1
|
Li C, Gao D, Li C, Cheng G, Zhang L. Fighting against biofilm: The antifouling and antimicrobial material. Biointerphases 2024; 19:040802. [PMID: 39023091 DOI: 10.1116/6.0003695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.
Collapse
Affiliation(s)
- Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, The Third People's Hospital of Dalian, Dalian, Liaoning 116033, China
| |
Collapse
|
2
|
Yu G, Xi H, Sheng T, Lin J, Luo Z, Xu J. Sub-inhibitory concentrations of tetrabromobisphenol A induce the biofilm formation of methicillin-resistant Staphylococcus aureus. Arch Microbiol 2024; 206:301. [PMID: 38874781 DOI: 10.1007/s00203-024-04022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Biofilm formation by methicillin-resistant Staphylococcus aureus (MRSA) on indwelling medical devices complicates the treatment of infection. Tetrabromobisphenol A (TBBPA), a synthetic, lipophilic, halogenated aromatic compound widely used as an additive in plastics and electronic products, has raised environmental concerns due to its potential for bioaccumulation. This study investigated the impact of sub-inhibitory concentrations of TBBPA on MRSA biofilm formation. Crystal violet staining and confocal laser scanning microscopy analysis demonstrated that 1/8 MIC (0.5 µg/mL) of TBBPA significantly stimulated MRSA biofilm formation (P < 0.0001). MTT assays indicated that the metabolic activity within the biofilms increased by 15.60-40.85% compared to untreated controls. Dot blot immunoassay, autolysis assay, and extracellular DNA (eDNA) quantification further revealed TBBPA enhanced the production of polysaccharide intercellular adhesin (PIA) and eDNA, which are key biofilm components. Additionally, TBBPA was found to enhance the production of staphyloxanthin, facilitating MRSA survival under oxidative conditions and in human whole blood. RT-qPCR analysis showed that TBBPA significantly upregulated genes associated with biofilm formation (icaA, atlA, sarA), staphyloxanthin biosynthesis (crtM and sigB), and oxidative stress responses (sodA and katA). These findings suggest that TBBPA promotes MRSA biofilm development and enhances bacterial resistance to adverse conditions, thereby potentially exacerbating risks to human health.
Collapse
Affiliation(s)
- Guofang Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Huimin Xi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tianle Sheng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Jin Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Zhaoxia Luo
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jianqing Xu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
3
|
Saikawa GIA, Guidone GHM, Noriler SA, Reis GF, de Oliveira AG, Nakazato G, Rocha SPD. Green-Synthesized Silver Nanoparticles in the Prevention of Multidrug-Resistant Proteus mirabilis Infection and Incrustation of Urinary Catheters BioAgNPs Against P. mirabilis Infection. Curr Microbiol 2024; 81:100. [PMID: 38372801 DOI: 10.1007/s00284-024-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
This study aimed to assess the activity of AgNPs biosynthesized by Fusarium oxysporum (bio-AgNPs) against multidrug-resistant uropathogenic Proteus mirabilis, and to assess the antibacterial activity of catheters coated with bio-AgNPs. Broth microdilution and time-kill kinetics assays were used to determine the antibacterial activity of bio-AgNPs. Catheters were coated with two (2C) and three (3C) bio-AgNPs layers using polydopamine as crosslinker. Catheters were challenged with urine inoculated with P. mirabilis to assess the anti-incrustation activity. MIC was found to be 62.5 µmol l-1, causing total loss of viability after 4 h and bio-AgNPs inhibited biofilm formation by 76.4%. Catheters 2C and 3C avoided incrustation for 13 and 20 days, respectively, and reduced biofilm formation by more than 98%, while the pristine catheter was encrusted on the first day. These results provide evidence for the use of bio-AgNPs as a potential alternative to combat of multidrug-resistant P. mirabilis infections.
Collapse
Affiliation(s)
- Gustavo Issamu Asai Saikawa
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil
| | - Sandriele Aparecida Noriler
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Guilherme Fonseca Reis
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Admilton Gonçalves de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
- Laboratory of Electron Microscopy and Microanalysis, State University of Londrina, Londrina, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil.
| |
Collapse
|
4
|
Chimi LY, Bisso BN, Njateng GSS, Dzoyem JP. Antibiotic-Potentiating Effect of Some Bioactive Natural Products against Planktonic Cells, Biofilms, and Virulence Factors of Pseudomonas aeruginosa. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9410609. [PMID: 37663785 PMCID: PMC10470073 DOI: 10.1155/2023/9410609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Background Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections that are mediated by both virulence factor production and biofilm formation. In addition, many antibiotics are increasingly losing their efficacy due to the development of resistance. The screening of potentially bioactive natural compounds that have both antivirulence and antibiofilm activities to enhance antibiotic efficacy and reverse antibiotic resistance is a good strategy to overcome these issues. In this study, the antibacterial, antibiofilm, and antivirulence factor activities of some bioactive natural products in combination with conventional antibiotics were evaluated against clinical isolates of P. aeruginosa. Methods The broth microdilution method was used to determine the antibacterial and antibiofilm activities. The checkerboard method was used to evaluate the combination interactions. Spectrophotometric and agar plate techniques were used to assess the effect of the combination on the pyocyanin production and the motility in P. aeruginosa ATCC 27853 strain. Results Out of the eighteen combinations tested, ten exhibited synergistic effects against planktonic cells, seven against biofilm inhibition, and five against the eradication of mature biofilm of P. aeruginosa biofilm. The best synergistic effect was the association of amikacin and sinapic acid against planktonic cells (FICI = 0.08) with a 70-fold reduction in the MIC value of amikacin. The same combination showed significant synergistic inhibition of biofilm formation (FICI = 0.1) and biofilm eradication (FICI = 0.15) reducing the MBIC and MBEC of amikacin by 32-fold. Some selected synergistic combinations showed statistically significant differences (p < 0.01 or p < 0.001) in the inhibition of virulence factors compared to the antimicrobials alone. Conclusion In summary, this study revealed sinapic acid as an antibiotic adjuvant and antivirulence compound to overcome P. aeruginosa infections. This finding indicates that the combinations of amikacin plus sinapic acid, ceftazidime plus thymol, and norfloxacin plus curcumin could be considered promising candidates for the development of combination therapies targeting virulence factors against P. aeruginosa infections.
Collapse
Affiliation(s)
- Larissa Yetendje Chimi
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Borel Ndezo Bisso
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
5
|
Mirzaei R, Yousefimashouf R, Arabestani MR, Sedighi I, Alikhani MY. The issue beyond resistance: Methicillin-resistant Staphylococcus epidermidis biofilm formation is induced by subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin. PLoS One 2022; 17:e0277287. [PMID: 36350834 PMCID: PMC9645612 DOI: 10.1371/journal.pone.0277287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Staphylococcus epidermis is one of the most frequent causes of device-associated infections due to biofilm formation. Current reports noted that subinhibitory concentrations of antibiotics induce biofilm production in some bacteria. Accordingly, we evaluated the effect of exposure of different subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin on the biofilm formation of methicillin-resistant S. epidermidis (MRSE). Antimicrobial susceptibility testing and minimum inhibitory/bactericidal concentration of antimicrobial agents were determined. MRSE isolates were selected, and their biofilm formation ability was evaluated. The effect of subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin, antibiotics selected among common choices in the clinic, on MRSE biofilm formation was determined by the microtitre method. Besides, the effect of subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin on the expression of the biofilm-associated genes icaA and atlE was evaluated by Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR). Antimicrobial susceptibility patterns of MRSE strains showed a high level of resistance as follows: 80%, 53.3%, 33.3%, 33.3%, and 26.6%, for erythromycin, trimethoprim-sulfamethoxazole, tetracycline, clindamycin, and gentamicin, respectively. Besides, 73.3% of S. epidermidis strains were Multidrug-resistant (MDR). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were in the range of 0.5 to512 μg/mL and 1 to1024 μg/mL for cloxacillin, 0.125 to256 μg/mL and 1 to512 μg/mL for cefazolin, 0.125 to64 μg/mL and 4 to>1024 μg/mL for clindamycin, and 2 to32 μg/mL and 4 to32 μg/mL for vancomycin, respectively. The findings showed that subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin induce biofilm production in MRSE strains. In particular, the OD values of strains were in the range of 0.09-0.95, 0.05-0.86, and 0.06-1 toward cloxacillin, cefazolin, and clindamycin, respectively. On the other hand, exposure to subinhibitory vancomycin concentrations did not increase the biofilm formation in MRSE strains. The findings also demonstrated that sub-MIC of antibiotics up-regulated biofilm-associated genes. In particular, atlE and icaA were up-regulated 0.062 to 1.16 and 0.078 to 1.48 folds, respectively, for cloxacillin, 0.11 to 0.8, and 0.1 to 1.3 folds for cefazolin, 0.18 to 0.98, and 0.19 to 1.4 folds, respectively, for clindamycin. In contrast, the results showed that sub-MIC of vancomycin did not increase the biofilm-associated genes. These findings overall show that exposure to sub-MIC of traditional antibiotics can cause biofilm induction in MRSE, thereby increasing the survival and persistence on various surfaces that worsen the condition of comorbid infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Sedighi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Odularu AT, Afolayan AJ, Sadimenko AP, Ajibade PA, Mbese JZ. Multidrug-Resistant Biofilm, Quorum Sensing, Quorum Quenching, and Antibacterial Activities of Indole Derivatives as Potential Eradication Approaches. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9048245. [PMID: 36060142 PMCID: PMC9433265 DOI: 10.1155/2022/9048245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Challenges encountered in relapse of illness caused by resistance of microorganisms to antimicrobial agents (drugs) are due to factors of severe stress initiated by random use of antibiotics and insufficient beneficial approaches. These challenges have resulted to multiple drug resistance (MDR) and, subsequently, biofilm formation. A type of intercellular communication signal called quorum sensing (QS) has been studied to cause the spread of resistance, thereby enabling a formation of stable community for microorganisms. The QS could be inhibited using QS inhibitors (QSIs) called quorum-quenching (QQ). The QQ is an antibiofilm agent. Indole derivatives from plant sources can serve as quorum-quenching eradication approach for biofilm, as well as a promising nontoxic antibiofilm agent. In other words, phytochemicals in plants help to control and prevent biofilm formation. It could be recommended that combination strategies of these indoles' derivatives with antibiotics would yield enhanced results.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
- School of Further and Continuing Education, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Anthony J. Afolayan
- Centre of Phytomedicine, Department of Botany, Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, Private Bag X1314, South Africa
| | - Alexander P. Sadimenko
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | - Peter A. Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Scottsville 3209, South Africa
| | - Johannes Z. Mbese
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| |
Collapse
|
7
|
Sub-Inhibitory Concentrations of Amoxicillin and Tylosin Affect the Biofilm Formation and Virulence of Streptococcus suis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148359. [PMID: 35886209 PMCID: PMC9317536 DOI: 10.3390/ijerph19148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Streptococcus suis (S. suis) can form a protective biofilm during infection and lead to prolonged disease. Oral antibiotics are often used for treatment in clinical practice, but sub-inhibitory concentration levels often exist due to low oral absorption rate, resulting in disease deterioration. The purpose of this study was to investigate the effects of Amoxicillin and Tylosin on the biofilm formation and virulence of S. suis HA9801 at sub-inhibitory concentration. We first determined that the test groups (1/4MIC Amoxicillin and Tylosin) could significantly increase the amount of biofilm formation without affecting bacterial growth. The LD50 value of the test groups was significantly higher than that of the control group in the mouse infection model. In the mouse infection model, the LD50 value of the experimental group was significantly increased, but the tissue bacterial load was significantly decreased. Further RT-PCR analysis showed that the expression levels of virulence-related genes in the experimental group were significantly reduced. Our study suggests that both Amoxicillin and Tylosin at sub-inhibitory concentrations could enhance the biofilm formation ability of S. suis HA9801 and reduce its virulence to form persistent infection.
Collapse
|
8
|
Satokata AAC, de Souza JH, Silva LLO, Santiago MB, Ramos SB, Assis LRD, Theodoro RDS, Oliveira LRE, Regasini LO, Martins CHG. Chalcones with potential antibacterial and antibiofilm activities against periodontopathogenic bacteria. Anaerobe 2022; 76:102588. [PMID: 35618163 DOI: 10.1016/j.anaerobe.2022.102588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Periodontitis is a pathology resulting from complex interaction of microorganisms in the dental biofilm with the host's immune system. Increased use of antibiotics associated with their inappropriate use has increased resistance levels in anaerobic bacteria. Therefore, identifying new antimicrobial compounds, such as chalcones, is urgent. This study evaluates the antibacterial activity and the antibiofilm activity of 15 chalcones against the periodontopathogenic bacteria Prevotella nigrescens (ATCC 33563), P. oralis (ATCC 33269), Peptostreptococcus anaerobius (ATCC 27337), Actinomyces viscosus (ATCC 43146), Porphyromonas asaccharolytica (ATCC 25260), and Fusobacterium nucleatum (ATCC 25586). METHODS The compounds were evaluated by minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) tests. RESULTS Compounds 1-6 showed good antibacterial and antibiofilm activities against most of the evaluated bacteria: MIC was lower than or equal to 6.25 μg/mL, biofilm biomass was reduced by 95%, and the compounds at concentrations between 0.78 and 100 μg/mL totally inhibited cell viability. Among the tested chalcones, 3 stood out: it was effective against all the bacteria, as revealed by the MIC and MBIC results. CONCLUSIONS Our results have consolidated a base for the development of new studies on the effects of the tested chalcones as agents to combat and to prevent periodontitis.
Collapse
Affiliation(s)
- Alessandra Akemi Cury Satokata
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Jonathan Henrique de Souza
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luana Luiza Oliveira Silva
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Brentini Santiago
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Leticia Ribeiro de Assis
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Reinaldo Dos Santos Theodoro
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Lígia Rodrigues E Oliveira
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Luis Octavio Regasini
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Department of Chemistry and Environmental Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing (LEA), Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
9
|
Baseri N, Najar-Peerayeh S, Bakhshi B, Campanile F. Phenotypic and genotypic changes of Staphylococcus aureus in the presence of the inappropriate concentration of chlorhexidine gluconate. BMC Microbiol 2022; 22:100. [PMID: 35418037 PMCID: PMC9006606 DOI: 10.1186/s12866-022-02522-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chlorhexidine gluconate (CHG) is a disinfectant agent with different applications in health care. Improper use of CHG causes antimicrobial resistance in bacteria as a public health threat. Since Staphylococcus aureus is a common bacteria, it is expected usually exposed to CHG in the hospital and community. The present study aimed to correlate the phenotypic and genotypic changes in a S. aureus strain upon serial adaptation with supra-inhibitory CHG concentration for 50 days. Results After in vitro serial culture of 5 × 105 CFU/ml of a clinical vancomycin-susceptible S. aureus strain (VAN-S) into brain heart infusion (BHI) broth containing CHG 1/4, 1/2, 1, and 2 × minimal inhibitory concentration (MIC) values of VAN-S in 37 °C during 50 days, we isolated a S. aureus strain (CHGVan-I) with a ≥ twofold decrease in susceptibility to CHG and vancomycin. CHG-induced CHGVan-I strain was considered as a vancomycin-intermediate S. aureus (VISA) strain with a VAN MIC of 4 μg/ml using the broth macro dilution method. However, reduced resistance was observed to tetracycline family antibiotics (doxycycline and tetracycline) using a modified Kirby-Bauer disk diffusion test. Moreover, a remarkable reduction was detected in growth rate, hemolysis activity (the lysis of human red blood cells by alpha-hemolysin), and colony pigmentation (on BHI agar plates). Biofilm formation (using the Microtiter plate method and crystal violet staining) was significantly increased upon CHG treatment. Adaptive changes in the expression of a set of common genes related to the development of VISA phenotype (graTSR, vraTSR, walKR, agr RNAIII, sceD, pbpB, and fmtA) were analyzed by Reverse Transcription quantitative PCR (RT-qPCR) experiment. Significant changes in vraTSR, agr RNAIII, sceD, and pbpB expression were observed. However, gene sequencing of the two-component system vraTSR using the Sanger sequencing method did not detect any non-synonymous substitution in CHGVan-I compared to wild-type. The clonality of VAN-S and CHGVan-I strains was verified using the pulsed-field gel electrophoresis (PFGE) method. Conclusions The importance of the present study should be stated in new detected mechanisms underlying VISA development. We found a link between the improper CHX use and the development of phenotypic and genotypic features, typical of VISA clinical isolates, in a CHG-induced strain. Since disruption of the cell wall biosynthesis occurs in VISA isolates, our CHG-induced VISA strain proved new insights into the role of CHG in the stimulation of the S. aureus cell wall.
Collapse
Affiliation(s)
- Neda Baseri
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Catania, Italy
| |
Collapse
|
10
|
Protein-conjugated microbubbles for the selective targeting of S. aureus biofilms. Biofilm 2022; 4:100074. [PMID: 35340817 PMCID: PMC8942837 DOI: 10.1016/j.bioflm.2022.100074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen and a common cause of bloodstream infection. The ability of S. aureus to form biofilms, particularly on medical devices, makes treatment difficult, as does its tendency to spread within the body and cause secondary foci of infection. Prolonged courses of intravenous antimicrobial treatment are usually required for serious S. aureus infections. This work investigates the in vitro attachment of microbubbles to S. aureus biofilms via a novel Affimer protein, AClfA1, which targets the clumping factor A (ClfA) virulence factor – a cell-wall anchored protein associated with surface attachment. Microbubbles (MBs) are micron-sized gas-filled bubbles encapsulated by a lipid, polymer, or protein monolayer or other surfactant-based material. Affimers are small (∼12 kDa) heat-stable binding proteins developed as replacements for antibodies. The binding kinetics of AClfA1 against S. aureus ClfA showed strong binding affinity (KD = 62 ± 3 nM). AClfA1 was then shown to bind S. aureus biofilms under flow conditions both as a free ligand and when bound to microparticles (polymer beads or microbubbles). Microbubbles functionalized with AClfA1 demonstrated an 8-fold increase in binding compared to microbubbles functionalized with an identical Affimer scaffold but lacking the recognition groups. Bound MBs were able to withstand flow rates of 250 μL/min. Finally, ultrasound was applied to burst the biofilm bound MBs to determine whether this would lead to biofilm biomass loss or cell death. Application of a 2.25 MHz ultrasound profile (with a peak negative pressure of 0.8 MPa and consisting of a 22-cycle sine wave, at a pulse repetition rate of 10 kHz) for 2 s to a biofilm decorated with targeted MBs, led to a 25% increase in biomass loss and a concomitant 8% increase in dead cell count. The results of this work show that Affimers can be developed to target S. aureus biofilms and that such Affimers can be attached to contrast agents such as microbubbles or polymer beads and offer potential, with some optimization, for drug-free biofilm treatment.
Collapse
|
11
|
Hagras SAA, Hosny AEDMS, Helmy OM, Salem-Bekhit MM, Shakeel F, Farrag HA. Effect of sub-inhibitory concentrations of cefepime on biofilm formation by Pseudomonas aeruginosa. Can J Microbiol 2021; 67:894-901. [PMID: 34731576 DOI: 10.1139/cjm-2021-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of cefepime at sub-minimum inhibitory concentrations (sub-MICs) on in vitro biofilm formation (BF) by clinical isolates of Pseudomonas aeruginosa. The effect of cefepime at sub-MIC levels (½-1/256 MIC) on in vitro BF by six clinical isolates of P. aeruginosa was phenotypically assessed following 24 and 48 h of challenge using the tissue culture plate (TCP) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to observe the change in expression of three biofilm-related genes, namely, a protease-encoding gene (lasA), fimbrial protein-encoding gene (cupA1), and alginate-encoding gene (algC), in a weak biofilm-producing strain of P. aeruginosa following 24 and 48 h of challenge with sub-MICs of cefepime. The BF morphology in response to cefepime was imaged using scanning electron microscopy (SEM). The TCP assay showed strain-, time-, and concentration-dependent changes in in vitro BF in P. aeruginosa following challenge with sub-MICs of cefepime, with a profound increase in strains with inherently no or weak biofilm-producing ability. RT-PCR revealed time-dependent upregulation in the expression of the investigated genes following challenge with ½ and ¼ MIC levels, as confirmed by SEM. Cefepime at sub-MICs could upregulate the expression of BF-related genes and enhance BF by P. aeruginosa clinical isolates.
Collapse
Affiliation(s)
- Soheir A A Hagras
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.,Inaya Medical Colleges, Riyadh, Saudi Arabia
| | - Alaa El-Dien M S Hosny
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Helmy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mounir M Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology & Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hala A Farrag
- Department of Drug Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
12
|
Ham SY, Kim HS, Jo MJ, Lee JH, Byun Y, Ko GJ, Park HD. Combined Treatment of 6-Gingerol Analog and Tobramycin for Inhibiting Pseudomonas aeruginosa Infections. Microbiol Spectr 2021; 9:e0019221. [PMID: 34704784 PMCID: PMC8549756 DOI: 10.1128/spectrum.00192-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous human pathogen that causes severe infections. Although antibiotics, such as tobramycin, are currently used for infection therapy, their antibacterial activity has resulted in the emergence of multiple antibiotic-resistant bacteria. The 6-gingerol analog, a structural derivative of the main component of ginger, is a quorum sensing (QS) inhibitor. However, it has a lower biofilm inhibitory activity than antibiotics and the possibility to cause toxicity in humans. Therefore, novel and more effective approaches for decreasing dosing concentration and increasing biofilm inhibitory activity are required to alleviate P. aeruginosa infections. In this study, a 6-gingerol analog was combined with tobramycin to treat P. aeruginosa infections. The combined treatment of 6-gingerol analog and tobramycin showed strong inhibitory activities on biofilm formation and the production of QS-related virulence factors of P. aeruginosa compared to single treatments. Furthermore, the combined treatment alleviated the infectivity of P. aeruginosa in an insect model using Tenebrio molitor larvae without inducing any cytotoxic effects in human lung epithelial cells. The 6-gingerol analog showed these inhibitory activities at much lower concentrations when used in combination with tobramycin. Adjuvant effects were observed through increased QS-disrupting processes rather than through antibacterial action. In particular, improved RhlR inactivation by this combination is a possible target for therapeutic development in LasR-independent chronic infections. Therefore, the combined treatment of 6-gingerol analog and tobramycin may be considered an effective method for treating P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is a pathogen that causes various infectious diseases through quorum-sensing regulation. Although antibiotics are mainly used to treat P. aeruginosa infections, they cause the emergence of resistant bacteria in humans. To compensate for the disadvantages of antibiotics and increase their effectiveness, natural products were used in combination with antibiotics in this study. We discovered that combined treatment with 6-gingerol analog from naturally-derived ginger substances and tobramycin resulted in more effective reductions of biofilm formation and virulence factor production in P. aeruginosa than single treatments. Our findings support the notion that when 6-gingerol analog is combined with tobramycin, the effects of the analog can be exerted at much lower concentrations. Furthermore, its improved LasR-independent RhlR inactivation may serve as a key target for therapeutic development in chronic infections. Therefore, the combined treatment of 6-gingerol analog and tobramycin is suggested as a novel alternative for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- So-Young Ham
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Han-Shin Kim
- Korean Peninsula Infrastructure Cooperation Team, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Gyeonggi-do, Republic of Korea
| | - Min Jee Jo
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jeong-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Biomedical Research Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Gang-Jee Ko
- Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Charpentier E, Doudet L, Allart-Simon I, Colin M, Gangloff SC, Gérard S, Reffuveille F. Synergy between Indoloquinolines and Ciprofloxacin: An Antibiofilm Strategy against Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10101205. [PMID: 34680786 PMCID: PMC8532862 DOI: 10.3390/antibiotics10101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
Antibiotic treatments can participate in the formation of bacterial biofilm in case of under dosage. The interest of indoloquinoline scaffold for drug discovery incited us to study the preparation of new indolo [2,3-b]quinoline derivatives by a domino radical process. We tested the effect of two different “indoloquinoline” molecules (Indol-1 and Indol-2) without antimicrobial activity, in addition to ciprofloxacin, on biofilm formation thanks to crystal violet staining and enumeration of adhered bacteria. This association of ciprofloxacin and Indol-1 or Indol-2 attenuated the formation of biofilm up to almost 80% compared to ciprofloxacin alone, or even prevented the presence of adhered bacteria. In conclusion, these data prove that the association of non-antimicrobial molecules with an antibiotic can be a solution to fight against biofilm and antibiotic resistance emergence.
Collapse
Affiliation(s)
- Emilie Charpentier
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), UFR Pharmacie, Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (E.C.); (M.C.); (S.C.G.)
| | - Ludovic Doudet
- Institut de Chimie Moléculaire de Reims (ICMR-UMR CNRS 7312), UFR Pharmacie, Université de Reims Champagne-Ardenne, 51097 Reims, France; (L.D.); (I.A.-S.); (S.G.)
| | - Ingrid Allart-Simon
- Institut de Chimie Moléculaire de Reims (ICMR-UMR CNRS 7312), UFR Pharmacie, Université de Reims Champagne-Ardenne, 51097 Reims, France; (L.D.); (I.A.-S.); (S.G.)
| | - Marius Colin
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), UFR Pharmacie, Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (E.C.); (M.C.); (S.C.G.)
| | - Sophie C. Gangloff
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), UFR Pharmacie, Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (E.C.); (M.C.); (S.C.G.)
| | - Stéphane Gérard
- Institut de Chimie Moléculaire de Reims (ICMR-UMR CNRS 7312), UFR Pharmacie, Université de Reims Champagne-Ardenne, 51097 Reims, France; (L.D.); (I.A.-S.); (S.G.)
| | - Fany Reffuveille
- EA 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), UFR Pharmacie, Université de Reims Champagne-Ardenne, SFR Cap Santé (FED 4231), 51097 Reims, France; (E.C.); (M.C.); (S.C.G.)
- Correspondence:
| |
Collapse
|
14
|
Abstract
Rising antimicrobial resistance severely limits efforts to treat infections and is a cause for critical concern. Renewed interest in bacteriophage therapy has advanced understanding of the breadth of species capable of targeting bacterial antimicrobial resistance mechanisms, but many questions concerning ideal application remain unanswered. The following minireview examines bacterial resistance mechanisms, the current state of bacteriophage therapy, and how bacteriophage therapy can augment strategies to combat resistance with a focus on the clinically relevant bacterium Pseudomonas aeruginosa, as well as the role of efflux pumps in antimicrobial resistance. Methods to prevent antimicrobial efflux using efflux pump inhibitors and phage steering, a type of bacteriophage therapy, are also covered. The evolutionary context underlying antimicrobial resistance and the need to include theory in the ongoing development of bacteriophage therapy are also discussed.
Collapse
|
15
|
Bernardi S, Anderson A, Macchiarelli G, Hellwig E, Cieplik F, Vach K, Al-Ahmad A. Subinhibitory Antibiotic Concentrations Enhance Biofilm Formation of Clinical Enterococcus faecalis Isolates. Antibiotics (Basel) 2021; 10:antibiotics10070874. [PMID: 34356795 PMCID: PMC8300655 DOI: 10.3390/antibiotics10070874] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis is a microorganism that can be found in the oral cavity, especially in secondary endodontic infections, with a prevalence ranging from 24-70%. The increase in the ability to form biofilms in the presence of subinhibitory antibiotic concentrations is a phenomenon that is observed for a wide variety of bacterial pathogens and is associated with increased resistance. In this study, therefore, six E. faecalis isolates from an endodontic environment and two control strains were exposed to subinhibitory concentrations of Penicillin G, Amoxicillin, Doxycycline, Fosfomycin, Tetracycline and Vancomycin and examined for their biofilm formation abilities. The minimum inhibitory concentration (MIC) was determined for all E. faecalis isolates. A culture of the isolate was mixed with a serial dilution series of the respective antibiotic, incubated overnight and the biofilm formation was analyzed using a microtiter plate assay. All isolates were able to form biofilms in the absence of an antibiotic. A significant increase in biofilm formation of up to more than 50% was found in the isolates exposed to subinhibitory concentrations of various antibiotics. Most isolates showed a significant increase in Fosfomycin (7/8), Doxycycline (6/8) and Tetracycline (6/8). Three endodontic isolates showed a significant increase in five of the antibiotics examined at the same time. On exposure to Vancomycin, three endodontic isolates and the two control strains showed an increase. The increase in the ability to form biofilms extended over a concentration range from 1/2 to 1/64 of the MIC concentration. Antibiotics may reach certain niches in the oral cavity at subinhibitory concentrations only. This can increase the biofilm formation by enterococci, and in turn lead to decreased susceptibility of these taxa to antibiotics.
Collapse
Affiliation(s)
- Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- Centre of Microscopy, University of L'Aquila, 67100 L'Aquila, Italy
| | - Annette Anderson
- Department of Operative Dentistry & Periodontology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Elmar Hellwig
- Department of Operative Dentistry & Periodontology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, 79104 Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry & Periodontology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
16
|
Malawong S, Thammawithan S, Sirithongsuk P, Daduang S, Klaynongsruang S, Wong PT, Patramanon R. Silver Nanoparticles Enhance Antimicrobial Efficacy of Antibiotics and Restore That Efficacy against the Melioidosis Pathogen. Antibiotics (Basel) 2021; 10:839. [PMID: 34356761 PMCID: PMC8300767 DOI: 10.3390/antibiotics10070839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime (CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei. The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC) index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to 0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored their bactericidal potency in the bacterial strains that had previously been shown to be resistant to the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers to protect themselves, ultimately the bacteria were killed by the antibiotic-AgNPs combinations. Overall, these results suggest the study of antibiotic-AgNPs combinations as an alternative design strategy for potential therapeutics to more effectively combat the melioidosis pathogen.
Collapse
Affiliation(s)
- Sathit Malawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
| | - Pawinee Sirithongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
17
|
Effect of sub-lethal doses of nisin on Staphylococcus aureus toxin production and biofilm formation. Toxicon 2021; 197:1-5. [PMID: 33838179 DOI: 10.1016/j.toxicon.2021.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus is one of the commonest food-borne pathogens that can cause gastroenteritis owing to having several enterotoxins. Also, biofilm formation can complicate infections caused by this microorganism. Nisin is a safe food bio preservative which is usually used as an agent to prevent pathogen growth; however, it is important to identify the exact impact of nisin on the growth of S. aureus and to determine the suitable concentration needed for elimination of this pathogen in food. In this study, after MIC determination of nisin against S. aureus ATCC 29213, this strain was treated with sub-MIC (1/2) of nisin (4 μg/ml) and transcript levels of toxin-encoding (hla, SEA, SEB, and SED) and biofilm-associated (fnb, ebpS, eno, and icaA) genes were determined using Quantitative Real-time PCR at 2, 8, and 24 h post exposure. All toxin genes were down-regulated following exposure to sub-MIC of nisin, whereas biofilm-associated genes were up-regulated. The expression levels of fnb and icaA in S. aureus were highest after 8 h (4.5-fold and 6.8-fold increase, respectively), while the expression levels of eno and ebpS genes were highest after 2 h (3.3 and 4.5-fold increase, respectively). According to these results, although transcriptional levels of toxin genes were reduced, sub-MIC concentrations of nisin could trigger the expression of biofilm-associated genes in S. aureus. This can further lead to bacteriocin tolerance such that even its higher concentrations cannot kill bacterial cells after exposure to sub-lethal doses. Therefore, it is pivotal to add appropriate concentrations of nisin to food products for preservation purposes.
Collapse
|
18
|
Abstract
Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics. Cite this article: Bone Joint J 2021;103-B(2):234-244.
Collapse
Affiliation(s)
- Bryan P Gibb
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| |
Collapse
|
19
|
Shafiei SNS, Ahmad K, Ikhsan NFM, Ismail SI, Sijam K. Suppression of Xanthomonas oryzae pv. oryzae biofilm formation by Acacia mangium methanol leaf extract. BRAZ J BIOL 2021; 81:11-17. [PMID: 32074168 DOI: 10.1590/1519-6984.206124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/05/2019] [Indexed: 01/27/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), a pathogen responsible for rice bacterial leaf blight, produces biofilm to protect viable Xoo cells from antimicrobial agents. A study was conducted to determine the potency of Acacia mangium methanol (AMMH) leaf extract as a Xoo biofilm inhibitor. Four concentrations (3.13, 6.25, 9.38, and 12.5 mg/mL) of AMMH leaf extract were tested for their ability to inhibit Xoo biofilm formation on a 96-well microtiter plate. The results showed that the negative controls had the highest O.D. values from other treatments, indicating the intense formation of biofilm. This was followed by the positive control (Streptomycin sulfate, 0.2 mg/mL) and AMMH leaf extract at concentration 3.13 mg/mL, which showed no significant differences in their O.D. values (1.96 and 1.57, respectively). All other treatments at concentrations of 6.25, 9.38, and 12.5 mg/mL showed no significant differences in their O.D. values (0.91, 0.79, and 0.53, respectively). For inhibition percentages, treatment with concentration 12.5 mg/mL gave the highest result (81.25%) followed by treatment at concentrations 6.25 and 9.38 mg/mL that showed no significant differences in their inhibition percentage (67.75% and 72.23%, respectively). Concentration 3.13 mg/mL resulted in 44.49% of biofilm inhibition and the positive control resulted in 30.75% of biofilm inhibition. Confocal laser scanning microscopy (CLSM) analysis of Xoo biofilm inhibition and breakdown showed the presence of non-viable Xoo cells and changes in aggregation size due to increase in AMMH leaf extract concentration. Control slides showed the absence of Xoo dead cells.
Collapse
Affiliation(s)
- S N Sarah Shafiei
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - K Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Plantation Studies - IKP, Universiti Putra Malaysia, Selangor, Malaysia
| | - N F M Ikhsan
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - S I Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - K Sijam
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
20
|
Chadha J. In vitro effects of sub-inhibitory concentrations of amoxicillin on physiological responses and virulence determinants in a commensal strain of Escherichia coli. J Appl Microbiol 2021; 131:682-694. [PMID: 33387370 DOI: 10.1111/jam.14987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
AIMS The goal was to study the effects of sub-minimum inhibitory concentrations (sub-MICs) of amoxicillin (AMX) on various physiological responses and virulence determinants in a commensal strain of Escherichia coli. MATERIALS AND RESULTS The commensal strain was passaged under various sub-MICs of AMX and its effect on bacterial growth, motility, biofilm formation, expression of outer membrane proteins (OMPs) and cell adhesion was analysed. Bacterial growth was diminished at 1/2 and 1/4 MICs of AMX with significant reduction in growth rate. Using crystal violet (CV) assays and quantification of surface polysaccharides we observed strong biofilm formation, together with reduced swimming motility in E. coli at 1/2 MIC of AMX. Differential OMP expression upon AMX sub-MIC exposure coincided with enhanced cell adhesion to HT-29 cells in vitro. The results demonstrated that sub-MICs of AMX can stimulate unpredictable changes in commensal bacterial strains which can be a potent source for the propagation of antibiotic resistance. CONCLUSIONS The study reports that AMX at 1/2 MIC significantly compromised bacterial growth and swimming motility, alongside inducing biofilm formation. This was also accompanied by upregulation of a single OMP which subsequently increased cell adhesion capabilities in E. coli at 1/2 MIC, thereby enhancing its colonization and survival abilities within the gut microsphere. SIGNIFICANCE AND IMPACT OF THE STUDY For the first time, the effects of AMX sub-MICs on a commensal E. coli strain were described. The results corroborate on how antibiotics can act as stimulatory molecules and determine the pathogenicity of commensal bacteria in vivo that can disseminate resistance to other intestinal pathogens or microbes.
Collapse
Affiliation(s)
- J Chadha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
21
|
Hemati S, Kouhsari E, Sadeghifard N, Maleki A, Omidi N, Mahdavi Z, Pakzad I. Sub-minimum inhibitory concentrations of biocides induced biofilm formation in Pseudomonas aeruginosa. New Microbes New Infect 2020; 38:100794. [PMID: 33240514 PMCID: PMC7674602 DOI: 10.1016/j.nmni.2020.100794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
It is clear that biofilm formation causes many serious health-care problems. Interestingly, sub minimum inhibitory concentrations (sub-MICs) of some biocides can induce biofilm formation in bacteria. We investigated whether sub-MICs of Savlon, chlorhexidine and deconex®, as biocidal products, can induce biofilm formation in clinical isolates of Pseudomonas aeruginosa. To determine MICs and biofilm formation, we performed microtitre plate assays. All three biocides induced biofilm formation at sub-MICs; Savlon was the most successful antiseptic agent to induce biofilm formation among P. aeruginosa isolates. Deconex had the best inhibition effect on planktonic cultures of P. aeruginosa isolates. We concluded that sub-MICs of Savlon and deconex could significantly induce biofilm formation.
Collapse
Affiliation(s)
- S Hemati
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - E Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - N Sadeghifard
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - A Maleki
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran
| | - N Omidi
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Z Mahdavi
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - I Pakzad
- Clinical Microbiology Research Centre, Ilam University of Medical Sciences, Ilam, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
22
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Curr Pharm Biotechnol 2020; 21:270-286. [PMID: 31721708 DOI: 10.2174/1389201020666191112155905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/09/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. METHODS Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. RESULTS Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. CONCLUSION The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Dung T N Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Sandra F Oloketuyi
- Laboratory for Environmental and Life Sciences, University of Nova Gorica 5000, Nova Gorica, Slovenia
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
23
|
Lu Y, Yan H, Li X, Gu Y, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Physicochemical properties and mode of action of a novel bacteriocin BM1122 with broad antibacterial spectrum produced by Lactobacillus crustorum MN047. J Food Sci 2020; 85:1523-1535. [PMID: 32282078 DOI: 10.1111/1750-3841.15131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/08/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
Bacteriocins are defined as ribosomally synthesized antibacterial peptides/proteins that either kill or inhibit the growth of other bacteria. In the present study, the physicochemical properties, mode of action, and potential use in food preservation of a novel bacteriocin BM1122 from Lactobacillus crustorum MN047 were studied. It exhibited a broad inhibitory spectrum against selected Gram-positive and Gram-negative bacteria. Kinetic curves revealed efficient time-dependent bactericidal activity. Moreover, BM1122 possessed low hemolytic activity and good thermal stability between 60 and 120 °C. It was resistant to a wide range of pH (2 to 11) and proteinases. The scanning and transmission electron microscopy showed that BM1122 led to plasmolysis of Staphylococcus aureus and pore formation in Escherichia coli. Flow cytometric analysis demonstrated that BM1122 destroyed cell membrane integrity. Additionally, BM1122 could also inhibit biofilm formation and disturb the normal cell cycles of S. aureus and E. coli. Finally, BM1122 may enhance the inhibition of S. aureus and E. coli on beef meat stored at 4 °C for a duration of 10 days. These findings indicated that BM1122 had the potential for use as a natural preservative in the food industry. PRACTICAL APPLICATION: Fresh raw meats are highly perishable products. Bacteriocin BM1122 with a broad antibacterial spectrum can inhibit the growth of microorganisms in beef meat during refrigerated storage.
Collapse
Affiliation(s)
- Yingying Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Hong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Yaxin Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| |
Collapse
|
24
|
Adamus-Białek W, Wawszczak M, Arabski M, Majchrzak M, Gulba M, Jarych D, Parniewski P, Głuszek S. Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Virulence 2020; 10:260-276. [PMID: 30938219 PMCID: PMC6527016 DOI: 10.1080/21505594.2019.1596507] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antibiotic therapy and its consequences in bacterial and human aspects are widely investigated. Despite this, the emergence of new multidrug resistant bacteria is still a current problem. The scope of our work included the observation of changes among uropathogenic Escherichia coli strains after the treatment with a subinhibitory concentration of different antibiotics. The sensitive strains with or without virulence factors were incubated with amoxicillin, ciprofloxacin, gentamycin, or tobramycin. After each passage, the E. coli derivatives were compared to their wild types based on their susceptibility profiles, virulence genes, biofilm formations and the fingerprint profiles of PCR products amplified with using the (N)(6)(CGG)(4) primer. It turned out that antibiotics caused significant changes in the repertoire of bacterial virulence and biofilm formation, corresponding to acquired cross-resistance. The genomic changes among the studied bacteria were reflected in the changed profiles of the CGG-PCR products. In conclusion, the inappropriate application of antibiotics may cause a rapid rise of Multidrug Resistant (MDR) strains and give bacteria a chance to modulate their own pathogenicity. This phenomenon has been easily observed among uropathogenic E. coli strains and it is one of the main reasons for recurrent infections of the urinary tract.
Collapse
Affiliation(s)
- Wioletta Adamus-Białek
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Monika Wawszczak
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Michał Arabski
- b Department of Biochemistry & Genetics , Jan Kochanowski University , Kielce , Poland
| | - Michał Majchrzak
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Martyna Gulba
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Dariusz Jarych
- c Institute of Medical Biology, Polish Academy of Sciences , Łódź , Poland
| | - Paweł Parniewski
- c Institute of Medical Biology, Polish Academy of Sciences , Łódź , Poland
| | - Stanisław Głuszek
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| |
Collapse
|
25
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
26
|
Phenotypic Characterization of Rhodococcus equi Biofilm Grown In Vitro and Inhibiting and Dissolving Activity of Azithromycin/Rifampicin Treatment. Pathogens 2019; 8:pathogens8040284. [PMID: 31817114 PMCID: PMC6963269 DOI: 10.3390/pathogens8040284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/01/2019] [Accepted: 12/03/2019] [Indexed: 01/11/2023] Open
Abstract
Microbial biofilm has been implicated in a wide range of chronic infections. In spite of the fact that Rhodococcus equi is a recognized cause of chronic disease in animals and humans, few studies have focused on the sessile phenotype of R.equi. The aim of this research was to phenotypically characterize the biofilm development of R. equi and its answerability for hypo-responsiveness to macrolides and rifampicin. Biofilm formation is initiated by bacterial adhesion to the surface. In this work, the ability of R. equi to adhere to the surface of human lung epithelial cells was detected by a fluorometric adhesion test performed on 40 clinical isolates. Subsequently, the capability of R. equi to produce biofilm was investigated by colorimetric, fluorescence and scanning electron microscopy analysis, revealing a general slow growth of rhodococcal biofilm and different sessile phenotypes among field isolates, some also including filamented bacteria. Azithromycin treatment produced a higher long-term inhibition and dissolution of R. equi biofilms than rifampicin, while the two antibiotics combined boosted the anti-biofilm effect in a statistically significant manner, although this was not equally effective for all R. equi isolates. Increasing the MIC concentrations of drugs tenfold alone and in combination did not completely eradicate pre-formed R. equi biofilms, while a rifampicin-resistant isolate produced an exceptionally abundant extracellular matrix. These results have strengthened the hypothesis that biofilm production may occur as an antibiotic tolerance system in R. equi, potentially determining persistence and, eventually, chronic infection.
Collapse
|
27
|
Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 2019; 8:e47612. [PMID: 31516122 PMCID: PMC6814407 DOI: 10.7554/elife.47612] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial populations vary in their stress tolerance and population structure depending upon whether growth occurs in well-mixed or structured environments. We hypothesized that evolution in biofilms would generate greater genetic diversity than well-mixed environments and lead to different pathways of antibiotic resistance. We used experimental evolution and whole genome sequencing to test how the biofilm lifestyle influenced the rate, genetic mechanisms, and pleiotropic effects of resistance to ciprofloxacin in Acinetobacter baumannii populations. Both evolutionary dynamics and the identities of mutations differed between lifestyle. Planktonic populations experienced selective sweeps of mutations including the primary topoisomerase drug targets, whereas biofilm-adapted populations acquired mutations in regulators of efflux pumps. An overall trade-off between fitness and resistance level emerged, wherein biofilm-adapted clones were less resistant than planktonic but more fit in the absence of drug. However, biofilm populations developed collateral sensitivity to cephalosporins, demonstrating the clinical relevance of lifestyle on the evolution of resistance.
Collapse
Affiliation(s)
- Alfonso Santos-Lopez
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Christopher W Marshall
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Michelle R Scribner
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Daniel J Snyder
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| |
Collapse
|
28
|
Xie L, Xie L. Pathway-Centric Structure-Based Multi-Target Compound Screening for Anti-Virulence Drug Repurposing. Int J Mol Sci 2019; 20:ijms20143504. [PMID: 31319464 PMCID: PMC6678309 DOI: 10.3390/ijms20143504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
Abstract
The emergence of superbugs that are resistant to last-resort antibiotics poses a serious threat to human health, and we are in a “race against time to develop new antibiotics.” New approaches are urgently needed to control drug-resistant pathogens, and to reduce the emergence of new drug-resistant microbes. Targeting bacterial virulence has emerged as an important strategy for combating drug-resistant pathogens. It has been shown that pyocyanin, which is produced by the phenazine biosynthesis pathway, plays a key role in the virulence of Pseudomonas aeruginosa infection, making it an attractive target for anti-infective drug discovery. In order to discover efficient therapeutics that inhibit the phenazine biosynthesis in a timely fashion, we screen 2004 clinical and pre-clinical drugs to target multiple enzymes in the phenazine biosynthesis pathway, using a novel procedure of protein–ligand docking. Our detailed analysis suggests that kinase inhibitors, notably Lifirafenib, are promising lead compounds for inhibiting aroQ, phzG, and phzS enzymes that are involved in the phenazine biosynthesis, and merit further experimental validations. In principle, inhibiting multiple targets in a pathway will be more effective and have less chance of the emergence of drug resistance than targeting a single protein. Our multi-target structure-based drug design strategy can be applied to other pathways, as well as provide a systematic approach to polypharmacological drug repositioning.
Collapse
Affiliation(s)
- Li Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, USA
| | - Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065, USA.
- Program in Computer Science, Biochemistry & Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA.
| |
Collapse
|
29
|
Robinson VH, Paterson S, Bennett C, Steen SI. Biofilm production of Pseudomonas spp. isolates from canine otitis in three different enrichment broths. Vet Dermatol 2019; 30:218-e67. [PMID: 30895679 DOI: 10.1111/vde.12738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pseudomonas spp. are commonly isolated from dogs with clinical otitis and have been shown to produce biofilm. There is a paucity of studies demonstrating biofilm growth in veterinary medicine. HYPOTHESIS/OBJECTIVES To compare biofilm production of Pseudomonas spp. isolated from dogs with otitis using three different enrichment broths at two different time points. Speciation was performed. ANIMALS One hundred isolates from 98 dogs with clinical otitis were assessed for biofilm production. METHODS AND MATERIALS One hundred isolates were assessed for biofilm production using a microtitre plate assay. Biofilm production in Luria-Bertani Broth (LBB), Mueller-Hinton Broth (MHB) and Tryptic Soy Broth (TSB) were assessed after 18 and 24 h of incubation. RESULTS At 18 h, biofilm production was demonstrated in 87% of LBB, 91% of TSB and 93% of MHB grown isolates. By 24 h, this was 92% of LBB, 96% of TSB and 99% of MHB isolates. Biofilm production was significantly increased after 24 h incubation compared to 18 h. A significant difference was noted in biofilm production between LBB and MHB (P = 0.0349), but not between LBB and TSB (P = 0.3727) or MHB and TSB (P = 0.3687) at 24 h incubation. Two isolates were speciated as P. fluorescens and 98 as P. aeruginosa. CONCLUSION AND CLINICAL IMPORTANCE Not all enrichment broths were equivalent to one another and 24 h incubation was superior to 18 h. Biofilm production was high in this population of Pseudomonas spp. isolates.
Collapse
Affiliation(s)
- Victoria H Robinson
- The Dermatology Referral Service, 528 Paisley Road West, Glasgow, G51 1RN, UK
| | - Sue Paterson
- Rutland House Referrals, Abbotsfield Industrial Estate, Merseyside, WA9 4HU, UK
| | - Cheryl Bennett
- CAPL Laboratories, Unit 6 Brock Way, Knutton, Staffordshire, ST5 6AZ, UK
| | - Stephen I Steen
- CAPL Laboratories, Unit 6 Brock Way, Knutton, Staffordshire, ST5 6AZ, UK
| |
Collapse
|
30
|
Adaptation Through Lifestyle Switching Sculpts the Fitness Landscape of Evolving Populations: Implications for the Selection of Drug-Resistant Bacteria at Low Drug Pressures. Genetics 2019; 211:1029-1044. [PMID: 30670539 DOI: 10.1534/genetics.119.301834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Novel genotypes evolve under selection through mutations in pre-existing genes. However, mutations have pleiotropic phenotypic effects that influence the fitness of emerging genotypes in complex ways. The evolution of antimicrobial resistance is mediated by selection of mutations in genes coding for antibiotic-target proteins. Drug-resistance is commonly associated with a fitness cost due to the impact of resistance-conferring mutations on protein function and/or stability. These costs are expected to prohibit the selection of drug-resistant mutations at low drug pressures. Using laboratory evolution of rifampicin resistance in Escherichia coli, we show that when exposed intermittently to low concentration (0.1 × minimal inhibitory concentration) of rifampicin, the evolution of canonical drug resistance was indeed unfavorable. Instead, these bacterial populations adapted by evolving into small-colony variants that displayed enhanced pellicle-forming ability. This shift in lifestyle from planktonic to pellicle-like was necessary for enhanced fitness at low drug pressures, and was mediated by the genetic activation of the fim operon promoter, which allowed expression of type I fimbriae. Upon continued low drug exposure, these bacteria evolved exclusively into high-level drug-resistant strains through mutations at a limited set of loci within the rifampicin-resistance determining region of the rpoB gene. We show that our results are explained by mutation-specific epistasis, resulting in differential impact of lifestyle switching on the competitive fitness of different rpoB mutations. Thus, lifestyle-alterations that are selected at low selection pressures have the potential to modify the fitness effects of mutations, change the genetic structure, and affect the ultimate fate of evolving populations.
Collapse
|
31
|
Schroeder M, Horne SM, Prüß BM. Efficacy of β-phenylethylamine as a novel anti-microbial and application as a liquid catheter flush. J Med Microbiol 2018; 67:1778-1788. [PMID: 30325301 DOI: 10.1099/jmm.0.000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With this study, we introduce a liquid flush for catheters and other tubing-based applications that consists of a solution of β-phenylethylamine (PEA) in tryptic soy broth. The initial experiments in multiwell polystyrene plates were conducted with Escherichia coli K-12 to assess the effectiveness of PEA at reducing planktonic growth, as well as the biomass and adenosine triphosphate (ATP) content of biofilm; PEA reduced these growth parameters as a function of increasing concentration. This effect was also seen in mutants of PEA catabolism, which leads us to believe that the PEA effect is due to PEA itself and not one of its degradation products. Since PEA reduced planktonic growth and biofilm when added at the time of inoculation, as well as at later time points, we propose PEA as a novel compound for the prevention and treatment of biofilm. PEA reduced planktonic growth and the ATP content of the biofilm for five bacterial pathogens, including an enterohemorrhagic E. coli, two uropathogenic E. coli, Pseudomonas aeruginosa and Staphylococcus aureus. A major finding of this study is the reduction of the ATP content of biofilm that formed in silicone tubing by periodic flushes of PEA. This experiment was performed to model antibiotic-lock treatment of an intravenous catheter. It was found that 10 mg ml-1 of PEA reduced the ATP content of biofilm of five bacterial strains by 96.3 % or more after 2 weeks of incubation and three treatments with PEA. For P. aeruginosa, the reduction in ATP content was paralleled by an identical percentage reduction in viable cells in the biofilm.
Collapse
Affiliation(s)
- Meredith Schroeder
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| | - Shelley M Horne
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| | - Birgit M Prüß
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| |
Collapse
|
32
|
Ferro P, Vaz-Moreira I, Manaia CM. Association between gentamicin resistance and stress tolerance in water isolates of Ralstonia pickettii and R. mannitolilytica. Folia Microbiol (Praha) 2018; 64:63-72. [DOI: 10.1007/s12223-018-0632-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022]
|
33
|
Koziróg A, Otlewska A, Brycki B. Viability, Enzymatic and Protein Profiles of Pseudomonas aeruginosa Biofilm and Planktonic Cells after Monomeric/Gemini Surfactant Treatment. Molecules 2018; 23:molecules23061294. [PMID: 29843448 PMCID: PMC6100048 DOI: 10.3390/molecules23061294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 11/24/2022] Open
Abstract
This study set out to investigate the biological activity of monomeric surfactants dodecyltrimethylammonium bromide (DTAB) and the next generation gemini surfactant hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) (C6) against the environmental strain Pseudomonas aeruginosa PB_1. Minimal inhibitory concentrations (MIC) were determined using the dilution method. The viability of the planktonic cells and biofilm was assessed using the plate count method. Enzymatic profile was determined using the API-ZYM system. Proteins were extracted from the biofilm and planktonic cells and analysed using SDS-PAGE. The MIC of the gemini surfactants was 70 times lower than that of its monomeric analogue. After 4 h of treatment at MIC (0.0145 mM for C6 and 1.013 mM for DTAB), the number of viable planktonic cells was reduce by less than 3 logarithm units. At the concentration ≥MIC, a reduction in the number of viable cells was observed in mature biofilms (p < 0.05). Treatment for 4 h with gemini surfactant at 20 MIC caused complete biofilm eradication. At sub-MIC, the concentration of some enzymes reduced and their protein profiles changed. The results of this study show that due to its superior antibacterial activity, gemini compound C6 can be applied as an effective microbiocide against P. aeruginosa in both planktonic and biofilm forms.
Collapse
Affiliation(s)
- Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland.
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland.
| | - Bogumił Brycki
- Laboratory of Microbiocides Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Poznan, Poland.
| |
Collapse
|
34
|
Akanda ZZ, Taha M, Abdelbary H. Current review-The rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections. J Orthop Res 2018; 36:1051-1060. [PMID: 28971508 DOI: 10.1002/jor.23755] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023]
Abstract
Peri-prosthetic joint infection (PJI) is one of the most serious and dreaded complications after total joint replacement (TJR). Due to an aging population and the constant rise in demand for TJR, the incidence of PJI is also increasing. Successful treatment of PJI is challenging and is associated with high failure rates. One of the main causes for treatment failure is bacterial biofilm formation on implant surfaces and the adherence of biofilm bacteria on tissue and bone next to the implant. Biofilms are protective shields to bacterial cells and possess many unique properties that leads to antibiotic resistance. New therapeutic platforms are currently being explored to breakdown biofilm matrix in order to enhance the efficacy of antibiotics. Bacteriophages (phages) is one of these unique therapeutic platforms that can degrade biofilms as well as target the killing of bacterial cells. Preclinical studies of biofilm-mediated infections have demonstrated the ability of phage to eradicate biofilms and clear infections by working synergistically with antibiotics. There is strong preclinical evidence that phage can reduce the concentration of antibiotics required to treat an infection. These findings support a promising role for phages as a future clinical adjunct to antibiotics. In addition, phage therapy can be personalized to target a specific bacterial strain. Clinical studies using phage therapy are limited in Western literature; but phase I studies have established good safety profile with no adverse outcomes reported. In order to translate phage therapy to treat PJI in clinics, further preclinical testing is still required to study optimal delivery methods as well as the interaction between phage and the immune system in vivo. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1051-1060, 2018.
Collapse
Affiliation(s)
- Zarique Z Akanda
- Department of Surgery, Division of Orthopaedics, The Ottawa Hospital, Ottawa, Canada
| | - Mariam Taha
- Department of Surgery, Division of Orthopaedics, The Ottawa Hospital, Ottawa, Canada
| | - Hesham Abdelbary
- Department of Surgery, Division of Orthopaedics, The Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
35
|
Koziróg A, Kręgiel D, Brycki B. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis. Molecules 2017; 22:molecules22112036. [PMID: 29165338 PMCID: PMC6150408 DOI: 10.3390/molecules22112036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) (C6), synthesized by the reaction of N,N-dimethyl-N-dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis, a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.
Collapse
Affiliation(s)
- Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Bogumił Brycki
- Laboratory of Microbiocides Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Poznań, Poland.
| |
Collapse
|
36
|
Yang B, Lei Z, Zhao Y, Ahmed S, Wang C, Zhang S, Fu S, Cao J, Qiu Y. Combination Susceptibility Testing of Common Antimicrobials in Vitro and the Effects of Sub-MIC of Antimicrobials on Staphylococcus aureus Biofilm Formation. Front Microbiol 2017; 8:2125. [PMID: 29163415 PMCID: PMC5671985 DOI: 10.3389/fmicb.2017.02125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/18/2017] [Indexed: 11/13/2022] Open
Abstract
The current study was conducted to evaluate the antibacterial combination efficacies, and whether the sub-inhibitory concentrations (sub-MIC) of antibiotics can influent on the biofilm formation of S. aureus. The minimum inhibitory concentration (MIC) of common antibacterial drugs was determined in vitro against clinical isolates of Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pasteurella multocida (P. multocida) alone and in combination with each other by using the broth microdilution method and the checkerboard micro-dilution method analyzed with the fractional inhibitory concentration index (FICI), respectively. Regarding these results, antibacterial drug combinations were categorized as synergistic, interacting, antagonistic and indifferent, and most of the results were consistent with the previous reports. Additionally, the effects of sub-MIC of seven antimicrobials (kanamycin, acetylisovaleryltylosin tartrate, enrofloxacin, lincomycin, colistin sulfate, berberine, and clarithromycin) on S. aureus biofilm formation were determined via crystal violet staining, scanning electron microscopy (SEM) and real-time PCR. Our results demonstrate that all antibiotics, except acetylisovaleryltylosin tartrate, effectively reduced the S. aureus biofilm formation. In addition, real-time reverse transcriptase PCR was used to analyze the relative expression levels of S. aureus biofilm-related genes such as sarA, fnbA, rbf, lrgA, cidA, and eno after the treatment at sub-MIC with all of the six antimicrobials. All antibiotics significantly inhibited the expression of these biofilm-related genes except for acetylisovaleryltylosin tartrate, which efficiently up-regulated these transcripts. These results provide the theoretical parameters for the selection of effective antimicrobial combinations in clinical therapy and demonstrate how to correctly use antibiotics at sub-MIC as preventive drugs.
Collapse
Affiliation(s)
- Bing Yang
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Zhixin Lei
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yishuang Zhao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Saeed Ahmed
- National Reference Laboratory of Veterinary Drug Residues and Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Chunqun Wang
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shishuo Zhang
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shulin Fu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechinic University, Wuhan, China
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yinsheng Qiu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechinic University, Wuhan, China
| |
Collapse
|
37
|
Saravolatz LD, Pawlak J, Martin H, Saravolatz S, Johnson L, Wold H, Husbyn M, Olsen WM. Postantibiotic effect and postantibiotic sub-MIC effect of LTX-109 and mupirocin on Staphylococcus aureus blood isolates. Lett Appl Microbiol 2017; 65:410-413. [PMID: 28802058 DOI: 10.1111/lam.12792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
The development of new synthetic antimicrobial peptides like LTX-109 provides a new class of drugs for the treatment of Staphylococcus aureus infections. We evaluated LTX-109 and mupirocin for pharmacodynamic parameters against 10 methicillin-resistant S. aureus isolates. The postantibiotic effect (PAE) is defined as the length of time that bacterial growth is suppressed following a brief exposure to an antibiotic. We also determined the sub-MIC effect (SME) which measures the direct effect of subinhibitory levels on strains that have not previously been exposed to antibiotics. The postantibiotic sub-MIC effect (PA-SME) is a combination of the PAE and SME. LTX-109 had an average PAE of 5·51 h vs 1·04 h for mupirocin. The PA-SME of LTX-109 ranged from 2·51 to 9·33 h as the concentration increased from 0·2 to 0·4 times the minimal inhibitory concentration (MIC). The PA-SME range for mupirocin was 0·93-2·58 h. LTX-109, as compared to mupirocin, demonstrated prolonged time of effect for these pharmacodynamic parameters, which supports persistent activity for several hours after the drug is no longer present or is below the MIC. The pharmacodynamic parameters studied here suggest that LTX-109 is less likely than mupirocin to generate resistance to S. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY Resistant bacterial infections continue to be a challenge for clinicians. Identification of antibiotics with pharmacodynamic advantages may be beneficial in the treatment of these infections. An antibiotic with a longer postantibiotic effect may be able to be administered less frequently resulting in improved adherence. In this study, a new synthetic antimicrobial peptide, LTX-109, demonstrated a more prolonged time for LTX-109 than mupirocin against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- L D Saravolatz
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - J Pawlak
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - H Martin
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - S Saravolatz
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - L Johnson
- St John Hospital and Medical Center, Grosse Pointe Woods, MI, USA
| | - H Wold
- Lytix Biopharma AS, Oslo, Norway
| | - M Husbyn
- Lytix Biopharma AS, Oslo, Norway
| | | |
Collapse
|
38
|
Khan S, Beattie TK, Knapp CW. The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:283-292. [PMID: 28155034 PMCID: PMC5318476 DOI: 10.1007/s10646-017-1762-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2017] [Indexed: 05/25/2023]
Abstract
The use of antimicrobial compounds is indispensable in many industries, especially drinking water production, to eradicate microorganisms. However, bacterial growth is not unusual in the presence of disinfectant concentrations that would be typically lethal, as bacterial populations can develop resistance. The common metric of population resistance has been based on the Minimum Inhibitory Concentration (MIC), which is based on bacteria lethality. However, sub-lethal concentrations may also select for resistant bacteria due to the differences in bacterial growth rates. This study determined the Minimal Selective Concentrations (MSCs) of bacterial populations exposed to free chlorine and monochloramine, representing a metric that possibly better reflects the selective pressures occurring at lower disinfectant levels than MIC. Pairs of phylogenetically similar bacteria were challenged to a range of concentrations of disinfectants. The MSCs of free chlorine and monochloramine were found to range between 0.021 and 0.39 mg L-1, which were concentrations 1/250 to 1/5 than the MICs of susceptible bacteria (MIC susc ). This study indicates that sub-lethal concentrations of disinfectants could result in the selection of resistant bacterial populations, and MSCs would be a more sensitive indicator of selective pressure, especially in environmental systems.
Collapse
Affiliation(s)
- Sadia Khan
- Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, Scotland, G1 1XJ, UK.
- Department of Environmental Engineering, NED University of Engineering and Technology, University Road, Karachi, 75270, Pakistan.
| | - Tara K Beattie
- Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, Scotland, G1 1XJ, UK
| | - Charles W Knapp
- Department of Civil and Environmental Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow, Scotland, G1 1XJ, UK
| |
Collapse
|
39
|
Abstract
Antibiotics have been widely used for a number of decades for human therapy and farming production. Since a high percentage of antibiotics are discharged from the human or animal body without degradation, this means that different habitats, from the human body to river water or soils, are polluted with antibiotics. In this situation, it is expected that the variable concentration of this type of microbial inhibitor present in different ecosystems may affect the structure and the productivity of the microbiota colonizing such habitats. This effect can occur at different levels, including changes in the overall structure of the population, selection of resistant organisms, or alterations in bacterial physiology. In this review, I discuss the available information on how the presence of antibiotics may alter the microbiota and the consequences of such alterations for human health and for the activity of microbiota from different habitats.
Collapse
Affiliation(s)
- José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Calle Darwin, Madrid, Spain
| |
Collapse
|
40
|
Wardlow R, Bing C, VanOsdol J, Maples D, Ladouceur-Wodzak M, Harbeson M, Nofiele J, Staruch R, Ramachandran A, Malayer J, Chopra R, Ranjan A. Targeted antibiotic delivery using low temperature-sensitive liposomes and magnetic resonance-guided high-intensity focused ultrasound hyperthermia. Int J Hyperthermia 2016; 32:254-64. [PMID: 26892114 PMCID: PMC6029942 DOI: 10.3109/02656736.2015.1134818] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic non-healing wound infections require long duration antibiotic therapy, and are associated with significant morbidity and health-care costs. Novel approaches for efficient, readily-translatable targeted and localised antimicrobial delivery are needed. The objectives of this study were to 1) develop low temperature-sensitive liposomes (LTSLs) containing an antimicrobial agent (ciprofloxacin) for induced release at mild hyperthermia (∼42 °C), 2) characterise in vitro ciprofloxacin release, and efficacy against Staphylococcus aureus plankton and biofilms, and 3) determine the feasibility of localised ciprofloxacin delivery in combination with MR-HIFU hyperthermia in a rat model. LTSLs were loaded actively with ciprofloxacin and their efficacy was determined using a disc diffusion method, MBEC biofilm device, and scanning electron microscopy (SEM). Ciprofloxacin release from LTSLs was assessed in a physiological buffer by fluorescence spectroscopy, and in vivo in a rat model using MR-HIFU. Results indicated that < 5% ciprofloxacin was released from the LTSL at body temperature (37 °C), while >95% was released at 42 °C. Precise hyperthermia exposures in the thigh of rats using MR-HIFU during intravenous (i.v.) administration of the LTSLs resulted in a four fold greater local concentration of ciprofloxacin compared to controls (free ciprofloxacin + MR-HIFU or LTSL alone). The biodistribution of ciprofloxacin in unheated tissues was fairly similar between treatment groups. Triggered release at 42 °C from LTSL achieved significantly greater S. aureus killing and induced membrane deformation and changes in biofilm matrix compared to free ciprofloxacin or LTSL at 37 °C. This technique has potential as a method to deliver high concentration antimicrobials to chronic wounds.
Collapse
Affiliation(s)
- Rachel Wardlow
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Chenchen Bing
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Joshua VanOsdol
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Danny Maples
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Michele Harbeson
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Joris Nofiele
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Clinical Sites Research Program, Philips Research, Briarcliff Manor, NY
| | | | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|