Juan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Zhi-Bin Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Zhou H, Ma Y, Liu F, Li B, Qiao D, Ren P, Wang M. Current advances in cancer vaccines targeting NY-ESO-1 for solid cancer treatment. Front Immunol 2023; 14:1255799. [PMID: 37731507 PMCID: PMC10508181 DOI: 10.3389/fimmu.2023.1255799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
New York-esophageal cancer 1 (NY-ESO-1) belongs to the cancer testis antigen (CTA) family, and has been identified as one of the most immunogenic tumor-associated antigens (TAAs) among the family members. Given its ability to trigger spontaneous humoral and cellular immune response and restricted expression, NY-ESO-1 has emerged as one of the most promising targets for cancer immunotherapy. Cancer vaccines, an important element of cancer immunotherapy, function by presenting an exogenous source of TAA proteins, peptides, and antigenic epitopes to CD4+ T cells via major histocompatibility complex class II (MHC-II) and to CD8+ T cells via major histocompatibility complex class I (MHC-I). These mechanisms further enhance the immune response against TAAs mediated by cytotoxic T lymphocytes (CTLs) and helper T cells. NY-ESO-1-based cancer vaccines have a history of nearly two decades, starting from the first clinical trial conducted in 2003. The current cancer vaccines targeting NY-ESO-1 have various types, including Dendritic cells (DC)-based vaccines, peptide vaccines, protein vaccines, viral vaccines, bacterial vaccines, therapeutic whole-tumor cell vaccines, DNA vaccines and mRNA vaccines, which exhibit their respective benefits and obstacles in the development and application. Here, we summarized the current advances in cancer vaccines targeting NY-ESO-1 for solid cancer treatment, aiming to provide perspectives for future research.
Collapse
Affiliation(s)
- Hong Zhou
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Yipeng Ma
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Fenglan Liu
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Bin Li
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Dongjuan Qiao
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Peigen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| |
Collapse
|
13
|
Yang BT, Zhao T, Li HJ, Liang ZL, Cong W, Kang YH. Lc-pPG-612-OmpU-CTB: A promising oral vaccine for protecting Carassius auratus against Vibrio mimicus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108973. [PMID: 37481101 DOI: 10.1016/j.fsi.2023.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Vibrio mimicus (V. mimicus) is known to cause severe bacterial diseases with high mortality rates in fish, resulting in significant economic losses in the global aquaculture industry. Therefore, the objective of this study was to develop a safe and effective vaccine for protecting Carassius auratus (C. auratus) against V. mimicus infection. Recombinant Lactobacillus casei (L. casei) strains, Lc-pPG-612-OmpU and Lc-pPG-612-OmpU-CTB (surface-displayed), were constructed using a L. casei strain (ATCC 393) as an antigen delivery carrier and the cholera toxin B subunit (CTB) as an adjuvant. The two recombinant strains of L. casei were administered to C. auratus via oral immunization, and the protective efficacy of the oral vaccines was assessed. The results demonstrated that oral immunization with the two strains significantly increased the levels of nonspecific immune indicators in C. auratus, including alkaline phosphatase (AKP), lysozyme (LYS), acid phosphatase (ACP), complement 3 (C3), complement 4 (C4), lectin, and superoxide dismutase (SOD). Moreover, the experiment groups exhibited significant increases in specific immunoglobulin M (IgM) antibodies against OmpU, as well as the transcription of immune-related genes (ie., IL-1β, TNF-α, IL-10, and TGF-β), when compared to the control groups. Following infection of C. auratus with V. mimicus, the mortality rate of the recombinant L. casei-treated fish was observed to be lower compared to the control group. This finding suggests that recombinant L. casei demonstrates effective protection against V. mimicus infection in C. auratus. Furthermore, the addition of the immune adjuvant CTB was found to induce a more robust adaptive and innate immune response in C. auratus, resulting in reduced mortality after infection with V. mimicus.
Collapse
Affiliation(s)
- Bin-Tong Yang
- Marine College, Shandong University, Weihai, 264209, China; Shandong Fu Han Ocean Sci-Tech Co., Ltd, Haiyang, 265100, China
| | - Tong Zhao
- Marine College, Shandong University, Weihai, 264209, China
| | - Hong-Jin Li
- Marine College, Shandong University, Weihai, 264209, China
| | - Zhen-Lin Liang
- Marine College, Shandong University, Weihai, 264209, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, 264209, China
| | - Yuan-Huan Kang
- Marine College, Shandong University, Weihai, 264209, China; Shandong Key Laboratory of Animal Microecological Preparation, Tai'an, 271000, China.
| |
Collapse
|
14
|
Zhao X, Xie N, Zhang H, Zhou W, Ding J. Bacterial Drug Delivery Systems for Cancer Therapy: "Why" and "How". Pharmaceutics 2023; 15:2214. [PMID: 37765183 PMCID: PMC10534357 DOI: 10.3390/pharmaceutics15092214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that endanger human health. However, the use of anticancer drugs is accompanied by a series of side effects. Suitable drug delivery systems can reduce the toxic side effects of drugs and enhance the bioavailability of drugs, among which targeted drug delivery systems are the main development direction of anticancer drug delivery systems. Bacteria is a novel drug delivery system that has shown great potential in cancer therapy because of its tumor-targeting, oncolytic, and immunomodulatory properties. In this review, we systematically describe the reasons why bacteria are suitable carriers of anticancer drugs and the mechanisms by which these advantages arise. Secondly, we outline strategies on how to load drugs onto bacterial carriers. These drug-loading strategies include surface modification and internal modification of bacteria. We focus on the drug-loading strategy because appropriate strategies play a key role in ensuring the stability of the delivery system and improving drug efficacy. Lastly, we also describe the current state of bacterial clinical trials and discuss current challenges. This review summarizes the advantages and various drug-loading strategies of bacteria for cancer therapy and will contribute to the development of bacterial drug delivery systems.
Collapse
Affiliation(s)
- Xiangcheng Zhao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Nuli Xie
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Hailong Zhang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
- Changsha Jingyi Pharmaceutical Technology Co., Ltd., Changsha 410006, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| |
Collapse
|
15
|
Xu H, Zhu S, Govinden R, Chenia HY. Multiple Vaccines and Strategies for Pandemic Preparedness of Avian Influenza Virus. Viruses 2023; 15:1694. [PMID: 37632036 PMCID: PMC10459121 DOI: 10.3390/v15081694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Avian influenza viruses (AIV) are a continuous cause of concern due to their pandemic potential and devasting effects on poultry, birds, and human health. The low pathogenic avian influenza virus has the potential to evolve into a highly pathogenic avian influenza virus, resulting in its rapid spread and significant outbreaks in poultry. Over the years, a wide array of traditional and novel strategies has been implemented to prevent the transmission of AIV in poultry. Mass vaccination is still an economical and effective approach to establish immune protection against clinical virus infection. At present, some AIV vaccines have been licensed for large-scale production and use in the poultry industry; however, other new types of AIV vaccines are currently under research and development. In this review, we assess the recent progress surrounding the various types of AIV vaccines, which are based on the classical and next-generation platforms. Additionally, the delivery systems for nucleic acid vaccines are discussed, since these vaccines have attracted significant attention following their significant role in the fight against COVID-19. We also provide a general introduction to the dendritic targeting strategy, which can be used to enhance the immune efficiency of AIV vaccines. This review may be beneficial for the avian influenza research community, providing ideas for the design and development of new AIV vaccines.
Collapse
Affiliation(s)
- Hai Xu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| | - Hafizah Y. Chenia
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
16
|
Cai CW, O’Shea A, Eickhoff CS, Guo H, Lewis WG, Beverley SM, Hoft DF. Use of Leishmania major parasites expressing a recombinant Trypanosoma cruzi antigen as live vaccines against Chagas disease. Front Microbiol 2022; 13:1059115. [PMID: 36523834 PMCID: PMC9745109 DOI: 10.3389/fmicb.2022.1059115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Trypanosoma cruzi is the protozoan parasite causing Chagas disease, a Neglected Tropical Disease that affects 8 million people and causes 12,000 deaths per year, primarily because of cardiac pathology. Effective vaccination for T. cruzi remains an elusive goal. The use of a live vaccine vector, especially one that mimics the pathogen target, may be superior to the use of recombinant protein or DNA vaccine formulations. Methods We generated recombinant Leishmania major, a related trypanosomatid parasite, as a vaccine vehicle to express the immunogenic T. cruzi trans-sialidase (TS) antigen. The induction of T cell and antibody responses, as well as T. cruzi protective immunity generated by these vaccines were assessed in vivo. Results We demonstrate that mice inoculated with these recombinant TS-expressing L. major parasites mount T cell and antibody responses directed against TS and are protected against future T. cruzi infection. We also show that the partially attenuated dhfr-ts- CC1 L. major strain, previously found to induce protective immunity to virulent L. major infection without causing pathology, can also be engineered to express the TS antigen. This latter recombinant may represent a safe and effective option to explore for ultimate use in humans. Discussion Altogether, these data indicate that L. major can stably express a T. cruzi antigen and induce T. cruzi-specific protective immunity, warranting further investigation of attenuated Leishmania parasites as vaccine.
Collapse
Affiliation(s)
- Catherine W. Cai
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Anne O’Shea
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Christopher S. Eickhoff
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Warren G. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Daniel F. Hoft
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft,
| |
Collapse
|
17
|
Endotoxin-free gram-negative bacterium as a system for production and secretion of recombinant proteins. Appl Microbiol Biotechnol 2022; 107:287-298. [DOI: 10.1007/s00253-022-12295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
|
18
|
Peng M, Joo J, Alvarado-Martinez Z, Tabashsum Z, Aditya A, Biswas D. Intracellular autolytic whole cell Salmonella vaccine prevents colonization of pathogenic Salmonella Typhimurium in chicken. Vaccine 2022; 40:6880-6892. [PMID: 36272875 DOI: 10.1016/j.vaccine.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/16/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022]
Abstract
Salmonella enterica (SE) is a major foodborne bacterial pathogen in the United States, commonly found as the normal flora of various animals that is attributed to causing at least 1.2 million infections annually. Poultry plays a major role in disseminating SE through direct contact with live animals and consumption of contaminated products. Vaccinating poultry against SE is a sustainable approach that can reduce SE in the host, preventing future infections in humans. An intracellular autolytic SE serovar Typhimurium vaccine (STLT2+P13+19) was developed by integrating genes 13 (holin) and 19 (lysozyme) of bacteriophage P22 into the bacterial chromosome. These were inserted downstream of sseA, an SPI-2 chaperone in SE that expresses during the intracellular phase of SE. Intracellular viability of STLT2+P13+19 reduced by 94.42% at 24 hr compared to the wild type in chicken macrophage cells (HD-11), whereas growth rate and adhesion ability remained unchanged. Inoculating STLT2+P13+19 in HD-11 significantly enhanced the relative log fold expression of genes associated to production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12 p40, IL-18, and GM-CSF) and Toll-like-receptors (TRL-3 and 7). Vaccination of an in vivo chicken model demonstrated significant changes in secretion of iNOS, IL-6, IL-8, IL-12, and TNF-α, as well as a reduction in the intestinal colonization of SE serovar Typhimurium. Microbiome analysis of cecal fluid using 16S rRNA gene sequencing also showed modulation of intestinal microbial composition, specifically a decrease in relative abundance of Proteobacteria and increasing Firmicutes. This study provides insight into a novel vaccine design that could make food products safer without the use of synthetic compounds.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Jungsoo Joo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Zabdiel Alvarado-Martinez
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA.
| | - Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA.
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA.
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA; Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA.
| |
Collapse
|
19
|
Wu L, Li L, Yin X, Li C, Xin W, Liu L, Hua Z. A SARS-CoV-2 oral vaccine development strategy based on the attenuated Salmonella type III secretion system. J Appl Microbiol 2022; 133:2484-2500. [PMID: 35858677 PMCID: PMC9350170 DOI: 10.1111/jam.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to provide a safe, stable and efficient SARS-CoV-2 oral vaccine development strategy based on the type III secretion system of attenuated Salmonella and a reference for the development of a SARS-CoV-2 vaccine. METHODS AND RESULTS The attenuated Salmonella mutant ΔhtrA-VNP was used as a vector to secrete the antigen SARS-CoV-2 based on the type III secretion system (T3SS). The Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS promoter (sifB) was screened to express heterologous antigens (RBD, NTD, S2), and the SPI-2-encoded secretion system (sseJ) was employed to secrete this molecule (psifB-sseJ-antigen, abbreviated BJ-antigen). Both immunoblotting and fluorescence microscopy revealed effective expression and secretion of the antigen into the cytosol of macrophages in vitro. The mixture of the three strains (BJ-RBD/NTD/S2, named AisVax) elicited a marked increase in the induction of IgA or IgG S-protein Abs after oral gavage, intraperitoneal and subcutaneous administration. Flow cytometric analysis proved that AisVax caused T-cell activation, as shown by a significant increase in CD44 and CD69 expression. Significant production of IgA or IgG N-protein Abs was also detected by using psifB-sseJ-N(FL), indicating the universality of this strategy. CONCLUSIONS Delivery of multiple SARS-CoV-2 antigens using the type III secretion system of attenuated Salmonella ΔhtrA-VNP is a potential COVID-19 vaccine strategy. SIGNIFICANCE AND IMPACT OF THE STUDY The attenuated Salmonella strain ΔhtrA-VNP showed excellent performance as a vaccine vector. The Salmonella SPI-2-encoded T3SS showed highly efficient delivery of SARS-COV-2 antigens. Anti-loss elements integrated into the plasmid stabilized the phenotype of the vaccine strain. Mixed administration of antigen-expressing strains improved antibody induction.
Collapse
Affiliation(s)
- Leyang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
- Changzhou High‐Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.ChangzhouJiangsuChina
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Xingpeng Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Chenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Wenjie Xin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Lina Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
- Changzhou High‐Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.ChangzhouJiangsuChina
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
20
|
Garduño-González KA, Peña-Benavides SA, Araújo RG, Castillo-Zacarías C, Melchor-Martínez EM, Oyervides-Muñoz MA, Sosa-Hernández JE, Purton S, Iqbal HM, Parra-Saldívar R. Current challenges for modern vaccines and perspectives for novel treatment alternatives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Li W, Yin F, Bu Z, Liu Y, Zhang Y, Chen X, Li S, Li L, Zhou R, Huang Q. An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine. J Microbiol Biotechnol 2022; 32:278-286. [PMID: 35283432 PMCID: PMC9628857 DOI: 10.4014/jmb.2107.07052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.
Collapse
Affiliation(s)
- Wenyu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Shandong Vocational Animal Science and Veterinary College, Weifang, P.R. China
| | - Fan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zixuan Bu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yongqing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan 430070, P.R. China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China,Corresponding author Phone: +86-27-87281878 Fax: + 86-27-8728 2608 E-mail:
| |
Collapse
|
22
|
COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity. J Microbiol 2022; 60:321-334. [PMID: 35157221 PMCID: PMC8853094 DOI: 10.1007/s12275-022-1621-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has led to many cases and deaths worldwide. Therefore, a number of vaccine candidates have been developed to control the COVID-19 pandemic. Of these, to date, 21 vaccines have received emergency approval for human use in at least one country. However, the recent global emergence of SARS-CoV-2 variants has compromised the efficacy of the currently available vaccines. To protect against these variants, the use of vaccines that modulate T cell-mediated immune responses or innate immune cell memory function, termed trained immunity, is needed. The major advantage of a vaccine that uses bacteria or viral systems for the delivery of COVID-19 antigens is the ability to induce both T cell-mediated and humoral immune responses. In addition, such vaccine systems can also exert off-target effects via the vector itself, mediated partly through trained immunity; compared to other vaccine platforms, suggesting that this approach can provide better protection against even vaccine escape variants. This review presents the current status of the development of COVID-19 vaccines based on recombinant viral and bacterial delivery systems. We also discuss the current status of the use of licensed live vaccines for other infections, including BCG, oral polio and MMR vaccines, to prevent COVID-19 infections.
Collapse
|
23
|
Lublin A, Katz C, Gruzdev N, Yadid I, Bloch I, Farnoushi Y, Simanov L, Berkowitz A, Elyahu D, Pitcovski J, Shahar E. Protection against avian coronavirus conferred by oral vaccination with live bacteria secreting LTB-fused viral proteins. Vaccine 2022; 40:726-733. [PMID: 34998606 PMCID: PMC8717763 DOI: 10.1016/j.vaccine.2021.12.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/25/2023]
Abstract
The devastating impact of infectious bronchitis (IB) triggered by the IB virus (IBV), on poultry farms is generally curbed by livestock vaccination with live attenuated or inactivated vaccines. Yet, this approach is challenged by continuously emerging variants and by time limitations of vaccine preparation techniques. This work describes the design and evaluation of an anti-IBV vaccine comprised of E. coli expressing and secreting viral spike 1 subunit (S1) and nucleocapsid N-terminus and C-terminus polypeptides fused to heat-labile enterotoxin B (LTB) (LS1, LNN, LNC, respectively). Following chicken oral vaccination, anti-IBV IgY levels and cellular-mediated immunity as well as protection against virulent IBV challenge, were evaluated 14 days following the booster dose. Oral vaccination induced IgY levels that exceeded those measured following vaccination with each component separately. Following exposure to inactivated IBV, splenocytes isolated from chicks orally vaccinated with LNN or LNC -expressing bacteria, showed a higher percentage of CD8+ cells as compared to splenocytes isolated from chicks vaccinated with wild type or LTB-secreting E. coli and to chicks subcutaneously vaccinated. Significant reduction in viral load and percent of shedders in the vaccinated chicks was evident starting 3 days following challenge with 107.5 EID50/ml virulent IBV. Taken together, orally delivered LTB-fused IBV polypeptide-expressing bacteria induced virus-specific IgY antibody production and was associated with significantly shorter viral shedding on challenge with a live IBV. The proposed vaccine design and delivery route promise an effective and rapidly adaptable means of protecting poultry farms from devastating IB outbreaks.
Collapse
Affiliation(s)
- Avishai Lublin
- The Department of Avian Diseases, Kimron Veterinary Institute,
Israel
| | - Chen Katz
- MIGAL Research Institute in the Galilee, Kiryat Shmona,
Israel
| | - Nady Gruzdev
- MIGAL Research Institute in the Galilee, Kiryat Shmona,
Israel
| | - Itamar Yadid
- MIGAL Research Institute in the Galilee, Kiryat Shmona,
Israel,Tel-Hai Academic College, Upper Galilee, Israel
| | - Itai Bloch
- MIGAL Research Institute in the Galilee, Kiryat Shmona,
Israel
| | - Yigal Farnoushi
- The Department of Avian Diseases, Kimron Veterinary Institute,
Israel
| | - Luba Simanov
- The Department of Avian Diseases, Kimron Veterinary Institute,
Israel
| | - Asaf Berkowitz
- The Department of Avian Diseases, Kimron Veterinary Institute,
Israel
| | - Dalia Elyahu
- MIGAL Research Institute in the Galilee, Kiryat Shmona,
Israel
| | - Jacob Pitcovski
- MIGAL Research Institute in the Galilee, Kiryat Shmona,
Israel,Tel-Hai Academic College, Upper Galilee, Israel
| | - Ehud Shahar
- MIGAL Research Institute in the Galilee, Kiryat Shmona,
Israel,Tel-Hai Academic College, Upper Galilee, Israel,Corresponding author at: MIGAL Research Institute in the Galilee,
Kiryat Shmona, Israel
| |
Collapse
|
24
|
Fatemi SA, Seifi N, Rasekh S, Amiri S, Moezzi SMI, Bagheri A, Fathi S, Negahdaripour M. Immunotherapeutic approaches for HPV-caused cervical cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:51-90. [PMID: 35305725 DOI: 10.1016/bs.apcsb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cervical cancer, the fourth most frequent women cancer worldwide, is mostly (about 99%) associated with human papillomavirus (HPV). Despite availability of three effective prophylactic vaccines for more than one decade and some other preventive measures, it is still the fourth cause of cancer death among women globally. Thus, development of therapeutic vaccines seems essential, which has been vastly studied using different vaccine platforms. Even with very wide efforts during the past years, no therapeutic vaccine has been approved yet, which might be partly due to the complex events and interactions taken place in the tumor microenvironment. On the other hand, immunotherapy has opened its way into the management plans of some cancers. The recent approval of pembrolizumab for the treatment of metastatic/recurrent cervical cancer brings new hopes to the management of this disease, while some other immunotherapeutic approaches are also under investigation either alone or in combination with vaccines. Here, following a summary about HPV and its pathogenesis, cervical cancer therapeutic vaccines would be reviewed. Cell-based vaccines as well as immunomodulation and other modalities used along with vaccines would be also discussed.
Collapse
Affiliation(s)
- Seyed Amirreza Fatemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadia Seifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines (Basel) 2021; 9:1490. [PMID: 34960236 PMCID: PMC8708925 DOI: 10.3390/vaccines9121490] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vaccination is a key component of public health policy with demonstrated cost-effective benefits in protecting both human and animal populations. Vaccines can be manufactured under multiple forms including, inactivated (killed), toxoid, live attenuated, Virus-like Particles, synthetic peptide, polysaccharide, polysaccharide conjugate (glycoconjugate), viral vectored (vector-based), nucleic acids (DNA and mRNA) and bacterial vector/synthetic antigen presenting cells. Several processes are used in the manufacturing of vaccines and recent developments in medical/biomedical engineering, biology, immunology, and vaccinology have led to the emergence of innovative nucleic acid vaccines, a novel category added to conventional and subunit vaccines. In this review, we have summarized recent advances in vaccine technologies and platforms focusing on their mechanisms of action, advantages, and possible drawbacks.
Collapse
Affiliation(s)
- Majed Ghattas
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Garima Dwivedi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Marc Lavertu
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada;
- Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- AexeRNA Therapeutics, Washington, DC 20001, USA
| |
Collapse
|
26
|
Debnath N, Thakur M, Khushboo, Negi NP, Gautam V, Kumar Yadav A, Kumar D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges. Biotechnol Bioeng 2021; 119:327-346. [PMID: 34755343 DOI: 10.1002/bit.27987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neelam P Negi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
27
|
Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Murtaza G. Recent strategies driving oral biologic administration. Expert Rev Vaccines 2021; 20:1587-1601. [PMID: 34612121 DOI: 10.1080/14760584.2021.1990044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION High patient compliance, noninvasiveness, and self-administration are the leading features of vaccine delivery through the oral route. The implementation of swift mass vaccination campaigns in pandemic outbreaks fascinates the use of oral vaccination. This approach can elicit both mucosal and systemic immune responses to protect against infection at the surface of the mucosa. AREA COVERED As pathogen entry and spread mainly occurs through the gastrointestinal tract (GIT) mucosal surfaces, oral vaccination may protect and limit disease spread. Oral vaccines target various potential mucosal inductive sites in the GIT, such as the oral cavity, gastric area, and small intestine. Orally delivered vaccines having subunit and nucleic acid pass through various GIT-associated risks, such as the biodegradation of biologics and their reduced absorption. This article presents a summarized review of the existing technologies and prospects for oral vaccination. EXPERT OPINION The intestinal mucosa focuses on current approaches, while future strategies target new mucosal sites, i.e. oral cavity and stomach. Recent developments in biologic delivery through the oral route and their potential use in future oral vaccination are mainly considered.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Nihal Abdalla Ibrahim
- Department of Clinical Sciences, Ajman University, Ajman, 346, UAE.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore, 54000, Pakistan
| |
Collapse
|
28
|
Qiao N, Du G, Zhong X, Sun X. Recombinant lactic acid bacteria as promising vectors for mucosal vaccination. EXPLORATION (BEIJING, CHINA) 2021; 1:20210026. [PMID: 37323212 PMCID: PMC10191043 DOI: 10.1002/exp.20210026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 06/15/2023]
Abstract
Lactic acid bacteria (LAB), a diverse family of gram-positive bacteria, has been proven effective in delivering varieties of therapeutic and prophylactic molecules such as antigens and cytokines. Featuring the properties of acid-resistant, high uptake into Peyer's patches, and superior capacity for inducing secretory IgA antibodies, LAB have good potential to be used as vaccine vectors for mucosal vaccination. Mucosal immunization enables both mucosal and systemic immune responses, which are critical for resisting pathogens that invade the host through the mucosal surfaces. With the development of genetic engineering, LAB strains, primarily Lactococcus and Lactobacillus have been exploited to express a range of heterologous antigens. Numerous studies have demonstrated that LAB mucosal vaccines can stimulate all arms of the immune system to provide adequate protection against pathogen infections. Additionally, several LAB-based human papillomavirus vaccines have entered the clinical trial studies, which suggest the great promise of LAB vaccines for new interventions in mucosal transport diseases. Herein, we will discuss the factors that influence the immunogenicity of LAB vaccines, including LAB strains, the location of antigens, and administration routes, and focus on the current strategies that have been reported for optimizing LAB vaccines.
Collapse
Affiliation(s)
- Nan Qiao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy, Sichuan UniversityChengduChina
| | - Guangsheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy, Sichuan UniversityChengduChina
| | - Xiaofang Zhong
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy, Sichuan UniversityChengduChina
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of Pharmacy, Sichuan UniversityChengduChina
| |
Collapse
|
29
|
Plasmid Replicons for the Production of Pharmaceutical-Grade pDNA, Proteins and Antigens by Lactococcus lactis Cell Factories. Int J Mol Sci 2021; 22:ijms22031379. [PMID: 33573129 PMCID: PMC7866527 DOI: 10.3390/ijms22031379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The Lactococcus lactis bacterium found in different natural environments is traditionally associated with the fermented food industry. But recently, its applications have been spreading to the pharmaceutical industry, which has exploited its probiotic characteristics and is moving towards its use as cell factories for the production of added-value recombinant proteins and plasmid DNA (pDNA) for DNA vaccination, as a safer and industrially profitable alternative to the traditional Escherichia coli host. Additionally, due to its food-grade and generally recognized safe status, there have been an increasing number of studies about its use in live mucosal vaccination. In this review, we critically systematize the plasmid replicons available for the production of pharmaceutical-grade pDNA and recombinant proteins by L. lactis. A plasmid vector is an easily customized component when the goal is to engineer bacteria in order to produce a heterologous compound in industrially significant amounts, as an alternative to genomic DNA modifications. The additional burden to the cell depends on plasmid copy number and on the expression level, targeting location and type of protein expressed. For live mucosal vaccination applications, besides the presence of the necessary regulatory sequences, it is imperative that cells produce the antigen of interest in sufficient yields. The cell wall anchored antigens had shown more promising results in live mucosal vaccination studies, when compared with intracellular or secreted antigens. On the other side, engineering L. lactis to express membrane proteins, especially if they have a eukaryotic background, increases the overall cellular burden. The different alternative replicons for live mucosal vaccination, using L. lactis as the DNA vaccine carrier or the antigen producer, are critically reviewed, as a starting platform to choose or engineer the best vector for each application.
Collapse
|
30
|
Coffey JW, Gaiha GD, Traverso G. Oral Biologic Delivery: Advances Toward Oral Subunit, DNA, and mRNA Vaccines and the Potential for Mass Vaccination During Pandemics. Annu Rev Pharmacol Toxicol 2021; 61:517-540. [PMID: 32466690 PMCID: PMC8057107 DOI: 10.1146/annurev-pharmtox-030320-092348] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oral vaccination enables pain-free and self-administrable vaccine delivery for rapid mass vaccination during pandemic outbreaks. Furthermore, it elicits systemic and mucosal immune responses. This protects against infection at mucosal surfaces, which may further enhance protection and minimize the spread of disease. The gastrointestinal (GI) tract presents a number of prospective mucosal inductive sites for vaccine targeting, including the oral cavity, stomach, and small intestine. However, currently available oral vaccines are effectively limited to live-attenuated and inactivated vaccines against enteric diseases. The GI tract poses a number of challenges,including degradative processes that digest biologics and mucosal barriers that limit their absorption. This review summarizes the approaches currently under development and future opportunities for oral vaccine delivery to established (intestinal) and relatively new (oral cavity, stomach) mucosal targets. Special consideration is given to recent advances in oral biologic delivery that offer promise as future platforms for the administration of oral vaccines.
Collapse
Affiliation(s)
- Jacob William Coffey
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunology, University of Melbourne, Victoria, 3000, Australia
| | - Gaurav Das Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
31
|
Farmer E, Cheng MA, Hung CF, Wu TC. Vaccination Strategies for the Control and Treatment of HPV Infection and HPV-Associated Cancer. Recent Results Cancer Res 2021; 217:157-195. [PMID: 33200366 DOI: 10.1007/978-3-030-57362-1_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, currently affecting close to 80 million Americans. Importantly, HPV infection is recognized as the etiologic factor for numerous cancers, including cervical, vulval, vaginal, penile, anal, and a subset of oropharyngeal cancers. The prevalence of HPV infection and its associated diseases are a significant problem, affecting millions of individuals worldwide. Likewise, the incidence of HPV infection poses a significant burden on individuals and the broader healthcare system. Between 2011 and 2015, there were an estimated 42,700 new cases of HPV-associated cancers each year in the United States alone. Similarly, the global burden of HPV is high, with around 630,000 new cases of HPV-associated cancer occurring each year. In the last decade, a total of three preventive major capsid protein (L1) virus-like particle-based HPV vaccines have been licensed and brought to market as a means to prevent the spread of HPV infection. These prophylactic vaccines have been demonstrated to be safe and efficacious in preventing HPV infection. The most recent iteration of the preventive HPV vaccine, a nanovalent, L1-VLP vaccine, protects against a total of nine HPV types (seven high-risk and two low-risk HPV types), including the high-risk types HPV16 and HPV18, which are responsible for causing the majority of HPV-associated cancers. Although current prophylactic HPV vaccines have demonstrated huge success in preventing infection, existing barriers to vaccine acquisition have limited their widespread use, especially in low- and middle-income countries, where the burden of HPV-associated diseases is highest. Prophylactic vaccines are unable to provide protection to individuals with existing HPV infections or HPV-associated diseases. Instead, therapeutic HPV vaccines capable of generating T cell-mediated immunity against HPV infection and associated diseases are needed to ameliorate the burden of disease in individuals with existing HPV infection. To generate a cell-mediated immune response against HPV, most therapeutic vaccines target HPV oncoproteins E6 and E7. Several types of therapeutic HPV vaccine candidates have been developed including live-vector, protein, peptide, dendritic cell, and DNA-based vaccines. This chapter will review the commercially available prophylactic HPV vaccines and discuss the recent progress in the development of therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Emily Farmer
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Max A Cheng
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA.,Department of Oncology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - T-C Wu
- Department of Pathology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Oncology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Obstetrics and Gynecology, The Johns Hopkins School of Medicine, Cancer Research Building II, 1550 Orleans Street, Baltimore, MD, 21287, USA. .,Department of Pathology, Oncology, Obstetrics and Gynecology, and Molecular Microbiology and Immunology, The Johns Hopkins Medical Institutions, Cancer Research Building II, Room 309, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
32
|
Van der Weken H, Cox E, Devriendt B. Advances in Oral Subunit Vaccine Design. Vaccines (Basel) 2020; 9:1. [PMID: 33375151 PMCID: PMC7822154 DOI: 10.3390/vaccines9010001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens invade the host at the intestinal surface. To protect against these enteropathogens, the induction of intestinal secretory IgA (SIgA) responses is paramount. While systemic vaccination provides strong systemic immune responses, oral vaccination is the most efficient way to trigger protective SIgA responses. However, the development of oral vaccines, especially oral subunit vaccines, is challenging due to mechanisms inherent to the gut. Oral vaccines need to survive the harsh environment in the gastrointestinal tract, characterized by low pH and intestinal proteases and need to reach the gut-associated lymphoid tissues, which are protected by chemical and physical barriers that prevent efficient uptake. Furthermore, they need to surmount default tolerogenic responses present in the gut, resulting in suppression of immunity or tolerance. Several strategies have been developed to tackle these hurdles, such as delivery systems that protect vaccine antigens from degradation, strong mucosal adjuvants that induce robust immune responses and targeting approaches that aim to selectively deliver vaccine antigens towards specific immune cell populations. In this review, we discuss recent advances in oral vaccine design to enable the induction of robust gut immunity and highlight that the development of next generation oral subunit vaccines will require approaches that combines these solutions.
Collapse
Affiliation(s)
| | | | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (H.V.d.W.); (E.C.)
| |
Collapse
|
33
|
Kadir NA, Acosta A, Sarmiento ME, Norazmi MN. Immunomodulatory Effects of Recombinant Mycobacterium smegmatis Expressing Antigen-85B Epitopes in Infected J774A.1 Murine Macrophages. Pathogens 2020; 9:pathogens9121000. [PMID: 33260418 PMCID: PMC7761112 DOI: 10.3390/pathogens9121000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) causes more than 1.5 million deaths each year, remaining a significant global health problem. Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis) share features, which support the use of the former use in new generation TB vaccine development. In a previous study, the specific humoral and cellular immunogenicity of a recombinant M. smegmatis strain expressing epitopes from M. tuberculosis Ag85B protein (rMs064), was demonstrated in mice. In the current study, the immunomodulatory capacity of rMs064 was determined in a J774A.1 murine macrophage cell line. To determine the immunomodulatory effect of rMs064 in J774A.1 macrophages, the expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO) was evaluated. The expression of activation surface markers (MHC-II, CD40, CD80 and CD86) and the production of cytokines (IL-1β, TNF-α, IL-12p70 and IL-6) was also determined in rMs064 infected J774A.1 macrophages. Our findings showed the ability of rMs064 to induce substantial increases in macrophage activation markers expression; MHC class II and CD40, compared with M. smegmatis transformed with the empty vector (rMs012) and uninfected cells. rMs064 induced significant increases in IL-12p70 compared to uninfected cells. The expression of iNOS and CD86, and the production of IL-1β, and TNF-α were increased in rMs064 and rMs012, compared to uninfected cells. rMs064 demonstrated its immunomodulatory ability by stimulating the innate immune response, which supports its further evaluation as a TB vaccine candidate.
Collapse
Affiliation(s)
- Nur-Ayuni Kadir
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia
- Correspondence: (N.-A.K.); (A.A.)
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.E.S.); (M.-N.N.)
- Correspondence: (N.-A.K.); (A.A.)
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.E.S.); (M.-N.N.)
| | - Mohd-Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.E.S.); (M.-N.N.)
| |
Collapse
|
34
|
Stegantseva MV, Shinkevich VA, Tumar EM, Meleshko AN. Multi-antigen DNA vaccine delivered by polyethylenimine and Salmonella enterica in neuroblastoma mouse model. Cancer Immunol Immunother 2020; 69:2613-2622. [PMID: 32594197 DOI: 10.1007/s00262-020-02652-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is an example of a difficult-to-treat tumor with high incidence of relapse. DNA vaccination could be applied as a relapse prophylactic option for patients with high-risk neuroblastoma. Its efficacy depends directly on a target antigen of choice and a delivery method. Three neuroblastoma-associated antigens (tyrosine hydroxylase, Survivin, PHOX2B) and two delivery methods were investigated. Our data suggest that antigen PHOX2B is a more immunogenic target that induces cellular immune response and tumor regression more effectively than tyrosine hydroxylase and Survivin. Immunogenicity testing revealed that the delivery of DNA vaccine by Salmonella enterica was accompanied by a stronger immune response (cytotoxicity and IFNγ production) than that by DNA-polyethylenimine conjugate. Nevertheless, intramuscular immunization with PEI led to higher decrease of tumor volume compared to that after oral gavage with Salmonella vaccine.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Drug Carriers/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/immunology
- Humans
- Immunogenicity, Vaccine
- Injections, Subcutaneous
- Mice
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/prevention & control
- Neuroblastoma/immunology
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Polyethyleneimine/chemistry
- Salmonella Vaccines/administration & dosage
- Salmonella Vaccines/immunology
- Salmonella typhimurium/immunology
- Survivin/genetics
- Survivin/immunology
- Transcription Factors/genetics
- Transcription Factors/immunology
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Maria V Stegantseva
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovlyani, Minsk, 220053, Belarus.
| | - Veronika A Shinkevich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovlyani, Minsk, 220053, Belarus
| | - Elena M Tumar
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Belarus
| | - Alexander N Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovlyani, Minsk, 220053, Belarus
| |
Collapse
|
35
|
Shanmugaraj B, Priya LB, Mahalakshmi B, Subbiah S, Hu RM, Velmurugan BK, Baskaran R. Bacterial and viral vectors as vaccine delivery vehicles for breast cancer therapy. Life Sci 2020; 250:117550. [DOI: 10.1016/j.lfs.2020.117550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
|
36
|
Zhang Y, Ma JA, Zhang HX, Jiang YN, Luo WH. Cancer vaccines: Targeting KRAS-driven cancers. Expert Rev Vaccines 2020; 19:163-173. [PMID: 32174221 DOI: 10.1080/14760584.2020.1733420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Mutant KRAS is a genetic driver of multiple cancers that has challenged clinical anti-cancer therapeutics in the last 3 decades. Neo-antigens encoded by KRAS mutations have been identified as tumor-specific with high immunogenicity and can be used to deliver precision cancer vaccines to promote anti-tumor immune responses. KRAS mutation-based cancer vaccines have produced encouraging preclinical and clinical results. Cancer vaccines represent a promising approach to treat KRAS-driven cancers.Areas covered: In this review, we summarize the development and progress of vaccines targeting KRAS and evaluate their potential benefits and obstacles in the current landscape of therapy for KRAS-driven cancers.Expert opinion: KRAS mutation-based cancer vaccines can induce immunogenicity in patients with KRAS-driven cancers. However, the mechanisms of tumor suppression including cellular and molecular factors within the tumor microenvironment may limit vaccine efficacy. Combining KRAS-driven therapeutic cancer vaccines with other methods and adjuvants can circumvent immunosuppression and promote therapeutic successes.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin-An Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hai-Xia Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Na Jiang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Hao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Torres MA, Terraf MCL, Minahk CJ, Delgado MA. Stability of the Salmonella Typhimurium rcsC11 mutant under different stress conditions. MICROBIOLOGY-SGM 2019; 166:157-168. [PMID: 31714197 DOI: 10.1099/mic.0.000873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The virulence genes of Salmonella are modulated during infection by several regulatory systems, and the RcsCDB system is one of the most important of these. The S. Typhimurium EG14873 (rcsC11) strain harbours the rcsC11 point mutation, displaying a constitutive activation of this system, which is characterized by mucoid colonies and attenuated virulence phenotypes. In this work, the stability of the rcsC11 mutation was analysed under stress conditions. Under acid and anaerobic stresses, we observed the appearance of small and non-mucoid colonies of the rcsC11 strain. The sequencing of the rcsC gene from these colonies showed that the mutation is conserved. Moreover, we found that small colonies were also generated when the wild-type strain grew in acid and anaerobic conditions. It is worth noting that the transition from normal to atypical colonies of both strains only took place after several days of incubation and was not observed during eukaryotic cell infection. Therefore, the appearance of these atypical colonies is a characteristic feature of S. Typhimurium strains under stressful situations and does not involve a reversion of the rcsC11 allele and nor does it imply any risk to mammalian cells. Therefore, we propose that the S. Typhimurium rcsC11 strain is a good candidate for the development of attenuated vaccines.
Collapse
Affiliation(s)
- Mariela A Torres
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - María C Leccese Terraf
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Carlos J Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Mónica A Delgado
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica 'Dr. Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia, UNT Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| |
Collapse
|
38
|
Abstract
Many options now exist for constructing oral vaccines which, in experimental systems, have shown themselves to be able to generate highly effective immunity against infectious diseases. Their suitability for implementation in clinical practice, however, for prevention of outbreaks, particularly in low- and middle-income countries (LMIC), is not always guaranteed, because of factors such as cost, logistics and cultural and environmental conditions. This brief overview provides a summary of the various approaches which can be adopted, and evaluates them from a pharmaceutical point, taking into account potential regulatory issues, expense, manufacturing complexity, etc., all of which can determine whether a vaccine approach will be successful in the late stages of development. Attention is also drawn to problems arising from inadequate diet, which impacts upon success in stimulating effective immunity, and identifies the use of lipid-based carriers as a way to counteract the problem of nutritional deficiencies in vaccination campaigns.
Collapse
Affiliation(s)
- R. R. C. New
- Middlesex UniversityHendon, LondonUK
- Vaxcine (UK) Limited, London Bioscience Innovation CentreLondonUK
| |
Collapse
|
39
|
Takahashi K, Orito N, Tokunoh N, Inoue N. Current issues regarding the application of recombinant lactic acid bacteria to mucosal vaccine carriers. Appl Microbiol Biotechnol 2019; 103:5947-5955. [PMID: 31175431 DOI: 10.1007/s00253-019-09912-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022]
Abstract
Over the past two decades, lactic acid bacteria (LAB) have been intensively studied as potential bacterial carriers for therapeutic materials, such as vaccine antigens, to the mucosal tissues. LAB have several attractive advantages as carriers of mucosal vaccines, and the effectiveness of LAB vaccines has been demonstrated in numerous studies. Research on LAB vaccines to date has focused on whether antigen-specific immunity, particularly antibody responses, can be induced. However, with recent developments in immunology, microbiology, and vaccinology, more detailed analyses of the underlying mechanisms, especially, of the induction of cell-mediated immunity and memory cells, have been required for vaccine development and licensure. In this mini-review, we will discuss the issues, including (i) immune responses other than antibody production, (ii) persistence of LAB vaccine immunity, (iii) comparative evaluation of LAB vaccines with any existing or reference vaccines, (iv) strategies for increasing the effectiveness of LAB vaccines, and (iv) effects of microbiota on the efficacy of LAB vaccines. Although these issues have been rarely studied or discussed to date in relation to LAB vaccine research, further understanding of them is critical for the practical application of LAB vaccine systems.
Collapse
Affiliation(s)
- Keita Takahashi
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan.
| | - Nozomi Orito
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan
| | - Nagisa Tokunoh
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
40
|
Jiang B, Li Z, Ou B, Duan Q, Zhu G. Targeting ideal oral vaccine vectors based on probiotics: a systematical view. Appl Microbiol Biotechnol 2019; 103:3941-3953. [PMID: 30915504 DOI: 10.1007/s00253-019-09770-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
Probiotics have great potential to be engineered into oral vaccine delivery systems, which can facilitate elicitation of mucosal immunity without latent risks of pathogenicity. Combined with the progressive understanding of probiotics and the mucosal immune system as well as the advanced biotechniques of genetic engineering, the development of promising oral vaccine vectors based on probiotics is available while complicated and demanding. Therefore, a systematical view on the design of practical probiotic vectors is necessary, which will help to logically analyze and resolve the problems that might be neglected during our exploration. Here, we attempt to systematically summarize several fundamental issues vital to the effectiveness of the vector of probiotics, including the stability of the engineered vectors, the optimization of antigen expression, the improvement of colonization, and the enhancement of immunoreactivity. We also compared the existent strategies and some developing ones, attempting to figure out an optimal strategy that might deserve to be referred in the future development of oral vaccine vectors based on probiotics.
Collapse
Affiliation(s)
- Boyu Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Zhendong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.,College of Life Science, Zhaoqing University, Zhaoqing, 526061, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| |
Collapse
|
41
|
Correia DM, Sargo CR, Silva AJ, Santos ST, Giordano RC, Ferreira EC, Zangirolami TC, Ribeiro MPA, Rocha I. Mapping Salmonella typhimurium pathways using 13C metabolic flux analysis. Metab Eng 2019; 52:303-314. [PMID: 30529284 DOI: 10.1016/j.ymben.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
In the last years, Salmonella has been extensively studied not only due to its importance as a pathogen, but also as a host to produce pharmaceutical compounds. However, the full exploitation of Salmonella as a platform for bioproduct delivery has been hampered by the lack of information about its metabolism. Genome-scale metabolic models can be valuable tools to delineate metabolic engineering strategies as long as they closely represent the actual metabolism of the target organism. In the present study, a 13C-MFA approach was applied to map the fluxes at the central carbon pathways of S. typhimurium LT2 growing at glucose-limited chemostat cultures. The experiments were carried out in a 2L bioreactor, using defined medium enriched with 20% 13C-labeled glucose. Metabolic flux distributions in central carbon pathways of S. typhimurium LT2 were estimated using OpenFLUX2 based on the labeling pattern of biomass protein hydrolysates together with biomass composition. The results suggested that pentose phosphate is used to catabolize glucose, with minor fluxes through glycolysis. In silico simulations, using Optflux and pFBA as simulation method, allowed to study the performance of the genome-scale metabolic model. In general, the accuracy of in silico simulations was improved by the superimposition of estimated intracellular fluxes to the existing genome-scale metabolic model, showing a better fitting to the experimental extracellular fluxes, whereas the intracellular fluxes of pentose phosphate and anaplerotic reactions were poorly described.
Collapse
Affiliation(s)
- Daniela M Correia
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Cintia R Sargo
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Adilson J Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Sophia T Santos
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Eugénio C Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Marcelo P A Ribeiro
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal.
| |
Collapse
|
42
|
Beitelshees M, Hill A, Li Y, Chen M, Ahmadi MK, Smith RJ, Andreadis ST, Rostami P, Jones CH, Pfeifer BA. Antigen delivery format variation and formulation stability through use of a hybrid vector. Vaccine X 2019; 1:100012. [PMID: 31384734 PMCID: PMC6668244 DOI: 10.1016/j.jvacx.2019.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 02/04/2023] Open
Abstract
A hybrid biological-biomaterial antigen delivery vector comprised of a polymeric shell encapsulating an Escherichia coli core was previously developed for in situ antigen production and subsequent delivery. Due to the engineering capacity of the bacterial core, the hybrid vector provides unique opportunities for immunogenicity optimization through varying cellular localization (cytoplasm, periplasm, cellular surface) and type (protein or DNA) of antigen. In this work, three protein-based hybrid vector formats were compared in which the pneumococcal surface protein A (PspA) was localized to the cytoplasm, surface, and periplasmic space of the bacterial core for vaccination against pneumococcal disease. Furthermore, we tested the hybrid vector's capacity as a DNA vaccine against Streptococcus pneumoniae by introducing a plasmid into the bacterial core to facilitate PspA expression in antigen presenting cells (APCs). Through testing these various formulations, we determined that cytoplasmic accumulation of PspA elicited the strongest immune response (antibody production and protection against bacterial challenge) and enabled complete protection at substantially lower doses when compared to vaccination with PspA + adjuvant. We also improved the storage stability of the hybrid vector to retain complete activity after 1 month at 4 °C using an approach in which hybrid vectors suspended in a microbial freeze drying buffer were desiccated. These results demonstrate the flexibility and robustness of the hybrid vector formulation, which has the potential to be a potent vaccine against S. pneumoniae.
Collapse
Key Words
- APCs, antigen presenting cells
- AS, aqueous storage
- CDM, chemically defined bacterial growth medium
- CFA, Complete Freund's Adjuvant
- CHV, cytoplasmic hybrid vector
- CPSs, capsular polysaccharides
- ClyA, cytolysin A
- DNA vaccine
- DS, desiccated storage
- EHV, empty hybrid vector
- IN, intranasal
- IP, intraperitoneal
- LBVs, live bacterial vectors
- LLO, listeriolysin O
- NVT, non-vaccine type
- PAMPs, pathogen-associated molecular patterns
- PCVs, pneumococcal conjugate vaccines
- PHV, periplasmic hybrid vector
- PcpA, pneumococcal choline-binding protein A
- PhtD, histidine triad protein D
- Pneumococcal disease
- Pneumococcal surface protein A (PspA)
- PspA, pneumococcal surface protein A
- SC, subcutaneous
- SHV, surface hybrid vector
- Streptococcus pneumoniae
- Vaccine delivery
- pHV, plasmid hybrid vector
Collapse
Affiliation(s)
- Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Andrew Hill
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mahmoud Kamal Ahmadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Pooya Rostami
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | | | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Corresponding author at: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
43
|
Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, Anis FZ, Norazmi MN, Acosta A. Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis (Edinb) 2019; 115:26-41. [PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
Collapse
Affiliation(s)
- M E Sarmiento
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - N Alvarez
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - K L Chin
- Department of Biomedical Sciences and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Sabah, Malaysia
| | - F Bigi
- Institute of Biotechnology, INTA, Buenos Aires, Argentina
| | - Y Tirado
- Finlay Institute of Vaccines, La Habana, Cuba
| | - M A García
- Finlay Institute of Vaccines, La Habana, Cuba
| | - F Z Anis
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia
| | - M N Norazmi
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| | - A Acosta
- School of Health Sciences (PPSK), Universiti Sains Malaysia (USM), 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
44
|
Ding C, Wang X, Ma J, Xie M, Dong Q, Liu Q. Exploration of the bacterial invasion capacity of Listeria monocytogenes in ZF4 cells. Microb Pathog 2018; 124:238-243. [PMID: 30145253 DOI: 10.1016/j.micpath.2018.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 11/19/2022]
Abstract
Despite the results from zebrafish challenged model have demonstrated that Listeria monocytogenes (Lm) has strong adjuvant effects when this attenuated pathogenic bacteria is viewed as aquaculture vaccine vector, the underlying mechanism is not clear and extensive investigations are required. To further explore the potential of Lm in the field of aquaculture vaccine, zebrafish embryonic fibroblast cell line (ZF4) was used to evaluate the invasion ability of Lm. The data from cellular level showed that Lm had the lower invasion tendentiousness in ZF4 cells while bacterial invasion capacity was compared between zebrafish embryos cell line and human intestinal epithelial cell line. In ZF4 cells, there is no significant difference in bacterial invasion capacity between wild strain EGD-e and double-deleted strain ΔactA/inlB, which suggested that this attenuated effect was not showed in zebrafish cells. In addition, translation analysis indicated that the expressions of CD4 and CD8a in ZF4 cells increased after 2-h infection of the two Lm strains. These results further demonstrated that Lm presented multiple advantages including lower pathogenicity and antigen presentation when attenuated stain was viewed as aquaculture vaccine vector.
Collapse
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Junfei Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Manman Xie
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
45
|
Hoelzer K, Bielke L, Blake DP, Cox E, Cutting SM, Devriendt B, Erlacher-Vindel E, Goossens E, Karaca K, Lemiere S, Metzner M, Raicek M, Collell Suriñach M, Wong NM, Gay C, Van Immerseel F. Vaccines as alternatives to antibiotics for food producing animals. Part 2: new approaches and potential solutions. Vet Res 2018; 49:70. [PMID: 30060759 PMCID: PMC6066917 DOI: 10.1186/s13567-018-0561-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public–private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks.
Collapse
Affiliation(s)
- Karin Hoelzer
- The Pew Charitable Trusts, 901 E Street NW, Washington, DC, 20004, USA.
| | - Lisa Bielke
- Ohio Agriculture and Research Development Center, Animal Sciences, Ohio State University, 202 Gerlaugh Hall, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Elisabeth Erlacher-Vindel
- Science and New Technologies Department, World Organisation for Animal Health (OIE), 12 Rue de Prony, 75017, Paris, France
| | - Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Kemal Karaca
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN, USA
| | | | - Martin Metzner
- RIPAC-LABOR GmbH, Am Mühlenberg 11, 14476, Potsdam, Germany
| | - Margot Raicek
- Science and New Technologies Department, World Organisation for Animal Health (OIE), 12 Rue de Prony, 75017, Paris, France
| | | | - Nora M Wong
- The Pew Charitable Trusts, 901 E Street NW, Washington, DC, 20004, USA
| | - Cyril Gay
- Office of National Programs, Agricultural Research Service, USDA, Sunnyside Ave, 5601, Beltsville, MD, USA
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
46
|
Johnson LE, Brockstedt D, Leong M, Lauer P, Theisen E, Sauer JD, McNeel DG. Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncoimmunology 2018; 7:e1456603. [PMID: 30221049 DOI: 10.1080/2162402x.2018.1456603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background. Sipuleucel T, an autologous cell-based vaccine targeting prostatic acid phosphatase (PAP), has demonstrated efficacy for the treatment of advanced prostate cancer. DNA vaccines encoding PAP and live attenuated Listeria vaccines have entered clinical trials for patients with prostate cancer, and have advantages in terms of eliciting predominantly Th1-biased immunity. In this study, we investigated whether the immunogenicity and anti-tumor efficacy of a DNA and Listeria vaccine, each encoding PAP, could be enhanced by using them in a heterologous prime/boost approach. Methods. Transgenic mice expressing HLA-A2.01 and HLA-DRB1*0101 were immunized alone or with a heterologous prime/boost strategy. Splenocytes were evaluated for MHC class I and II-restricted, PAP-specific immune responses by IFNγ ELISPOTs. Anti-tumor activity to a syngeneic, PAP-expressing tumor line was evaluated. Results. PAP-specific cellular immunity and anti-tumor activity were elicited in mice after immunization with DNA- or listeria-based vaccines. Greater CD4+ and CD8+ responses, and anti-tumor responses, were elicited when mice were immunized first with DNA and boosted with Listeria, but not when administered in the opposite order. This was found to be dependent on CD4+ T cells elicited with DNA priming, and was not due to inflammatory signals by Listeria itself or due to B cells serving as antigen-presenting cells for DNA during priming. Conclusions. Heterologous prime/boost vaccination using DNA priming with Listeria boosting may provide better anti-tumor immunity, similar to many reports evaluating DNA priming with vaccines targeting foreign microbial antigens. These findings have implications for the design of future clinical trials.
Collapse
Affiliation(s)
- Laura E Johnson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| | | | | | | | - Erin Theisen
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| |
Collapse
|
47
|
Yurina V. Live Bacterial Vectors-A Promising DNA Vaccine Delivery System. Med Sci (Basel) 2018; 6:E27. [PMID: 29570602 PMCID: PMC6024733 DOI: 10.3390/medsci6020027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Vaccination is one of the most successful immunology applications that has considerably improved human health. The DNA vaccine is a new vaccine being developed since the early 1990s. Although the DNA vaccine is promising, no human DNA vaccine has been approved to date. The main problem facing DNA vaccine efficacy is the lack of a DNA vaccine delivery system. Several studies explored this limitation. One of the best DNA vaccine delivery systems uses a live bacterial vector as the carrier. The live bacterial vector induces a robust immune response due to its natural characteristics that are recognized by the immune system. Moreover, the route of administration used by the live bacterial vector is through the mucosal route that beneficially induces both mucosal and systemic immune responses. The mucosal route is not invasive, making the vaccine easy to administer, increasing the patient's acceptance. Lactic acid bacterium is one of the most promising bacteria used as a live bacterial vector. However, some other attenuated pathogenic bacteria, such as Salmonella spp. and Shigella spp., have been used as DNA vaccine carriers. Numerous studies showed that live bacterial vectors are a promising candidate to deliver DNA vaccines.
Collapse
Affiliation(s)
- Valentina Yurina
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, East Java 65145, Malang, Indonesia.
| |
Collapse
|
48
|
Abstract
This brief review discusses some recent advances in vaccine technologies with particular reference to their application within veterinary medicine. It highlights some of the key inactivated/killed approaches to vaccination, including natural split-product and subunit vaccines, recombinant subunit and protein vaccines, and peptide vaccines. It also covers live/attenuated vaccine strategies, including modified live marker/differentiating infected from vaccinated animals vaccines, live vector vaccines, and nucleic acid vaccines.
Collapse
Affiliation(s)
- Michael James Francis
- BioVacc Consulting Ltd, The Red House, 10 Market Square, Amersham, Buckinghamshire HP7 0DQ, UK.
| |
Collapse
|
49
|
Orally administered recombinant Lactobacillus casei vector vaccine expressing β-toxoid of Clostridium perfringens that induced protective immunity responses. Res Vet Sci 2017; 115:332-339. [DOI: 10.1016/j.rvsc.2017.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/05/2017] [Accepted: 06/26/2017] [Indexed: 11/30/2022]
|
50
|
Bolhassani A, Naderi N, Soleymani S. Prospects and progress of Listeria-based cancer vaccines. Expert Opin Biol Ther 2017; 17:1389-1400. [PMID: 28823183 DOI: 10.1080/14712598.2017.1366446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The development of an effective therapeutic vaccine to induce cancer-specific immunity remains problematic. Recently, a species of intracellular pathogen known as Listeria monocytogenes (Lm) has been used to transfer DNA, RNA and proteins into tumour cells as well as elicit an immune response against tumour-specific antigens. Areas covered: Herein, the authors provide the mechanisms of different Listeria monocytogenes strains, which are potential therapeutic cancer vaccine vectors, in addition to their preclinical and clinical development. They also speculate on the future of Lm-based tumour immunotherapies. The article is based on literature published on PubMed and data reported in clinical trials. Expert opinion: Attenuated strains of Listeria monocytogenes have safely been applied as therapeutic bacterial vectors for the delivery of cancer vaccines. These vectors stimulate MHCI and MHCII pathways as well as the proliferation of antigen-specific T lymphocytes. Several preclinical studies have demonstrated the potency of Lm in intracellular gene and protein delivery in vitro and in vivo. They have also indicated safety and efficiacy in clinical trials. Readers should be aware that the ability of attenuated Lm strains to induce potent immune responses depends on the type of deleted or inactivated Lm virulent gene or genes.
Collapse
Affiliation(s)
- Azam Bolhassani
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| | - Niloofar Naderi
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| | - Sepehr Soleymani
- a Department of Hepatitis and AIDS , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|