1
|
Lacouth P, Majer A, Arizza V, Vazzana M, Mauro M, Custódio MR, Queiroz V. Physiological responses of Holothuria grisea during a wound healing event: An integrated approach combining tissue, cellular and humoral evidence. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111695. [PMID: 38992416 DOI: 10.1016/j.cbpa.2024.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Due to their tissue structure similar to mammalian skin and their close evolutionary relationship with chordates, holothurians (Echinodermata: Holothuroidea) are particularly interesting for studies on wound healing. However, previous studies dealing with holothuroid wound healing have had limited approaches, being restricted to tissue repair or perivisceral immune response. In this study, we combined tissue, cellular and humoral parameters to study the wound healing process of Holothuria grisea. The immune responses of the perivisceral coelom were assessed by analyzing the number, proportion and viability of coelomocytes and the volume and protein concentration of the coelomic fluid. Additionally, the morphology of the healing tissue and number of coelomocytes in the connective tissue of different body wall layers were examined over 30 days. Our results showed that perivisceral reactions started 3 h after injury and decreased to baseline levels within 24 h. In contrast, tissue responses were delayed, beginning after 12 h and returning to baseline levels only after day 10. The number of coelomocytes in the connective tissue suggests a potential cooperation between these cells during wound healing: phagocytes and acidophilic spherulocytes act together in tissue clearance/homeostasis, whereas fibroblast-like and morula cells cooperate in tissue remodeling. Finally, our results indicate that the major phases observed in mammalian wound healing are also observed in H. grisea, despite occurring at a different timing, which might provide insights for future studies. Based on these data, we propose a model that explains the entire healing process in H. grisea.
Collapse
Affiliation(s)
- Patrícia Lacouth
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, n. 101, São Paulo (SP) CEP 05508-900, Brazil
| | - Alessandra Majer
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, CEP 05508-900 São Paulo (SP), Brazil
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - Márcio Reis Custódio
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, n. 101, São Paulo (SP) CEP 05508-900, Brazil
| | - Vinicius Queiroz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, n. 101, São Paulo (SP) CEP 05508-900, Brazil.
| |
Collapse
|
2
|
Ayres BS, Varela Junior AS, Corcini CD, Lopes EM, Nery LEM, Maciel FE. Effects of high temperature and LPS injections on the hemocytes of the crab Neohelice granulata. J Invertebr Pathol 2024; 205:108144. [PMID: 38810835 DOI: 10.1016/j.jip.2024.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Temperature fluctuations, particularly elevated temperatures, can significantly affect immune responses. These fluctuations can influence the immune system and alter its response to infection signals, such as lipopolysaccharide (LPS). Therefore, this study was designed to investigate how high temperatures and LPS injections collectively influence the immune system of the crab Neohelice granulata. Two groups were exposed to 20 °C (control) or 33 °C for four days. Subsequently, half were injected with 10 μL of physiological crustacean (PS), while the rest received 10 μL of LPS [0.1 mg.kg-1]. After 30 min, the hemolymph samples were collected. Hemocytes were then isolated and assessed for various parameters using flow cytometry, including cell integrity, DNA fragmentation, total hemocyte count (THC), differential hemocyte count (DHC), reactive oxygen species (ROS) level, lipid peroxidation (LPO), and phagocytosis. Results showed lower cell viability at 20 °C, with more DNA damage in the same LPS-injected animals. There was no significant difference in THC, but DHC indicated a decrease in hyaline cells (HC) at 20 °C following LPS administration. In granular cells (GC), an increase was observed after both PS and LPS were injected at the same temperature. In semi-granular cells (SGC), there was a decrease at 20 °C with the injection of LPS, while at a temperature of 33 °C, the SGC there was a decrease only in SGC injected with LPS. Crabs injected with PS and LPS at 20 °C exhibited higher levels of ROS in GC and SGC, while at 33 °C, the increase was observed only in GC and SGC cells injected with LPS. A significant increase in LPO was observed only in SGC cells injected with PS and LPS at 20 °C and 33 °C. Phagocytosis decreased in animals at 20 °C with both injections and exposed to 33 °C only in those injected with LPS. These results suggest that elevated temperatures induce changes in immune system parameters and attenuate the immune responses triggered by LPS.
Collapse
Affiliation(s)
- Bruna Soares Ayres
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Antonio Sergio Varela Junior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Carine Dahl Corcini
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas- UFPEL, Campus Universitário, S / N, Capão do Leão, Pelotas, RS 96160-000, Brazil
| | - Eduarda Marques Lopes
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Fábio Everton Maciel
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil.
| |
Collapse
|
3
|
Estrada-Marroquín MD, Cancino J, Sánchez-Guillén D, Montoya P, Liedo P. Immature stages of Utetes anastrephae (Hymenoptera: Braconidae) developed in Anastrepha fruit fly larvae (Diptera: Tephritidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 77:101314. [PMID: 37925773 DOI: 10.1016/j.asd.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
The morphology of the immature stages of Utetes anastrephae (Hymenoptera: Braconidae), a native parasitoid of larvae of flies of the Neotropical genus Anastrepha (Diptera: Tephritidae), is shown. This study aimed to characterize the immature stages and morphological changes in the development of the koinobiont endoparasitoid in two species of larval hosts, Anastrepha obliqua and Anastrepha ludens. The definition of structures and morphological changes during development was made through daily microscopic observations and photographs of dissected hosts. The immature development of the parasitoid corresponds to a holometabolous insect with three well-defined stages: egg (two days), larva with three larval instars (approximately eight days), and pupa (six days). Similar development times were obtained in the two host species. Males and females completed their cycle in 17 and 18 days, respectively. During egg-first instar development, host antagonistic activity through melanization and encapsulation as mortality factors was evident and frequent only in A. obliqua. These results serve as basic knowledge for the use of this parasitoid in the biological control of fruit flies.
Collapse
Affiliation(s)
| | - Jorge Cancino
- Programa Operativo Moscas SADER-IICA, Camino a los Cacaotales S/N, C.P. 30680, Metapa de Domínguez, Chiapas, Mexico.
| | - Daniel Sánchez-Guillén
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, C.P. 30700, Tapachula, Chiapas, Mexico.
| | - Pablo Montoya
- Instituto de Biociencias, UNACH, Blvd. Príncipe Akishino S/N, C.P. 30798, Tapachula, Chiapas, Mexico.
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, C.P. 30700, Tapachula, Chiapas, Mexico.
| |
Collapse
|
4
|
Gómez-Alonso I, Baltierra-Uribe S, Sánchez-Torres L, Cancino-Diaz M, Cancino-Diaz J, Rodriguez-Martinez S, Ovruski SM, Hendrichs J, Cancino J. Irradiation and parasitism affect the ability of larval hemocytes of Anastrepha obliqua for phagocytosis and the production of reactive oxygen species. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21953. [PMID: 35927971 DOI: 10.1002/arch.21953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The development of the parasitoid Doryctobracon crawfordi (Viereck) (Hymenoptera: Braconidae) in Anastrepha obliqua (McQuart) (Diptera: Tephritidae) larvae is unviable in nature; however, if the host larva is irradiated at 160 Gy, the parasitoid develops and emerges successfully. This suggests that radiation affects the immune responses of A. obliqua larvae, while the underlying mechanisms remain to be revealed. Using optical and electronic microscopies we determined the number and type of hemocyte populations found inside the A. obliqua larvae, either nonirradiated, irradiated at 160 Gy, parasitized by D. crawfordi, or irradiated and parasitized. Based on flow cytometry, the capacity to produce reactive oxygen species (ROS) was determined by the 123-dihydrorhodamine method in those hemocyte cells. Five cell populations were found in the hemolymph of A. obliqua larvae, two of which (granulocytes and plasmatocytes) can phagocytize and produce ROS. A reduction in the number of cells, mainly of the phagocytic type, was observed, as well as the capacity of these cells to produce ROS, when A. obliqua larvae were irradiated. Both radiation and parasitization decreased the ROS production, and when A. obliqua larvae were irradiated followed by parasitization by D. crawfordi, the reduction of the ROS level was even greater. In contrast, a slight increase in the size of these cells was observed in the hemolymph of the parasitized larvae compared to those in nonparasitized larvae. These results suggest that radiation significantly affects the phagocytic cells of A. obliqua and thus permits the development of the parasitoid D. crawfordi.
Collapse
Affiliation(s)
- Itzia Gómez-Alonso
- Posgrado en Ciencias Químico-Biológicas, Instituto Politécnico Nacional, Prolongación del Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Shantal Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Luvia Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Mario Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Juan Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Sandra Rodriguez-Martinez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Sergio M Ovruski
- LIEMEN, División Control Biológico de Plagas, PROIMI Biotecnología, CONICET, Ave. Belgrano y Pje. Caseros, San Miguel de Tucumán, Argentina
| | - Jorge Hendrichs
- Division of Nuclear Insect Pest Control Section, Joint FAO/IAEA Techniques in Food and Agriculture, IAEA Wagramerstrasse 5, Vienna, Austria
| | - Jorge Cancino
- Departamento de Control Biológico, Programa Moscafrut SADER-IICA, Camino a Cacahoatales S. N., Metapa de Domínguez, Chiapas, México
| |
Collapse
|
5
|
Cancino J, Ayala A, Ríos L, López P, Suárez L, Ovruski SM, Hendrichs J. Increasing radiation doses in Anastrepha obliqua (Diptera: Tephritidae) larvae improve parasitoid mass-rearing attributes. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:807-817. [PMID: 35762315 DOI: 10.1017/s0007485322000219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Doses of 40, 80, 120, and 160 Gy were applied to 5-, 6-, 7-, and 8-day-old Anastrepha obliqua larvae, which were exposed to the Neotropical-native braconids Doryctobracon crawfordi and Utetes anastrephae and the Asian braconid Diachasmimorpha longicaudata. These tests were performed to know the effect of the increase in host radiation on the emergence of the aforementioned parasitoids and the related consequences of oviposition on the host. The study was based on the fact that higher radiation doses may cause a decrease in the host immune activity. There was a direct relationship between the increase in radiation dose and the parasitoid emergence. Both, the weight and the mortality of the host larvae were not affected by radiation. Although the larval weight of the larvae was lower and the mortality was higher in the younger larvae. Both, the number of scars and immature stages per host puparium originated from the younger larvae were lower than those from older larvae. Only U. anastrephae superparasitized more at lower radiation. Superparasitism by D. longicaudata was more frequent at 160 Gy. Qualitative measurements of melanin in the larvae parasitized showed that the levels were lower with increasing radiation. As radiation doses increased, the antagonistic response of the A. obliqua larva was reduced. Host larvae aged 5- and 6-day-old irradiated at 120-160 Gy significantly improve parasitoid emergence. This evidence is relevant for the mass production of the three tested parasitoid species.
Collapse
Affiliation(s)
- Jorge Cancino
- Programa Moscas SADER-IICA, Camino a Cacahoatales S. N., 30860 Metapa de Domínguez, Chis., Mexico
| | - Amanda Ayala
- Programa Moscas SADER-IICA, Camino a Cacahoatales S. N., 30860 Metapa de Domínguez, Chis., Mexico
| | - Laura Ríos
- Facultad de Ciencias Agrícolas, UNACH-Campus IV, 30660 Huehuetán, Chis., Mexico
| | - Patricia López
- Programa Moscas SADER-IICA, Camino a Cacahoatales S. N., 30860 Metapa de Domínguez, Chis., Mexico
| | - Lorena Suárez
- Dirección de Sanidad Vegetal, Animal y Alimentos de San Juan (DSVAA de San Juan), Av. Nazario Benavides 8000 Oeste, Rivadavia, San Juan, Argentina
| | - Sergio M Ovruski
- LIEMEN, División Control Biológico de Plagas, PROIMI Biotecnología, Avda. Belgrano y Pje. Caseros, T4001MVB San Miguel de Tucumán, Tucumán, Argentina
| | - Jorge Hendrichs
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Vienna, Austria
| |
Collapse
|
6
|
Bruno D, Montali A, Gariboldi M, Wrońska AK, Kaczmarek A, Mohamed A, Tian L, Casartelli M, Tettamanti G. Morphofunctional characterization of hemocytes in black soldier fly larvae. INSECT SCIENCE 2022. [PMID: 36065570 DOI: 10.1111/1744-7917.13111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated.
Collapse
Affiliation(s)
- Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marzia Gariboldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Katarzyna Wrońska
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Morena Casartelli
- Department of Biosciences, University of Milano, Milano, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| |
Collapse
|
7
|
Gwokyalya R, Herren JK, Weldon CW, Khamis FM, Ndlela S, Mohamed SA. Differential immune responses in new and old fruit fly-parasitoid associations: Implications for their management. Front Physiol 2022; 13:945370. [PMID: 36091407 PMCID: PMC9458847 DOI: 10.3389/fphys.2022.945370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), and marula fruit fly, Ceratitis cosyra (Walker), are major fruit-infesting tephritids across sub-Saharan Africa. Biological control of these pests using parasitic wasps has been widely adopted but with varying levels of success. Most studies investigating host-parasitoid models have focused on functional and evolutionary aspects leaving a knowledge gap about the physiological mechanisms underpinning the efficacy of parasitoids as biocontrol agents of tephritids. To better understand these physiological mechanisms, we investigated changes in the cellular immune responses of C. cosyra and B. dorsalis when exposed to the parasitic wasps, Diachasmimorpha longicaudata (Ashmaed) and Psyttalia cosyrae (Wilkinson). We found that B. dorsalis was more resistant to parasitisation, had a higher hemocyte count, and encapsulated more parasitoid eggs compared to C. cosyra, achieving up to 100% encapsulation when exposed to P. cosyrae. Exposing B. dorsalis to either parasitoid species induced the formation of a rare cell type, the giant multinucleated hemocyte, which was not observed in C. cosyra. Furthermore, compared to P. cosyrae-parasitized larvae, those of both host species parasitized by D. longicaudata had lower encapsulation rates, hemocyte counts and spreading abilities and yielded a higher number of parasitoid progeny with the highest parasitoid emergence (72.13%) recorded in C. cosyra. These results demonstrate that cellular immune responses are central to host-parasitoid interaction in tephritid fruit flies and further suggest that D. longicaudata presents greater potential as a biocontrol agent of B. dorsalis and C. cosyra in horticultural cropping systems.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Rehemah Gwokyalya, , ; Samira Abuelgasim Mohamed,
| | - Jeremy K. Herren
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Shepard Ndlela
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Samira Abuelgasim Mohamed
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- *Correspondence: Rehemah Gwokyalya, , ; Samira Abuelgasim Mohamed,
| |
Collapse
|
8
|
von Bredow YM, Müller A, Popp PF, Iliasov D, von Bredow CR. Characterization and mode of action analysis of black soldier fly (Hermetia illucens) larva-derived hemocytes. INSECT SCIENCE 2022; 29:1071-1095. [PMID: 34687131 DOI: 10.1111/1744-7917.12977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
With the growing importance of the black soldier fly (Hermetia illucens) for both sustainable food production and waste management as well as for science, a great demand of understanding its immune system arises. Here, we present the first description of the circulating larval hemocytes with special emphasis on uptake of microorganisms and distinguishing hemocyte types. With histological, zymographic, and cytometric methods and with a set of hemocyte binding lectins and antibodies, the hemocytes of H. illucens are identified as plasmatocytes, crystal cells, and putative prohemocytes. Total hemocyte counts (THC) are determined, and methods for THC determination are compared. Approximately 1100 hemocytes per microliter hemolymph are present in naive animals, while hemocyte density decreases dramatically shortly after wounding, indicating a role of hemocytes in response to wounding (and immune response in general). The determination of the relative abundance of each hemocyte type (differential hemocyte count, DHC) revealed that plasmatocytes are highly abundant, whereas prohemocytes and crystal cells make up only a small percentage of the circulating cells. Plasmatocytes are not only the most abundant but also the professional phagocytes in H. illucens. They rapidly engulf and take up bacteria both in vivo and in vitro, indicating a very potent cellular defense against invading pathogens. Larger bioparticles such as yeasts are also removed from circulation by phagocytosis, but slower than bacteria. This is the first analysis of the potent cellular immune response in the black soldier fly, and a first toolbox that helps to identify hemocyte (types) is presented.
Collapse
Affiliation(s)
- Yvette M von Bredow
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Zelluläre Erkennungs- und Abwehrprozesse, Gießen, Germany
| | - Ariane Müller
- Technische Universität Dresden, Fakultät Biologie, Institut für Zoologie, Dresden, Germany
| | - Philipp F Popp
- Technische Universität Dresden, Fakultät Biologie, Institut für Mikrobiologie, Dresden, Germany
- Present address: Philipp F. Popp, Institute for Biology-Bacterial Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denis Iliasov
- Technische Universität Dresden, Fakultät Biologie, Institut für Mikrobiologie, Dresden, Germany
| | | |
Collapse
|
9
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
10
|
Kaur M, Chadha P, Kaur S, Kaur A. Aspergillus flavus induced oxidative stress and immunosuppressive activity in Spodoptera litura as well as safety for mammals. BMC Microbiol 2021; 21:180. [PMID: 34126929 PMCID: PMC8204525 DOI: 10.1186/s12866-021-02249-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In the last few decades, considerable attention has been paid to entomopathogenic fungi as biocontrol agents, however little is known about their mode of action and safety. This study aimed to investigate the toxicity of Aspergillus flavus in insect Spodoptera litura by analyzing the effect of fungal extract on antioxidant and cellular immune defense. In antioxidant defense, the lipid peroxidation (Malondialdehyde content) and antioxidant enzymes activities (Catalase, Ascorbate peroxidase, Superoxide dismutase) were examined. In cellular immune defense, effect of A. flavus extract was analyzed on haemocytes using Scanning Electron Microscopy (SEM). Furthermore, mammalian toxicity was analyzed with respect to DNA damage induced in treated rat relative to control by comet assay using different tissues of rat (blood, liver, and kidney). RESULTS Ethyl acetate extract of A. flavus was administrated to the larvae of S.litura using artificial diet method having concentration 1340.84 μg/ml (LC50 of fungus). The effect was observed using haemolymph of insect larvae for different time intervals (24, 48, 72 and 96). In particular, Malondialdehyde content and antioxidant enzymes activities were found to be significantly (p ≤ 0.05) increased in treated larvae as compared to control. A. flavus ethyl acetate extract also exhibit negative impact on haemocytes having major role in cellular immune defense. Various deformities were observed in different haemocytes like cytoplasmic leakage and surface abnormalities etc. Genotoxicity on rat was assessed using different tissues of rat (blood, liver, and kidney) by comet assay. Non-significant effect of A. flavus extract was found in all the tissues (blood, liver, and kidney). CONCLUSIONS Overall the study provides important information regarding the oxidative stress causing potential and immunosuppressant nature of A. flavus against S. litura and its non toxicity to mammals (rat), mammals (rat), suggesting it an environment friendly pest management agent.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Amarjeet Kaur
- Departments of Microbiology, Guru Nanak Dev University, Amritsar, Punjab India
| |
Collapse
|
11
|
Raza MF, Yao Z, Bai S, Cai Z, Zhang H. Tephritidae fruit fly gut microbiome diversity, function and potential for applications. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:423-437. [PMID: 32041675 DOI: 10.1017/s0007485319000853] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The family Tephritidae (order: Diptera), commonly known as fruit flies, comprises a widely distributed group of agricultural pests. The tephritid pests infest multiple species of fruits and vegetables, resulting in huge crop losses. Here, we summarize the composition and diversity of tephritid gut-associated bacteria communities and host intrinsic and environmental factors that influence the microbiome structures. Diverse members of Enterobacteriaceae, most commonly Klebsiella and Enterobacter bacteria, are prevalent in fruit flies guts. Roles played by gut bacteria in host nutrition, development, physiology and resistance to insecticides and pathogens are also addressed. This review provides an overview of fruit fly microbiome structure and points to diverse roles that it can play in fly physiology and survival. It also considers potential use of this knowledge for the control of economically important fruit flies, including the sterile insect technique and cue-lure baiting.
Collapse
Affiliation(s)
- Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Kaur M, Chadha P, Kaur S, Kaur A, Kaur R. Schizophyllum commune induced oxidative stress and immunosuppressive activity in Spodoptera litura. BMC Microbiol 2020; 20:139. [PMID: 32471364 PMCID: PMC7260734 DOI: 10.1186/s12866-020-01831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/25/2020] [Indexed: 01/24/2023] Open
Abstract
Background In the last few decades, considerable attention has been paid to fungal endophytes as biocontrol agents, however little is known about their mode of action. This study aimed to investigate the toxic effects of an endophytic fungus Schizophyllum commune by analyzing activities of antioxidant and detoxifying enzymes as well as morphology of haemocytes using Spodoptera litura as a model. Results Ethyl acetate extract of S. commune was fed to the larvae of S. litura using the artificial diet having 276.54 μg/ml (LC50 of fungus) concentration for different time durations. Exposed groups revealed significant (p ≤ 0.05) increase in the activities of various enzymes viz. Catalase, Ascorbate peroxidase, Superoxide dismutase, Glutathione-S-Transferase. Furthermore, haemocytes showed various deformities like breakage in the cell membrane, cytoplasmic leakage and appearance of strumae in the treated larvae. A drastic reduction in the percentage of normal haemocytes was recorded in the treated groups with respect to control. Conclusion The study provides important information regarding the oxidative stress causing and immunosuppressant potential of S. commune against S. litura and its considerable potential for incorporation in pest management programs.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajvir Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
13
|
Martínez-Barrera OY, Toledo J, Cancino J, Liedo P, Gómez J, Valle-Mora J, Montoya P. Interaction Between Beauveria bassiana (Hypocreales: Cordycipitaceae) and Coptera haywardi (Hymenoptera: Diapriidae) for the Management of Anastrepha obliqua (Diptera: Tephritidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5805374. [PMID: 32186740 PMCID: PMC7071784 DOI: 10.1093/jisesa/ieaa010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The interaction between the entomopathogenic fungus Beauveria bassiana (Balsamo) and the parasitoid Coptera haywardi (Oglobin), as potential biological control agents for Anastrepha obliqua (Macquart) fruit flies, was evaluated under laboratory and semi-protected field cage conditions. The effects of the parasitoids and fungus were individually and jointly assessed in Plexiglas cages. Application of B. bassiana dry conidia to soil produced 40% mortality in A. obliqua adults. However, mortality was lower (21.2%) on evaluation under field cage conditions. According to the multiple decrement life table analysis, the probability of death of A. obliqua was 88% when C. haywardi parasitoids and B. bassiana conidia were used in conjunction, 89% when only C. haywardi parasitoids were released and 23% when only B. bassiana conidia were applied. These results demonstrate that no synergistic, additive or antagonistic interaction took place with the simultaneous use of these natural enemies, since the presence of B. bassiana had no effect on the C. haywardi parasitism. These results indicate that the parasitoid is a better natural enemy for the control of A. obliqua, and show that, although the two biological control agents can be used simultaneously, their joint application will not produce increased control.
Collapse
Affiliation(s)
| | - Jorge Toledo
- El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México
| | - Jorge Cancino
- Programa Moscafrut SADER-SENASICA, Metapa de Domínguez, Chiapas, México
| | - Pablo Liedo
- El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México
| | - Jaime Gómez
- El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, México
| | | | - Pablo Montoya
- Programa Moscafrut SADER-SENASICA, Metapa de Domínguez, Chiapas, México
| |
Collapse
|
14
|
Dorrah MA, Mohamed AA, Shaurub ESH. Immunosuppressive effects of the limonoid azadirachtin, insights on a nongenotoxic stress botanical, in flesh flies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:55-66. [PMID: 30744897 DOI: 10.1016/j.pestbp.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/08/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The tetranortriterpenoid azadirachtin (Aza) is a well-known insect growth disruptor of plant origin. Although its actions on insects have been extensively studied; fragmentary reports are available from the immunological point of view. Therefore, in the present study, total (THC) and differential hemocyte counts (DHC), nodulation, phenoloxidase (PO) activity, immune-reactive lysozymes and inducible nitric oxide (NO) were assessed, as measures of immune responses, in Sarcophaga argyrostoma 3rd instars challenged individually with M. luteus or Aza, or in combination with both compared to the control larvae. THC was significantly declined after 12 h and 24 h of treatment with Aza. DHC varied considerably; in particular, plasmatocytes were significantly decreased after 36 h and 48 h of treatment with Aza; whereas granulocytes were significantly increased. Nodulation was significantly increased with the increase of time after all treatments. Challenging with M. luteus significantly increased the activity of PO in hemocytes and plasma; whereas such activity was significantly decreased after treatment with Aza or combined Aza and M. luteus. Treatment with Aza or M. luteus alone or in couple significantly increased lysozyme activity of fat body, hemocytes and plasma. However, challenging with M. luteus significantly increased NO concentration in the same tissues. A hypothetical model of Aza as a potential mutagen is presented. However, no genotoxic effect was observed through tracking apoptosis-associated changes in Aza-treated hemocytes via flow cytometry-based apoptosis detection. Our study suggests that the integration of Aza, as an eco-friendly pesticide, with bacterial biopesticides may be a successful approach for controlling insect pests.
Collapse
Affiliation(s)
- Moataza A Dorrah
- Department of Entomology, Faculty of Science, Cairo University, Giza, PO Box 12613, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, PO Box 12613, Egypt
| | - El-Sayed H Shaurub
- Department of Entomology, Faculty of Science, Cairo University, Giza, PO Box 12613, Egypt.
| |
Collapse
|
15
|
Feitosa APS, Chaves MM, Veras DL, de Deus DMV, Portela NC, Araújo AR, Alves LC, Brayner FA. Assessing the cellular and humoral immune response in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) infected with Leishmania infantum (Nicolle, 1908). Ticks Tick Borne Dis 2018; 9:1421-1430. [PMID: 30207274 DOI: 10.1016/j.ttbdis.2018.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate aspects of the innate cellular and humoral immune response by evaluating hemocyte dynamics, phagocytosis, phenoloxidase (PO) activity and nitric oxide (NO) production in Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) infected with Leishmania infantum and to assess the persistence of parasites at time 0 and 1, 2, 5, and 7 days post-infection (dpi). The total and differential count of the five types of hemocytes circulating in the hemolymph of R. sanguineus s.l. females showed the average total number of hemocytes in the group infected with L. infantum to be significantly higher (p < 0.05) on the 1st and 2nd dpi compared to the control group. The hemocyte differential count showed that the average number of plasmatocytes and granulocytes increased significantly on the 1st, 2nd, and 5th dpi with L. infantum compared to the control group (p < 0.001). Phagocytosis assays revealed that plasmatocytes and granulocytes were able to perform phagocytosis of latex beads and L. infantum on the 1st and 2nd dpi, respectively. NO production was significantly increased (p < 0.001) on the 1st, 2nd, and 5th dpi with L. infantum and PO activity increased significantly (p < 0.05) only on the 5th dpi. L. infantum DNA was significantly increased (p < 0.001) on the 5th and 7th dpi compared to time 0. Although there are no studies describing the response of R. sanguineus s.l. to an infection with L. infantum, these results suggest that R. sanguineus s.l. activates the cellular and humoral immune response after infection with L. infantum. Further studies are however, needed to assess the impact of such a response on fighting infection.
Collapse
Affiliation(s)
- Ana Paula S Feitosa
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco de Imunopatologia Keizo Asami (LIKA), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Post-Graduation Program in Tropical Medicine (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| | - Marlos M Chaves
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil
| | - Dyana L Veras
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco de Imunopatologia Keizo Asami (LIKA), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil
| | - Dayse M Vasconcelos de Deus
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco de Imunopatologia Keizo Asami (LIKA), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil
| | - Nairomberg C Portela
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco de Imunopatologia Keizo Asami (LIKA), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil
| | - Alberon R Araújo
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Post-Graduation Program in Tropical Medicine (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Luiz C Alves
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco de Imunopatologia Keizo Asami (LIKA), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Institute of Biological Sciences (ICB), University of Pernambuco, Rua Arnóbio Marques, 310 - Santo Amaro, Recife, PE, CEP 50.100-130, Brazil
| | - Fábio A Brayner
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Institute (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco de Imunopatologia Keizo Asami (LIKA), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife, PE, CEP:50.740-465, Brazil; Post-Graduation Program in Tropical Medicine (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| |
Collapse
|
16
|
Poncio S, Montoya P, Cancino J, Nava DE. Best Host Age of Anastrepha obliqua (Diptera: Tephritidae) for Multiplication of Four Native Parasitoids from the Americas. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4955782. [PMID: 29718497 PMCID: PMC5888387 DOI: 10.1093/jisesa/iey023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The success of the mass rearing of parasitoids is directly related to host quality, and it requires selecting the best biological host age to ensure the optimal performance of the parasitoids released into the field. The larval development of the parasitoids Utetes anastrephae (Viereck) (Hymenoptera: Braconidae) and Odontosema anastrephae Borgmeier (Hymenoptera: Eucoilidae) and the pupal development of the parasitoids Coptera haywardi (Ogloblin) (Hymenoptera: Diapriidae) and Dirhinus sp. (Hymenoptera: Chalcididae) on the native host Anastrepha obliqua (Macquart) (Diptera: Tephritidae) in different larvae and pupae ages were investigated under laboratory conditions. Not all parasitoid species developed with the same efficiency in immature individuals of A. obliqua; U. anastrephae and C. haywardi showed the higher parasitism rates. The emergence and parasitism of U. anastrephae were equal using larvae from 5 to 8 d, while C. haywardi reared in 1- to 8-d-old pupae showed higher averages of parasitism. These results suggest that native parasitoids can be used to strengthen the implementation of biological control projects against A. obliqua, a pest of economic importance in South America.
Collapse
Affiliation(s)
- S Poncio
- Departamento de Fitossanidade, Universidade Federal de Pelotas, Avenida Eliseu Maciel s/n, Capão do Leão, Rio Grande do Sul, Brazil
| | - P Montoya
- Programa Moscafrut SAGARPA-SENASICA, Camino a los Cacaotales S/N, Metapa de Domínguez, Chiapas, Mexico
| | - J Cancino
- Programa Moscafrut SAGARPA-SENASICA, Camino a los Cacaotales S/N, Metapa de Domínguez, Chiapas, Mexico
| | - D E Nava
- Laboratório de Entomologia, Embrapa Clima Temperado, Rodovia BR, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Huang Q, Zhang L, Yang C, Yun X, He Y. The competence of hemocyte immunity in the armyworm Mythimna separata larvae to sublethal hexaflumuron exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 130:31-38. [PMID: 27155481 DOI: 10.1016/j.pestbp.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Hemocytes circulating in the hemolymph are essential for the insect immunity to protect insects against infections. The effects of sublethal hexaflumuron exposure on the competence of hemocyte immunity of fifth-instar larvae of Mythimna separata were investigated. In this insect, the sublethal exposure could cause plasmatocyte filopodia to contract and shorten, and granulocytes to compact with a loss of cytoplasmic projections in vitro, and induce granulocytes to swell and expand in vivo. The mean number of total hemocytes was significantly declined in feed-thru larvae by 5.0μgmL(-1) hexaflumuron. Changes in proportional counts of hemocytes showed that sublethal hexaflumuron exposure caused a decrease of granulocytes and an increase of plasmatocytes in a concentration-dependant manner, but these changes were time-dependently reduced. Few effects of the sublethal exposure were revealed on the proportional counts of spherulocytes, oenocytoids, and prohemocytes. The exposure at 24h showed strong inhibition on phenoloxidase activity in plasma and hemocytes, but this inhibition was time-dependently weakened. The NADPH-diaphorase staining assays showed that a positive immune response of nitric oxide synthase (NOS) in hemocytes was incited by the sublethal exposure, and the longer-time exposure to the higher concentrations of hexaflumuron caused a heavier loss of NOS activity. Phagocytosis rates revealed the inhibitory effect of sublethal hexaflumuron exposure on the phagocytic ability of granulocytes and plasmatocytes that was significantly greater than the effect of chlorpyrifos at the same concentrations. These results show that sublethal hexaflumuron exposure reduces M. separata larval survival by depressing the competence of hemocyte-mediated immune responses.
Collapse
Affiliation(s)
- Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Lei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Yang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinmin Yun
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan He
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Feitosa APS, Alves LC, Chaves MM, Veras DL, Silva EM, Aliança ASS, França IRS, Gonçalves GGA, Lima-Filho JL, Brayner FA. Hemocytes of Rhipicephalus sanguineus (Acari: Ixodidae): Characterization, Population Abundance, and Ultrastructural Changes Following Challenge with Leishmania infantum. JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1193-1202. [PMID: 26336264 DOI: 10.1093/jme/tjv125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
Few studies have examined the cellular immune response of ticks, and further research on the characterization of the hemocytes of ticks is required, particularly on those of Rhipicephalus sanguineus (Latreille) because of the medical and veterinary importance of this tick. The aims of this study were to characterize the morphology and the ultrastructure of the different types of hemocytes of adult R. sanguineus and to determine the population abundance and the ultrastructural changes in the hemocytes of ticks infected with Leishmania infantum. The hemocytes were characterized through light and transmission electron microscopy. Within the variability of circulating cells in the hemolymph of adult R. sanguineus, five cell types were identified, which were the prohemocytes, plasmatocytes, granulocytes, spherulocytes, and adipohemocytes. The prohemocytes were the smallest cells found in the hemolymph. The plasmatocytes had polymorphic morphology with vesicles and cytoplasmic projections. The granulocytes had an elliptical shape with the cytoplasm filled with granules of different sizes and electrodensities. The spherulocytes were characterized by several spherules of uniform shapes and sizes that filled the entire cytoplasm, whereas the adipohemocytes had an irregular shape with multiple lipid inclusions that occupied almost the entire cytoplasmic space. The total counts of the hemocyte population increased in the group that was infected with L. infantum. Among the different cell types, the numbers increased and the ultrastructural changes occurred in the granulocytes and the plasmatocytes in the infected group of ticks.
Collapse
Affiliation(s)
- A P S Feitosa
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465. Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901. Post Graduate Program in Tropical Medicine (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901.
| | - L C Alves
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465. Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901. Institute of Biological Sciences (ICB), University of Pernambuco, Rua Arnóbio Marques, 310 - Santo Amaro - Recife-PE, Brazil -CEP 50.100-130
| | - M M Chaves
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465
| | - D L Veras
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465. Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901
| | - E M Silva
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465. Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901
| | - A S S Aliança
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465. Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901. Post Graduate Program in Tropical Medicine (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901
| | - I R S França
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465. Institute of Biological Sciences (ICB), University of Pernambuco, Rua Arnóbio Marques, 310 - Santo Amaro - Recife-PE, Brazil -CEP 50.100-130
| | - G G A Gonçalves
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465. Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901
| | - J L Lima-Filho
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901
| | - F A Brayner
- Laboratory of Cell and Molecular Biology, Department of Parasitology, Aggeu Magalhães Research Center (FIOCRUZ), Av. Professor Moraes Rego, s/n - Campus da UFPE, Cidade Universitária, Recife-PE, Brazil, - CEP:50.740-465. Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901. Post Graduate Program in Tropical Medicine (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife-PE, Brazil - CEP: 50670-901
| |
Collapse
|
19
|
Hillyer JF, Strand MR. Mosquito hemocyte-mediated immune responses. CURRENT OPINION IN INSECT SCIENCE 2014; 3:14-21. [PMID: 25309850 PMCID: PMC4190037 DOI: 10.1016/j.cois.2014.07.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hemocytes are a key component of the mosquito immune system that kill pathogens via phagocytic, lytic and melanization pathways. Individual mosquitoes contain between 500 and 4,000 hemocytes, which are divided into three populations named granulocytes, oenocytoids and prohemocytes. Hemocytes can also be divided by their anatomical location with 75% of hemocytes circulating in the hemocoel (circulating hemocytes) and 25% of hemocytes attaching themselves to tissues (sessile hemocytes). Greater than 85% of the hemocytes in adult mosquitoes are granulocytes, which primarily kill pathogens by phagocytosis or lysis. Oenocytoids, on the other hand, are the major producers of the enzymes required for melanization while prohemocytes are small cells that participate in phagocytosis. Both circulating and sessile hemocytes engage in defense against pathogens. The circulatory system of mosquitoes also interacts with hemocytes and facilitates elimination of potential pathogens that enter the hemocoel.
Collapse
Affiliation(s)
- Julián F. Hillyer
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, TN, USA
| | - Michael R. Strand
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
20
|
Perez DG, Fontanetti CS. Hemocitical responses to environmental stress in invertebrates: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 177:437-447. [PMID: 20717717 DOI: 10.1007/s10661-010-1645-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/29/2010] [Indexed: 05/29/2023]
Abstract
Although invertebrates are recognized by the great facility to accumulate pollutants present in their environment and many of them are used as sentinel species in biomonitoring studies, little is known about the impact of toxicants on the immune system of these animals. In this regard, hemocytes play a fundamental role: these cells circulate freely through the hemolymph of invertebrates and act on the recognition of foreign material to the organism, mediating and effecting the cellular defense, such as phagocytosis, nodulation, and encapsulation. Different morphological types can be recognized but still there is controversy among the researchers about the exact classification of the hemocytes due to the diversity of techniques for the preservation and observation of these cells. In the present study, a review on the main hemocyte responses to environmental stress in different invertebrate organisms is presented, emphasizing the contamination by heavy metals. It is discussed parameters such as: alteration in the number of cells involved in the defense reaction, phagocytic activity, lysosomal responses, and production of reactive oxygen species.
Collapse
Affiliation(s)
- Danielli Giuliano Perez
- Department of Biology-Institute of Biosciences, UNESP, Av. 24-A, 1515-13506-900, Rio Claro, São Paulo, Brazil.
| | | |
Collapse
|
21
|
Borowska J, Pyza E. Effects of heavy metals on insect immunocompetent cells. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:760-770. [PMID: 21419130 DOI: 10.1016/j.jinsphys.2011.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 02/10/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
The influence of the following heavy metals, copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), on haemocytes of the house fly Musca domestica L. was studied under laboratory conditions. House fly larvae were exposed to low or high, semi-lethal concentrations of metals. These particular metals were selected because they are present in polluted environments in Poland. In addition, we studied expression of the stress proteins HSP70 and HSP72 in haemocytes collected from larvae that had been exposed to heavy metal. The obtained results showed changes in haemocytes morphology and phagocytotic plasticity in the experimental flies in comparison to control. The number of prohaemocytes, regarded as stem cells, increased, while granulocytes, responsible for phagocytosis, decreased. However, we have not detected any clear changes in expression of HSP70 or HSP72 in flies treated with low or high concentrations of the heavy metals.
Collapse
Affiliation(s)
- Joanna Borowska
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | |
Collapse
|
22
|
Zibaee A, Bandani AR, Malagoli D. Purification and characterization of phenoloxidase from the hemocytes of Eurygaster integriceps (Hemiptera: Scutelleridae). Comp Biochem Physiol B Biochem Mol Biol 2011; 158:117-23. [DOI: 10.1016/j.cbpb.2010.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/12/2010] [Accepted: 10/17/2010] [Indexed: 01/20/2023]
|
23
|
Zibaee A, Bandani AR, Talaei-Hassanlouei R, Malagoli D. Cellular immune reactions of the sunn pest, Eurygaster integriceps, to the entomopathogenic fungus, Beauveria bassiana and its secondary metabolites. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:138. [PMID: 22233481 PMCID: PMC3391913 DOI: 10.1673/031.011.13801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/17/2011] [Indexed: 05/26/2023]
Abstract
In this study, five morphological types of circulating hemocytes were recognized in the hemolymph of the adult sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), namely prohemocytes, plasmatocytes, granulocytes, adipohemocytes, and oenocytoids. The effects of the secondary metabolites of the entomopathogenic fungus Beauveria bassiana on cellular immune defenses of Eurygaster integriceps were investigated. The results showed that the fungal secondary metabolites inhibited phagocytic activity of E. integriceps hemocytes and hampered nodule formation. A reduction of phenoloxidase activity was also observed. The data suggest that B. bassiana produce secondary metabolites that disable several immune mechanisms allowing the fungus to overcome and then kill its host. This characteristic makes B. bassiana a promising model for biological control of insect pests such as E. integriceps.
Collapse
Affiliation(s)
- Arash Zibaee
- Department of Plant Protection, College of Agriculture, University of Guilan, Rasht 41635-1314, Iran
| | - Ali Reza Bandani
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj 31584,
Iran
| | - Reza Talaei-Hassanlouei
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj 31584,
Iran
| | - Davide Malagoli
- Department of Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41125, Modena, Italy
| |
Collapse
|
24
|
Huang F, Shi M, Yang YY, Li JY, Chen XX. Changes in hemocytes of Plutella xylostella after parasitism by Diadegma semiclausum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 70:177-187. [PMID: 18949799 DOI: 10.1002/arch.20284] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We examined the changes of hemocytes in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), due to parasitism by the endoparasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). Necrosis of prohemocytes in different stages was observed while cell death was absent in the mature hemocytes in the parasitized larvae, which was related to the declined total hemocyte count per microliter (THC). THC in the host hemolymph declined sharply by 12 h post-parasitization and then remained at a low level. When hemocytes of the parasitized larvae were cultured in vitro, encapsulation ability was suppressed coincidently with the inhibited spreading ability; however, such effects were transient. Simultaneously, activation of the prophenoloxidae from the hemocytes was inhibited. Unlike the results of previous studies, the decrease in hemocytes, which was due to the necrosis of the prohemocytes instead of the mature hemocytes in our study, was not responsible for the impaired encapsulation. Our studies suggest that parasitism by D. semiclausum have some effects on hematopoietic regulation and on hemocyte immune reaction of P. xylostella larvae.
Collapse
Affiliation(s)
- Fang Huang
- Institute of Insect Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou, China
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Yang XM, Hou LJ, Wang JX, Zhao XF. Expression and function of cathepsin B-like proteinase in larval hemocytes of Helicoverpa armigera during metamorphosis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 64:164-74. [PMID: 17366601 DOI: 10.1002/arch.20169] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Previous work has revealed that Helicoverpa armigera cathepsin B-like proteinase (HCB) is expressed in oocytes as well as fat bodies of pupae and adults. It plays key roles in the degradation of yolk proteins during embryogenesis and the decomposition of adult fat bodies of H. armigera. This study investigated the expression and function of HCB in larval hemocytes during larva-pupa metamorphosis. Results showed that the expression of HCB in hemocytes exhibited developmental stage specificity. No HCB was found in hemocytes from 5th-molting larvae. On the contrary, HCB was highly transcribed in the hemocytes from 6th-48-h larvae. Besides, it was abundantly translated in 6th-96-h larvae (prepupation). HCB is mainly expressed in plasmatocytes and granulocytes at both transcriptional and translational levels. The number of plasmatocytes and granulocytes markedly increased before pupation. In addition, hemocytes distributed in hematopoietic organs at early larval stage, then migrated to midgut and fat bodies that would undergo histolysis at later larval stage. These findings suggested that HCB is expressed in H. armigera larval hemocytes and involved in larva-pupa metamorphosis.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- School of Life Sciences, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
27
|
Brayner FA, Araújo HRC, Santos SS, Cavalcanti MGS, Alves LC, Souza JRB, Peixoto CA. Haemocyte population and ultrastructural changes during the immune response of the mosquito Culex quinquefasciatus to microfilariae of Wuchereria bancrofti. MEDICAL AND VETERINARY ENTOMOLOGY 2007; 21:112-20. [PMID: 17373954 DOI: 10.1111/j.1365-2915.2007.00673.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Haemocytes circulating in the haemolymph protect insects against pathogens that enter the haemocoel. Changes in haemocyte morphology and differences in haemocyte counts during the immune response of Culex quinquefasciatus Say (Diptera: Culicidae) to microfilariae of Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae) were investigated in the present study. The mean number of total haemocytes was significantly elevated in infected mosquitoes (P<0.001), reaching a peak on the third day post-infection. Differential counts show that mean numbers of prohaemocytes, plasmatocytes, granular cells and oenocytoids increased significantly after infection with microfilariae granulocytes compared to the control and näive groups of Cx. quinquefasciatus (P<0.05). Changes in proportional counts of haemocytes were also analysed in haemolymph perfusates of Cx. quinquefasciatus infected with W. bancrofti. On the first day post-infection, infected mosquitoes showed an increase in the proportion of prohaemocytes (18.8% compared to 9.6% for the control) and of oenocytoids (7.1% compared to 4.7% control); however, they exhibited lower levels of plasmatocytes (36.6% compared to 42.1% control) and granular cells (36.1% compared to 41.4% control). On day 14 post-infection, similar changes were observed for these haemocyte types, except that the proportion of granular cells was significantly greater than the control (41.2% compared to 31.3% control). Although an enhancement of prohaemocyte numbers was observed, this cellular type did not show any ultrastructural alteration. On the other hand, granular cells, plasmatocytes and oenocytoids presented morphological alterations indicative of innate immunological activation in mosquitoes infected with W. bancrofti.
Collapse
Affiliation(s)
- F A Brayner
- Departamento de Biologia Celular e Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (FIOCRUZ), Recife, Brazil.
| | | | | | | | | | | | | |
Collapse
|
28
|
Araújo HCR, Cavalcanti MGS, Santos SS, Alves LC, Brayner FA. Hemocytes ultrastructure of Aedes aegypti (Diptera: Culicidae). Micron 2007; 39:184-9. [PMID: 17329111 DOI: 10.1016/j.micron.2007.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/05/2007] [Accepted: 01/05/2007] [Indexed: 11/27/2022]
Abstract
Mosquitoes have an efficient defence system against infection. Insect blood cells (hemocytes) play an essential role in defense against parasites and other pathogenic organisms that infect insects. We have identified by light and transmission electron microscopy six hemocytes cell types from the hemolymph of Aedes aegypti. They were: prohemocytes (20%), adipohemocytes (29%), granulocytes (16%), plasmatocytes (27%), oenocytoids (7%) and thrombocytoids (0.9%). The prohemocytes were the smallest hemocytes found in the hemolymph. Its cytoplasm occupies only a narrow area around the nucleus. The adipohemocytes were the most abundant cell type presented. These hemocytes exhibited a large lipid like vesicle and mitochondria. In electron micrographs, the granulocytes showed cytoplasm containing dilated rough endoplasmic reticulum (RER) and a round or elongated mitochondria. Electron-dense granules with a proteinaceous material were also present. The plasmatocytes were polymorphic and exhibited plasma membrane with irregular processes, philopodia and pseudopodia. Ultrastructural investigation revealed that the reticular cytoplasm showed a well-developed RER, a Golgi and vacuoles. Oenocytoids showed homogeneous cytoplasm with many mitochondria and ribosomes are scattered throughout the cytoplasm, abundant RER and a small smooth endoplasmic reticulum (SER) present at the cell poles. Thrombocytoids were very fragile and few in number. Similar characteristics were found in oenocytoids, possessing a homogeneous cytoplasm with poorly developed organelles, few mitochondria and granules.
Collapse
Affiliation(s)
- H C R Araújo
- Departamento de Biologia Celular e Ultra-estrutura, Universidade Federal de Pernambuco, Brazil.
| | | | | | | | | |
Collapse
|
29
|
Correia A, Ferreira A, Wanderley-Teixeira V, Teixeira A. DESCRIÇÃO MORFOLÓGICA DOS HEMÓCITOS DO GAFANHOTO TROPIDACRIS COLLARIS (STOLL, 1813) (ORTHOPTERA: ROMALEIDAE). ARQUIVOS DO INSTITUTO BIOLÓGICO 2005. [DOI: 10.1590/1808-1657v72p0572005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
RESUMO Em virtude da grande variedade na forma, função e número de hemócitos entre as diferentes espécies de insetos, a presente pesquisa teve o objetivo de descrever morfologicamente essas células presentes na hemolinfa do gafanhoto Tropidacris collaris (Stoll, 1813), por meio da microscopia de luz, utilizando-se técnica de coloração pelo Giemsa. A descrição morfológica foi realizada no Laboratório de Histologia do Departamento de Morfologia e Fisiologia Animal da Universidade Federal Rural de Pernambuco (UFRPE). Os insetos foram obtidos da criação existente no Laboratório de Entomologia do Departamento de Biologia da UFRPE. Os resultados revelaram que a hemolinfa de T. collaris é constituída pelos seguintes hemócitos: prohemócitos, plasmócitos, coagulócitos e granulócitos.
Collapse
Affiliation(s)
- A.A. Correia
- Universidade Federal Rural de Pernambuco, Brasil
| | | | | | | |
Collapse
|
30
|
Brayner FA, Araújo HRC, Cavalcanti MGS, Alves LC, Peixoto CA. Ultrastructural characterization of the hemocytes of Culex quinquefasciatus (DIPTERA: Culicidae). Micron 2005; 36:359-67. [PMID: 15857775 DOI: 10.1016/j.micron.2004.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 11/30/2004] [Accepted: 11/30/2004] [Indexed: 11/16/2022]
Abstract
Six hemocytes cell types from Culex quinquefasciatus were identified by light and transmission electron microscopy: They are prohemocytes (9.3%), spherulocytes (1.6%), adipohemocytes (0.8%), oenocytoids (4.6%), plasmatocytes (43.4%) and granulocytes (40.3%). The prohemocytes were the smallest hemocytes encountered in the hemolymph, displaying a large and centrally located nucleus, almost filling the whole cell. The spherulocytes, which were small hemocytes, presented small and numerous spherules with a lamellar pattern and an electron-dense core. Rare adipohemocytes were observed in the C. quinquefasciatus hemolymph, presenting large nucleus with an evident nucleolus, cytoplasm containing rough endoplasmic reticulum (RER), mitochondriae and lipid inclusions. C. quinquefasciatus oenocytoids showed homogeneous cytoplasm with several granules, completely or partially filled with amorphous material. These cells showed abundant smooth endoplasmic reticulum (SER) and dense mitochondriae. By light microscopy analysis we identified two morphological types of plasmatocytes, granular and agranular. However, ultrastructural investigation revealed that the granular cells contained lipid inclusion between RER membranes, instead of membrane-bounded granules. The granulocytes presented a fusiform or circular profile and displayed a unique and very complex process of granules formation, including organization of polysomes inside vesicles that protrude from the Golgi system, synthesis of a proteinaceous material, condensation of the granule matrix and recycling of endoplasmic membranes. Intense endocytic pathways were also observed in the granulocytes.
Collapse
Affiliation(s)
- F A Brayner
- Departamento de Biologia Celular e Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (FIOCRUZ), Av. Moraes Rego s/n, Recife 50670-420, Brazil.
| | | | | | | | | |
Collapse
|