1
|
Bunde TT, Pedra ACK, de Oliveira NR, Dellagostin OA, Bohn TLO. A systematic review on the selection of reference genes for gene expression studies in rodents: are the classics the best choice? Mol Biol Rep 2024; 51:1017. [PMID: 39327364 DOI: 10.1007/s11033-024-09950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Rodents are commonly used as animal models in studies investigating various experimental conditions, often requiring gene expression analysis. Quantitative real-time reverse transcription PCR (RT-qPCR) is the most widely used tool to quantify target gene expression levels under different experimental conditions in various biological samples. Relative normalization with reference genes is a crucial step in RT-qPCR to obtain reliable quantification results. In this work, the main reference genes used in gene expression studies among the three rodents commonly employed in scientific research-hamster, rat, and mouse-are analyzed and described. An individual literature search for each rodent was conducted using specific search terms in three databases: PubMed, Scopus, and Web of Science. A total of 157 articles were selected (rats = 73, mice = 79, and hamsters = 5), identifying various reference genes. The most commonly used reference genes were analyzed according to each rodent, sample type, and experimental condition evaluated, revealing a great variability in the stability of each gene across different samples and conditions. Classic genes, which are expected to be stably expressed in both samples and conditions analyzed, demonstrated greater variability, corroborating existing concerns about the use of these genes. Therefore, this review provides important insights for researchers seeking to identify suitable reference genes for their validation studies in rodents.
Collapse
Affiliation(s)
- Tiffany T Bunde
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ana C K Pedra
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natasha R de Oliveira
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Odir A Dellagostin
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thaís L O Bohn
- Laboratório de Vacinologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
2
|
Validation of quantitative real-time PCR reference genes and spatial expression profiles of detoxication-related genes under pesticide induction in honey bee, Apis mellifera. PLoS One 2022; 17:e0277455. [DOI: 10.1371/journal.pone.0277455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, pesticides have been suggested to be one of the factors responsible for the large-scale decline in honey bee populations, including colony collapse disorder. The identification of the genes that respond to pesticide exposure based on their expression is essential for understanding the xenobiotic detoxification metabolism in honey bees. For the accurate determination of target gene expression by quantitative real-time PCR, the expression stability of reference genes should be validated in honey bees exposed to various pesticides. Therefore, in this study, to select the optimal reference genes, we analyzed the amplification efficiencies of five candidate reference genes (RPS5, RPS18, GAPDH, ARF1, and RAD1a) and their expression stability values using four programs (geNorm, NormFinder, BestKeeper, and RefFinder) across samples of five body parts (head, thorax, gut, fat body, and carcass) from honey bees exposed to seven pesticides (acetamiprid, imidacloprid, flupyradifurone, fenitrothion, carbaryl, amitraz, and bifenthrin). Among these five candidate genes, a combination of RAD1a and RPS18 was suggested for target gene normalization. Subsequently, expression levels of six genes (AChE1, CYP9Q1, CYP9Q2, CYP9Q3, CAT, and SOD1) were normalized with a combination of RAD1a and RPS18 in the different body parts from honey bees exposed to pesticides. Among the six genes in the five body parts, the expression of SOD1 in the head, fat body, and carcass was significantly induced by six pesticides. In addition, among seven pesticides, flupyradifurone statistically induced expression levels of five genes in the fat body.
Collapse
|
3
|
Visniauskas B, Perry JC, Gomes GN, Nogueira-Pedro A, Paredes-Gamero EJ, Tufik S, Chagas JR. Intermittent hypoxia changes the interaction of the kinin-VEGF system and impairs myocardial angiogenesis in the hypertrophic heart. Physiol Rep 2021; 9:e14863. [PMID: 33991464 PMCID: PMC8123545 DOI: 10.14814/phy2.14863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Intermittent hypoxia (IH) is a feature of obstructive sleep apnea (OSA), a condition highly associated with hypertension-related cardiovascular diseases. Repeated episodes of IH contribute to imbalance of angiogenic growth factors in the hypertrophic heart, which is key in the progression of cardiovascular complications. In particular, the interaction between vascular endothelial growth factor (VEGF) and the kallikrein-kinin system (KKS) is essential for promoting angiogenesis. However, researchers have yet to investigate experimental models of IH that reproduce OSA, myocardial angiogenesis, and expression of KKS components. We examined temporal changes in cardiac angiogenesis in a mouse IH model. Adult male C57BI/6 J mice were implanted with Matrigel plugs and subjected to IH for 1-5 weeks with subsequent weekly histological evaluation of vascularization. Expression of VEGF and KKS components was also evaluated. After 3 weeks, in vivo myocardial angiogenesis and capillary density were decreased, accompanied by a late increase of VEGF and its type 2 receptor. Furthermore, IH increased left ventricular myocardium expression of the B2 bradykinin receptor, while reducing mRNA levels of B1 receptor. These results suggest that in IH, an unexpected response of the VEGF and KKS systems could explain the reduced capillary density and impaired angiogenesis in the hypoxic heart, with potential implications in hypertrophic heart malfunction.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juliana C Perry
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Guiomar N Gomes
- Departmento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair R Chagas
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Exercise in the heat blunts improvements in aerobic power. Eur J Appl Physiol 2021; 121:1715-1723. [PMID: 33682060 DOI: 10.1007/s00421-021-04653-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION PGC-1a has been termed the master regulator of mitochondrial biogenesis. The exercise-induced rise in PGC-1a transcription is blunted when acute exercise takes place in the heat. However, it is unknown if this alteration has functional implications after heat acclimation and exercise training. PURPOSE To determine the impact of 3 weeks of aerobic exercise training in the heat (33 °C) compared to training in room temperature (20 °C) on thermoregulation, PGC-1a mRNA response, and aerobic power. METHODS Twenty-one untrained college aged males (age, 24 ± 4 years; height, 178 ± 6 cm) were randomly assigned to 3 weeks of aerobic exercise training in either 33 °C (n = 12) or 20 °C (n = 11) environmental temperatures. RESULTS The 20 °C training group increased 20 °C [Formula: see text]̇O2peak from 3.21 ± 0.77 to 3.66 ± 0.78 L·min-1 (p < 0.001) while the 33 °C training group did not improve (pre, 3.16 ± 0.48 L·min-1; post, 3.28 ± 0.63 L·min-1; p = 0.283). PGC-1a increased in response to acute aerobic exercise more in 20 °C (6.6 ± 0.7 fold) than 33 °C (4.6 ± 0.7 fold, p = 0.031) before training, but was no different after training in 20 °C (2.4 ± 0.3 fold) or 33 °C (2.4 ± 0.5 fold, p = 0.999). No quantitative alterations in mitochondrial DNA were detected with training or between temperatures (p > 0.05). CONCLUSIONS This research indicates that exercise in the heat may limit the effectiveness of aerobic exercise at increasing aerobic power. Furthermore, this study demonstrates that heat induced blunting of the normal exercise induced PGC-1a response is eliminated after 3 weeks of heat acclimation.
Collapse
|
5
|
Jiang T, Dai S, Yi Y, Liu Y, Zhang S, Luo M, Wang H, Xu D. The combination of hprt and gapdh is the best compound reference genes in the fetal rat hippocampus. Dev Neurobiol 2020; 80:229-238. [PMID: 32875725 DOI: 10.1002/dneu.22779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/11/2020] [Accepted: 08/24/2020] [Indexed: 11/06/2022]
Abstract
Hippocampus, as an important organ of central memory storage and spatial orientation, has been studied increasingly in recent years. The expression of reference genes in the hippocampus of adult rats, which are commonly used in the quantitative real-time polymerase chain reaction (qRT-PCR), is unstable in the fetal hippocampus and may not be suitable for the fetal period. Therefore, this study intends to screen and determine the optimal compound reference genes in the fetal rat hippocampus. Based on the literature, we selected five housekeeping genes (HKGs), including glyceraldehyde 3-phosphate dehydrogenase (gapdh), actin beta (β-actin), hypoxanthine phosphoribosyltransferase (hprt), 18s ribosomal RNA (18s rRNA), and cyclophilin B (cypB). We analyzed the expression of them under physiological conditions in the fetal rat hippocampus using BestKeeper, GeNorm, and NormFinder, to select the most stable compound reference genes. Furthermore, to verify the stability of the compound reference genes, we analyzed the expression of reference genes in the fetal rat hippocampus under the pathological model of prenatal dexamethasone exposure (PDE). Finally, we evaluated the accuracy of compound reference genes through detecting the expression of fetal rat hippocampal brain-derived neurotrophic factor (BDNF) under PDE model. This study determined that the combination of gapdh and hprt was the most stable and suitable compound reference genes in the fetal rat hippocampus. There was no significant difference between male and female fetal rats. We provided the support of accurate and reliable reference genes for the further study of diseases related to the fetal hippocampus.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Shiyun Dai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yiwen Yi
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
6
|
Jeon JH, Moon K, Kim Y, Kim YH. Reference gene selection for qRT-PCR analysis of season- and tissue-specific gene expression profiles in the honey bee Apis mellifera. Sci Rep 2020; 10:13935. [PMID: 32811887 PMCID: PMC7435199 DOI: 10.1038/s41598-020-70965-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 01/10/2023] Open
Abstract
Honey bees are both important pollinators and model insects due to their highly developed sociality and colony management. To better understand the molecular mechanisms underlying honey bee colony management, it is important to investigate the expression of genes putatively involved in colony physiology. Although quantitative real-time PCR (qRT-PCR) can be used to quantify the relative expression of target genes, internal reference genes (which are stably expressed across different conditions) must first be identified to ensure accurate normalisation of target genes. To identify reliable reference genes in honey bee (Apis mellifera) colonies, therefore, we evaluated seven candidate genes (ACT, EIF, EF1, RPN2, RPS5, RPS18 and GAPDH) in samples collected from three honey bee tissue types (head, thorax and abdomen) across all four seasons using three analysis programmes (NormFinder, BestKeeper and geNorm). Subsequently, we validated various normalisation methods using each of the seven reference genes and a combination of multiple genes by calculating the expression of catalase (CAT). Although the genes ranked as the most stable gene were slightly different on conditions and analysis methods, our results suggest that RPS5, RPS18 and GAPDH represent optimal honey bee reference genes for target gene normalisation in qRT-PCR analysis of various honey bee tissue samples collected across seasons.
Collapse
Affiliation(s)
- Ji Hyang Jeon
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - KyungHwan Moon
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - YeongHo Kim
- Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea
| | - Young Ho Kim
- Department of Applied Biology, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea. .,Department of Ecological Science, Kyungpook National University, Sangju, Gyeongbuk, Republic of Korea.
| |
Collapse
|
7
|
Shute R, Marshall K, Opichka M, Schnitzler H, Ruby B, Slivka D. Effects of 7°C environmental temperature acclimation during a 3-week training period. J Appl Physiol (1985) 2020; 128:768-777. [PMID: 32105519 DOI: 10.1152/japplphysiol.00500.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cold environmental temperatures during exercise and recovery alter the acute response to cellular signaling and training adaptations. Approximately 3 wk is required for cold temperature acclimation to occur. To determine the impact of cold environmental temperature on training adaptations, fitness measurements, and aerobic performance, two groups of 12 untrained male subjects completed 1 h of cycling in 16 temperature acclimation sessions in either a 7°C or 20°C environmental temperature. Fitness assessments before and after acclimation occurred at standard room temperature. Muscle biopsies were taken from the vastus lateralis muscle before and after training to assess molecular markers related to mitochondrial development. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA was higher in 7°C than in 20°C in response to acute exercise before training (P = 0.012) but not after training (P = 0.813). PGC-1α mRNA was lower after training (P < 0.001). BNIP3 was lower after training in the 7°C than in the 20°C group (P = 0.017) but not before training (P = 0.549). No other differences occurred between temperature groups in VEGF, ERRα, NRF1, NRF2, TFAM, PINK1, Parkin, or BNIP3L mRNAs (P > 0.05). PGC-1α protein and mtDNA were not different before training, after training, or between temperatures (P > 0.05). Cycling power increased during the daily training (P < 0.001) but was not different between temperatures (P = 0.169). V̇o2peak increased with training (P < 0.001) but was not different between temperature groups (P = 0.460). These data indicate that a 3-wk period of acclimation/training in cold environmental temperatures alters PGC-1α gene expression acutely but this difference is not manifested in a greater increase in V̇o2peak and is dissipated as acclimation takes place.NEW & NOTEWORTHY This study examines the adaptive response of cellular signaling during exercise in cold environmental temperatures. We demonstrate that peroxisome proliferator-activated receptor-γ coactivator 1α mRNA is different between cold and room temperature environments before training but after training this difference no longer exists. This initial difference in transcriptional response between temperatures does not lead to differences in performance measures or increases in protein or mitochondria.
Collapse
Affiliation(s)
- Robert Shute
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Katherine Marshall
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Megan Opichka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Halee Schnitzler
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Brent Ruby
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
8
|
Selection of optimal reference genes for gene expression studies in chronically hypoxic rat heart. Mol Cell Biochem 2019; 461:15-22. [PMID: 31300984 DOI: 10.1007/s11010-019-03584-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/30/2019] [Indexed: 10/26/2022]
Abstract
Adaptation to chronic hypoxia renders the heart more tolerant to ischemia/reperfusion injury. To evaluate changes in gene expression after adaptation to chronic hypoxia by RT-qPCR, it is essential to select suitable reference genes. In a chronically hypoxic rat model, no specific reference genes have been identified in the myocardium. This study aimed to select the best reference genes in the left (LV) and right (RV) ventricles of chronically hypoxic and normoxic rats. Sprague-Dawley rats were adapted to continuous normobaric hypoxia (CNH; 12% O2 or 10% O2) for 3 weeks. The expression levels of candidate genes were assessed by RT-qPCR. The stability of genes was evaluated by NormFinder, geNorm and BestKeeper algorithms. The best five reference genes in the LV were Top1, Nupl2, Rplp1, Ywhaz, Hprt1 for the milder CNH and Top1, Ywhaz, Sdha, Nupl2, Tomm22 for the stronger CNH. In the RV, the top five genes were Hprt1, Nupl2, Gapdh, Top1, Rplp1 for the milder CNH and Tomm22, Gapdh, Hprt1, Nupl2, Top1 for the stronger CNH. This study provides validation of reference genes in LV and RV of CNH rats and shows that suitable reference genes differ in the two ventricles and depend on experimental protocol.
Collapse
|