1
|
Sahoo TP, Satasiya G, Moradeeya PG, Saravaia HT, Kumar MA. Removal of fluoroquinolone antibiotic and sulfonated dye by functionalized Persea americana seed powder: Appraisal on phase transfer kinetics, equilibrium, economics, and applications in rural settings. ENVIRONMENTAL RESEARCH 2024; 261:119727. [PMID: 39117052 DOI: 10.1016/j.envres.2024.119727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The study focuses on reactive orange 16 (RO16), a sulfonated dye, and ciprofloxacin (CiP), a fluoroquinolone antibiotic treatment from aquatic surface by adsorption. The functionalized Persea americana seed powder (PASP) was developed by acid hydrolysis technique and investigated for RO16 and CiP removal in batch scale at different concentrations for CiP and RO16, pH (2-8), contact duration and temperature (303-318K). Utilizing a scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDAX), the generated native PASP were assessed for their morphological characteristics. Fourier transform infrared (FTIR) spectroscopy was applied to examine the performing characteristics of PASP. Experimental findings with four kinetic mathematical models allowed the estimation of the process involved in the biosorption. The most effective agreement was explained by the pseudo-second-order model and Sips isotherm (Cip = 34.603 mg/g and RO16 = 30.357 mg/g) at 303K temperature. For Cip Process economics of the biosorbent was done, and it was observed that it was less than the readily market-available activated carbon.
Collapse
Affiliation(s)
- Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Gopi Satasiya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Pareshkumar G Moradeeya
- Department of Environmental Science & Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Hitesh T Saravaia
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India.
| | - Madhava Anil Kumar
- Department of Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai, 600 113, Tamil Nadu, India.
| |
Collapse
|
2
|
Verma R, Dhingra G, Singh G, Singh J, Dureja N, Malik AK. Efficient Turn-On Zr Based Metal Organic Framework Fluorescent Sensor for Ultrafast Detection of Danofloxacin in Milk Samples. J Fluoresc 2024; 34:1631-1642. [PMID: 37578675 DOI: 10.1007/s10895-023-03379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Metal organic framework, UiO-67 was synthesized by coordinating Zr(IV) with 4,4'-biphenyldicarboxylic acid (BPDC) ligand. Morphology and crystallinity of MOF was confirmed with FE-SEM and PXRD procedure. Danofloxacin (DANO), a veterinary fluoroquinolone antibiotic, was detected in milk by employing UiO-67 as "turn-on" fluorescent sensor. Original photoluminescent (PL) efficiency of UiO-67 sensor was enhanced on its electronic interaction with DANO molecule. Significant PL efficiency enhancement, lower detection limit 0.49 ng/mL (1.37 nM), swift detection (time < 1 min), and excellent linear correlation (R2 = 0.9988) indicated extraordinary sensitivity of developed UiO-67 sensor for DANO. Selectivity and performance of sensor was unaltered in presence of interfering species and detection results were obtained under permissible variation limits. Method applied successfully for ultra-trace detection of DANO residues in milk samples.
Collapse
Affiliation(s)
- Rajpal Verma
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
- Dr. B. R. Ambedkar Govt. College, Dabwali, Sirsa, Haryana, 125104, India
| | - Gaurav Dhingra
- Punjabi University Constituent College, Ghanaur, Patiala, Punjab, 140702, India
| | - Gurdeep Singh
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jaswinder Singh
- Dr. B. R. Ambedkar Govt. College, Dabwali, Sirsa, Haryana, 125104, India
| | - Nidhi Dureja
- Department of Chemistry, Atma Ram Sanatan Dharam College, New Delhi, 110021, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
3
|
Denissen J, Havenga B, Reyneke B, Khan S, Khan W. Comparing antibiotic resistance and virulence profiles of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa from environmental and clinical settings. Heliyon 2024; 10:e30215. [PMID: 38720709 PMCID: PMC11076977 DOI: 10.1016/j.heliyon.2024.e30215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Antibiotic resistance and virulence profiles of Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa, isolated from water sources collected in informal settlements, were compared to clinical counterparts. Cluster analysis using repetitive extragenic palindromic sequence-based polymerase chain reaction (REP-PCR) indicated that, for each respective species, low genetic relatedness was observed between most of the clinical and environmental isolates, with only one clinical P. aeruginosa (PAO1) and one clinical K. pneumoniae (P2) exhibiting high genetic similarity to the environmental strains. Based on the antibiograms, the clinical E. faecium Ef CD1 was extensively drug resistant (XDR); all K. pneumoniae isolates (n = 12) (except K. pneumoniae ATCC 13883) were multidrug resistant (MDR), while the P. aeruginosa (n = 16) isolates exhibited higher susceptibility profiles. The tetM gene (tetracycline resistance) was identified in 47.4 % (n = 6 environmental; n = 3 clinical) of the E. faecium isolates, while the blaKPC gene (carbapenem resistance) was detected in 52.6 % (n = 7 environmental; n = 3 clinical) and 15.4 % (n = 2 environmental) of the E. faecium and K. pneumoniae isolates, respectively. The E. faecium isolates were predominantly poor biofilm formers, the K. pneumoniae isolates were moderate biofilm formers, while the P. aeruginosa isolates were strong biofilm formers. All E. faecium and K. pneumoniae isolates were gamma (γ)-haemolytic, non-gelatinase producing (E. faecium only), and non-hypermucoviscous (K. pneumoniae only), while the P. aeruginosa isolates exhibited beta (β)-haemolysis and produced gelatinase. The fimH (type 1 fimbriae adhesion) and ugE (uridine diphosphate galacturonate 4-epimerase synthesis) virulence genes were detected in the K. pneumoniae isolates, while the P. aeruginosa isolates possessed the phzM (phenazine production) and algD (alginate biosynthesis) genes. Similarities in antibiotic resistance and virulence profiles of environmental and clinical E. faecium, K. pneumoniae, and P. aeruginosa, thus highlights the potential health risks posed by using environmental water sources for daily water needs in low-and-middle-income countries.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| |
Collapse
|
4
|
Voigt M, Dluziak JM, Wellen N, Jaeger M. Mechanistic study of the electrochemical oxidation of fluoroquinolones: Ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin. CHEMOSPHERE 2024; 355:141763. [PMID: 38522672 DOI: 10.1016/j.chemosphere.2024.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The fluoroquinolones ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin, occur in water bodies worldwide and therefore pose a threat to the aquatic environment. Advanced purification procedures, such as electrochemical oxidation, may act as a remedy since they contribute to eliminating contaminants and prevent micropollutants from entering open water bodies. By electrochemical treatment in a micro-flow reactor equipped with a boron-doped diamond (BDD) electrode, the fluoroquinolones were efficiently degraded. A total of 15 new products were identified using high-performance high-resolution chromatography coupled with high-resolution multifragmentation mass spectrometry. The ecotoxicity of the emerging transformation products was estimated through in silico quantitative structure activity relationship analysis. Almost all transformation products were predicted less ecotoxic than the initial compounds. The fluoroquinolone degradation followed three major mechanisms depending on the voltage during the electrochemical oxidation. At approximately 1 V, the reactions started with the elimination of molecular hydrogen from the piperazine moiety. At approx. 1.25 V, methyl and methylene groups were eliminated. At 1.5 V, hydroxyl radicals, generated at the BDD electrode, led to substitution at the piperazine ring. This novel finding of the three reactions depending on voltage contributes to the mechanistic understanding of electrochemical oxidation as potential remedy against fluoroquinolones in the aquatic environment.
Collapse
Affiliation(s)
- Melanie Voigt
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Jean-Michel Dluziak
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Nils Wellen
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany
| | - Martin Jaeger
- Niederrhein University of Applied Sciences, Department of Chemistry and ILOC, Frankenring 20, D-47798, Krefeld, Germany.
| |
Collapse
|
5
|
Pandey S, Doo H, Keum GB, Kim ES, Kwak J, Ryu S, Choi Y, Kang J, Kim S, Lee NR, Oh KK, Lee JH, Kim HB. Antibiotic resistance in livestock, environment and humans: One Health perspective. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:266-278. [PMID: 38628683 PMCID: PMC11016740 DOI: 10.5187/jast.2023.e129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024]
Abstract
Antibiotic resistance (AR) is a complex, multifaceted global health issue that poses a serious threat to livestock, humans, and the surrounding environment. It entails several elements and numerous potential transmission routes and vehicles that contribute to its development and spread, making it a challenging issue to address. AR is regarded as an One Health issue, as it has been found that livestock, human, and environmental components, all three domains are interconnected, opening up channels for transmission of antibiotic resistant bacteria (ARB). AR has turned out to be a critical problem mainly because of the overuse and misuse of antibiotics, with the anticipation of 10 million annual AR-associated deaths by 2050. The fact that infectious diseases induced by ARB are no longer treatable with antibiotics foreshadows an uncertain future in the context of health care. Hence, the One Health approach should be emphasized to reduce the impact of AR on livestock, humans, and the environment, ensuring the longevity of the efficacy of both current and prospective antibiotics.
Collapse
Affiliation(s)
- Sriniwas Pandey
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Sumin Ryu
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yejin Choi
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Juyoun Kang
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Sheena Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Na Rae Lee
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Kwang Kyo Oh
- Microbial Safety Division, National
Institute of Agricultural Sciences, Rural Development
Administration, Wanju 55365, Korea
| | - Ju-Hoon Lee
- Department of Food Animal Biotechnology,
Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology,
Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul
National University, Seoul 08826, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
6
|
Sadik S, Columbus S, Bhattacharjee S, Nazeer SS, Ramachandran K, Daoudi K, Alawadhi H, Gaidi M, Shanableh A. Smart optical sensing of multiple antibiotic residues from wastewater effluents with ensured specificity using SERS assisted with multivariate analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123229. [PMID: 38159632 DOI: 10.1016/j.envpol.2023.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Surface-enhanced Raman spectroscopy offers great potential for rapid and highly sensitive detection of pharmaceuticals from environmental sources. Herein, we investigated the feasibility of label-free sensing of antibiotic residues from wastewater effluents with high specificity by combining with multivariate analysis. Highly ordered silver nanoarrays with ∼34 nm roughness have been fabricated using a cost-effective electroless deposition technique. As-fabricated Ag arrays showed superior LSPR effects with an enhancement factor of 8 × 107. Excellent reproducibility has also been noticed with RSD values within 11%, whilst the sensor showed good stability and reusability characteristics for being used as a low-cost and reusable sensor. SERS studies demonstrated that antibiotics-spiked wastewater effluents can be detected with high efficiency in a label-free method. The molecular fingerprint bands of antibiotics such as sulfamethoxazole, sulfadiazine, and ciprofloxacin were well analyzed in effluent, tap, and deionized water. It has been found that antibiotics can be detected near picomolar levels; meanwhile, liquid chromatography-mass spectrometry (LC-MS) exhibited a detection limit within nanomolar concentrations only. Furthermore, the specificity of SERS sensing has been further analyzed using a multivariate analysis method, principal component analysis followed by linear discriminant analysis (PCA-LDA); which showed prominent discrimination to distinguish each antibiotic residue from wastewater effluents. The current study presented the potential of Ag nanoarray sensors for rapid, highly specific, and cost-effective analysis of pharmaceutical products for environmental remediation applications.
Collapse
Affiliation(s)
- Sefeera Sadik
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, PO Box 27272, United Arab Emirates
| | - Soumya Columbus
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| | - Sourjya Bhattacharjee
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, PO Box 27272, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Shaiju S Nazeer
- Department of Chemistry, Indian Institute of Space Sciences and Technology, Thiruvananthapuram, Kerala, 695 547, India
| | - Krithikadevi Ramachandran
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Hussain Alawadhi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, PO Box 27272, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
7
|
Sikder S, Toha M, Anik AH, Sultan MB, Alam M, Parvin F, Tareq SM. A comprehensive review on the fate and impact of antibiotic residues in the environment and public health: A special focus on the developing countries. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10987. [PMID: 38342763 DOI: 10.1002/wer.10987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
The widespread application of antibiotics in human and veterinary medicine has led to the pervasive presence of antibiotic residues in the environment, posing a potential hazard to public health. This comprehensive review aims to scrutinize the fate and impact of antibiotic residues, with a particular focus on the context of developing nations. The investigation delves into the diverse pathways facilitating the entry of antibiotics into the environment and meticulously examines their effects on human health. The review delineates the current state of antibiotic residues, evaluates their exposure in developing nations, and elucidates existing removal methodologies. Additionally, it probes into the factors contributing to the endurance and ecotoxicity of antibiotic residues, correlating these aspects with usage rates and associated mortalities in these nations. The study also investigates removal techniques for antibiotic residues, assessing their efficiency in environmental compartments. The concurrent emergence of antibiotic-resistant bacteria, engendered by antibiotic residues, and their adverse ecological threats underscore the necessity for enhanced regulations, vigilant surveillance programs, and the adoption of sustainable alternatives. The review underlines the pivotal role of public education and awareness campaigns in promoting responsible antibiotic use. The synthesis concludes with strategic recommendations, strengthening the imperative for further research encompassing comprehensive monitoring, ecotoxicological effects, alternative strategies, socio-economic considerations, and international collaborations, all aimed at mitigating the detrimental effects of antibiotic residues on human health and the environment. PRACTITIONER POINTS: Antibiotic residues are widely distributed in different environmental compartments. Developing countries use more antibiotics than developed countries. Human and veterinary wastes are one of the most responsible sources of antibiotic pollution. Antibiotics interact with biological systems and trigger pharmacological reactions at low doses. Antibiotics can be removed using modern biological, chemical, and physical-chemical techniques.
Collapse
Affiliation(s)
- Sadia Sikder
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
- Department of Environmental Science and Disaster Management, Daffodil International University, Birulia, Savar, Dhaka, Bangladesh
| | - Mohammad Toha
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
| | - Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Fahmida Parvin
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Shafi M Tareq
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
8
|
Bhatt S, Choudhary P, Chatterjee S, Akhter Y. Comparative analysis of SilA-laccase mediated degradation of ciprofloxacin, norfloxacin and ofloxacin and interpretation of the possible catalytic mechanism. J Biomol Struct Dyn 2024; 42:425-434. [PMID: 37096761 DOI: 10.1080/07391102.2023.2197074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Fluoroquinolones (FQs) are the most commonly used antimicrobial drugs and regardless of their advantages in the healthcare sector, the pollution of these antimicrobial drugs in the environment has big concerns about human and environmental health. The presence of these antibiotic drugs even at the lowest concentrations in the environment has resulted in the emergence and spread of antibiotic resistance. Hence, it is necessary to remediate these pollutants from the environment. Previously alkaline laccase (SilA) from Streptomyces ipomoeae has been demonstrated to show degrading potentials against two of the FQs, Ciprofloxacin (CIP) and Norfloxacin (NOR); however, the molecular mechanism was not elucidated in detail. In this study, we have analyzed the possible molecular catalytic mechanism of FQ degrading SilA-laccase for the degradation of the FQs, CIP, NOR and Ofloxacin (OFL) using three-dimensional protein structure modeling, molecular docking and molecular dynamic (MD) studies. The comparative protein sequence analysis revealed the presence of tetrapeptide conserved catalytic motif, His102-X-His104-Gly105. After evaluating the active site of the enzyme in depth using CDD, COACH and S-site tools, we have identified the catalytic triad composed of three conserved amino acid residues, His102, Val103 and Tyr108 with which ligands interacted during the catalysis process. By analyzing the MD trajectories, it is revealed that the highest degradation potential of SilA is for CIP followed by NOR and OFL. Ultimately, this study provides the possible comparative catalytic mechanism for the degradation of CIP, NOR and OFL by the SilA enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Distt-Kangara, Himachal Pradesh, India
| | - Priyanka Choudhary
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Distt-Kangara, Himachal Pradesh, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Department of Ecology & Environmental Sciences, Pondicherry University, Kalapet, Puducherry, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
9
|
Gangar T, Patra S. Antibiotic persistence and its impact on the environment. 3 Biotech 2023; 13:401. [PMID: 37982084 PMCID: PMC10654327 DOI: 10.1007/s13205-023-03806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
From boon molecules to molecules contributing to rising concern has been the sojourn of antibiotics. The problem of antibiotic contamination has gotten worse due to antibiotics' pervasive use in every aspect of the environment. One such consequence of pollution is the increase in infections with antibiotic resistance. All known antimicrobials being used for human benefit lead to their repetitive and routine release into the environment. The misuse of antibiotics has aggravated the situation to a level that we are short of antibiotics to treat infections as organisms have developed resistance against them. Overconsumption is not just limited to human health care, but also occurs in other areas such as aquaculture, livestock, and veterinary applications for the purpose of improving feed and meat products. Due to their harmful effects on non-target species, the trace level of antibiotics in the aquatic ecosystem presents a significant problem. Since the introduction of antibiotics into the environment is more than their removal, they have been given the status of persistent pollutants. The buildup of antibiotics in the environment threatens aquatic life and may lead to bacterial strains developing resistance. As newer organisms are becoming resistant, there exists a shortage of antibiotics to treat infections. This has presented a very critical problem for the health-care community. Another rising concern is that the development of newer drug molecules as antibiotics is minimal. This review article critically explains the cause and nature of the pollution and the effects of this emerging trend. Also, in the latter sections, why we need newer antibiotics is questioned and discussed.
Collapse
Affiliation(s)
- Tarun Gangar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| |
Collapse
|
10
|
Giannessi J, De Marchi L, Meucci V, Intorre L, Monni G, Baratti M, Pretti C. Subcellular tissues-specific responses of Mytilus galloprovincialis to fluoroquinolone antibiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104306. [PMID: 39491228 DOI: 10.1016/j.etap.2023.104306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The study aimed to investigate the in vitro effects of the fluoroquinolone antibiotics (FQs) Ciprofloxacin (CIP), Enrofloxacin (ENR) and Danofloxacin (DAN) on the mussel Mytilus galloprovincialis exposed to environmentally relevant concentrations. In vitro exposure was performed on subcellular fractions of the digestive gland and gills through a multi-biomarker approach, which included the assessment of cellular damage, antioxidant and biotransformation enzyme activities, neurotoxicity, and DNA single-strand breaks (DNAssb). Results showed a decrease in protein carbonyl content in the gills when exposed to all concentrations of ENR. A significant overall decrease in the enzymatic activity of antioxidant defences was observed in the digestive gland exposed to the highest concentration of DAN and CIP, with a similar trend observed in the gills. Neurotoxicity was observed in the digestive gland at all tested concentrations of all FQs, but no effects were detected in the gills. DNAssb was evident in both tissues at all higher FQ concentrations.
Collapse
Affiliation(s)
- Joanna Giannessi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Luigi Intorre
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Mariella Baratti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, Livorno, 57128, Italy
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy; Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna del Piano 10, Firenze, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
11
|
Singh G, Garg D, Kumar S, Verma R, Malik AK. Terbium-based dual-ligand metal organic framework by diffusion method for selective and sensitive detection of danofloxacin in aqueous medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106015-106025. [PMID: 37723392 DOI: 10.1007/s11356-023-29895-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
A water-dispersible Tb(III)-based metal organic framework (TBP) was produced by diffusion technique using benzene-1,3,5-tricarboxylic acid (BTC) and pyridine as easily accessible ligands at low cost. The as-synthesized TBP with a crystalline structure and rod-shaped morphology has exhibited thermal stability up to 465 °C. Elemental analysis confirmed the presence of carbon, oxygen, nitrogen, and terbium in the synthesized MOF. TBP was used as a fluorescent probe for detection of danofloxacin (DANO) in an aqueous medium with significant enhancement of fluorescence intensity as compared to various fluoroquinolone antibiotics (levofloxacin (LEVO), ofloxacin (OFLO), norfloxacin (NOR), and ciprofloxacin (CIPRO)) with a low detection limit of 0.45 ng/mL (1.25 nm). The developed method has successfully detected DANO rapidly (i.e., response time = 1 min) with remarkable recovery (97.66-101.96%) and a relative standard deviation (RSD) of less than 2.2%. Additionally, TBP showcased good reusability up to three cycles without any significant performance decline. The in-depth mechanistic studies of the density functional theory (DFT) calculations and mode of action revealed that hydrogen bonding interactions and photo-induced electron transfer (PET) are the major factors for the turn-on enhancement behavior of TBP towards DANO. Thus, the present work provides the quick and precise identification of DANO using a new fluorescent MOF (TBP) synthesized via a unique and facile diffusion technique.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemistry, Punjabi University, 147002, Patiala, Punjab, India
| | - Deepika Garg
- Department of Chemistry, Punjabi University, 147002, Patiala, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, 147001, Patiala, Punjab, India
| | - Rajpal Verma
- Department of Chemistry, Punjabi University, 147002, Patiala, Punjab, India
- Department of Chemistry, Dr. B. R. Ambedkar Govt. College, Dabwali, Sirsa, Haryana, 125104, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, 147002, Patiala, Punjab, India.
| |
Collapse
|
12
|
Gwenzi W, Marumure J, Makuvara Z, Simbanegavi TT, Njomou-Ngounou EL, Nya EL, Kaetzl K, Noubactep C, Rzymski P. The pit latrine paradox in low-income settings: A sanitation technology of choice or a pollution hotspot? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163179. [PMID: 37003330 DOI: 10.1016/j.scitotenv.2023.163179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Pit latrines are widely promoted to improve sanitation in low-income settings, but their pollution and health risks receive cursory attention. The present narrative review presents the pit latrine paradox; (1) the pit latrine is considered a sanitation technology of choice to safeguard human health, and (2) conversely, pit latrines are pollution and health risk hotspots. Evidence shows that the pit latrine is a 'catch-all' receptacle for household disposal of hazardous waste, including; (1) medical wastes (COVID-19 PPE, pharmaceuticals, placenta, used condoms), (2) pesticides and pesticide containers, (3) menstrual hygiene wastes (e.g., sanitary pads), and (4) electronic wastes (batteries). Pit latrines serve as hotspot reservoirs that receive, harbour, and then transmit the following into the environment; (1) conventional contaminants (nitrates, phosphates, pesticides), (2) emerging contaminants (pharmaceuticals and personal care products, antibiotic resistance), and (3) indicator organisms, and human bacterial and viral pathogens, and disease vectors (rodents, houseflies, bats). As greenhouse gas emission hotspots, pit latrines contribute 3.3 to 9.4 Tg/year of methane, but this could be an under-estimation. Contaminants in pit latrines may migrate into surface water, and groundwater systems serving as drinking water sources and pose human health risks. In turn, this culminates into the pit latrine-groundwater-human continuum or connectivity, mediated via water and contaminant migration. Human health risks of pit latrines, a critique of current evidence, and current and emerging mitigation measures are presented, including isolation distance, hydraulic liners/ barriers, ecological sanitation, and the concept of a circular bioeconomy. Finally, future research directions on the epidemiology and fate of contaminants in pit latrines are presented. The pit latrine paradox is not meant to downplay pit latrines' role or promote open defaecation. Rather, it seeks to stimulate discussion and research to refine the technology to enhance its functionality while mitigating pollution and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Sciences, School of Natural Sciences, Great Zimbabwe University, Off Old Great Zimbabwe Road, P.O. Box 1235, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP 167, Zimbabwe
| | | | - Esther Laurentine Nya
- Faculty of Arts, Letters and Social Sciences, University of Maroua, P.O. Box 644, Maroua, Cameroon
| | - Korbinian Kaetzl
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany.
| | - Chicgoua Noubactep
- Centre for Modern Indian Studies (CeMIS), University of Göttingen, Waldweg 26, 37073 Göttingen, Germany; Department of Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany; School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, 211100 Nanjing, PR China.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland.
| |
Collapse
|
13
|
Silva Jungles de Carvalho LÂ, Oya-Silva LF, Perussolo MC, de Oliveira Guaita G, Moreira Brito JC, Evans AA, Prodocimo MM, Cestari MM, Bragah TT, Silva deAssis HC. Experimentally exposed toxic effects of long-term exposure to environmentally relevant concentrations of CIP in males and females of the silver catfish Rhamdia quelen. CHEMOSPHERE 2023:139216. [PMID: 37321459 DOI: 10.1016/j.chemosphere.2023.139216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Ciprofloxacin (CIP) is an antibiotic commonly used in human and veterinary medicine. It is present in the aquatic environment, but we still know very little about its effect on non-targeted organisms. This study aimed to evaluate the effects of long-term exposure to environmental CIP concentrations (1, 10, and 100 μg.L-1) in males and females of Rhamdia quelen. After 28 days of exposure, we collected the blood for the analysis of hematological and genotoxic biomarkers. Additionally, we measured 17 β-estradiol and 11 keto-testosterone levels. After the euthanasia, we collected the brain and the hypothalamus to analyze acetylcholinesterase (AChE) activity and neurotransmitters, respectively. The liver and gonads were assessed for biochemical, genotoxic, and histopathological biomarkers. At 100 μg.L-1 CIP, we observed genotoxicity in the blood, nuclear morphological changes, apoptosis, leukopenia, and a reduction of AChE in the brain. In the liver was observed oxidative stress and apoptosis. At 10 μg.L-1 CIP, leukopenia, morphological changes, and apoptosis were presented in the blood and a reduction of AChE in the brain. Apoptosis, leukocyte infiltration, steatosis, and necrosis occurred in the liver. Even at the lowest concentration (1 μg.L-1), adverse effects such as erythrocyte and liver genotoxicity, hepatocyte apoptosis, oxidative stress, and a decrease in somatic indexes were observed. The results showed the importance of monitoring CIP concentrations in the aquatic environment that cause sublethal effects on fish.
Collapse
Affiliation(s)
| | - Laís Fernanda Oya-Silva
- Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980, Curitiba, PR, Brazil
| | - Maiara Carolina Perussolo
- Pelé Pequeno Principe Research Institute, 80.250-200, Curitiba, PR, Parana, Brazil; Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil
| | - Gisele de Oliveira Guaita
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil
| | | | - Allan Arnold Evans
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil; School of Medicine, Pequeno Principe Faculty, 80.230-020, Curitiba, PR, Brazil
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980, Curitiba, PR, Brazil
| | - Tarcio Teodoro Bragah
- Department of Pathology, Federal University of Paraná, Curitiba, Brazil; Biosciences and Biotechnology Graduation Program, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Helena Cristina Silva deAssis
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, PO Box 19031, 81531-980, Curitiba, PR, Brazil; Ezequiel Dias Foundation, 30510-010, Belo Horizonte, MG, Brazil.
| |
Collapse
|
14
|
Kalebić B, Bafti A, Cajner H, Marciuš M, Matijašić G, Ćurković L. Optimization of Ciprofloxacin Adsorption on Clinoptilolite-Based Adsorbents Using Response Surface Methodology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:740. [PMID: 36839107 PMCID: PMC9966051 DOI: 10.3390/nano13040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The adsorption of the antibiotic ciprofloxacin (CIP) from water solution by natural zeolite-clinoptilolite (CLI), magnetic clinoptilolite (MAG-CLI), and graphene oxide coated magnetic clinoptilolite (GO-MAG-CLI) was investigated. The novel approach of an environmentally friendly and cost-effective microwave-assisted method was applied for the magnetic composite synthesis. Detailed characterization of the prepared composites was achieved. In order to investigate the effect of the initial CIP concentration, pH, temperature, contact time, and type of adsorbent on the adsorption efficiency of CIP, and to obtain the optimal conditions for CIP removal, the response surface methodology central composite factorial design (RSM-CCF) was applied. The results obtained by the RSM-CCF showed that among the studied adsorbents, GO-MAG-CLI had the highest adsorption capacity for CIP, achieved for the initial concentration of 48.47 mg dm-3 at a pH of 5 and 24.78 °C after 19.20 min of contact time. The adsorption kinetics studied for the initial CIP concentration range of 15-50 mg dm-3 followed Lagergren's pseudo-second-order model, and the Langmuir isotherm was the most suitable one to describe the CIP adsorption onto GO-MAG-CLI.
Collapse
Affiliation(s)
- Barbara Kalebić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Arijeta Bafti
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia
| | - Hrvoje Cajner
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Marijan Marciuš
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Gordana Matijašić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia
| | - Lidija Ćurković
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Sukidpaneenid S, Chawengkijwanich C, Pokhum C, Isobe T, Opaprakasit P, Sreearunothai P. Multi-function adsorbent-photocatalyst MXene-TiO 2 composites for removal of enrofloxacin antibiotic from water. J Environ Sci (China) 2023; 124:414-428. [PMID: 36182149 DOI: 10.1016/j.jes.2021.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 06/16/2023]
Abstract
MXenes, a new family of two-dimensional transition metal carbides or nitrides, have attracted tremendous attention for various applications due to their unique properties such as good electrical conductivity, hydrophilicity, and ion intercalability. In this work, Ti3C2 MXene, or MX, is converted to MX-TiO2 composites using a simple and rapid microwave hydrothermal treatment in HCl/NaCl mixture solution that induces formation of fine TiO2 particles on the MX parent structure and imparts photocatalytic activity to the resulting MX-TiO2 composites. The composites were used for enrofloxacin (ENR), a frequently found contaminating antibiotic, removal from water. The relative amount of the MX and TiO2 can be controlled by controlling the hydrothermal temperature resulting in composites with tunable adsorption/photocatalytic properties. NaCl addition was found to play important role as composites synthesized without NaCl could not adsorb enrofloxacin well. Adding NaCl into the hydrothermal treatment causes sodium ions to be simultaneously intercalated into the composite structure, improving ENR adsorption greatly from 1 to 6 mg ENR/g composite. It also slows down the MX to TiO2 conversion leading to a smaller and more uniform distribution of TiO2 particles on the structure. MX-TiO2/NaCl composites, which have sodium intercalated in their structures, showed both higher ENR adsorption and photocatalytic activity than composites without NaCl despite the latter having higher TiO2 content. Adsorbed ENR on the composites can be efficiently degraded by free radicals generated from the photoexcited TiO2 particles, leading to high photocatalytic degradation efficiency. This demonstrates the synergetic effect between adsorption and photocatalytic degradation of the synthesized compounds.
Collapse
Affiliation(s)
- Siwanat Sukidpaneenid
- TAIST-Tokyo Tech Program, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Chamorn Chawengkijwanich
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chonlada Pokhum
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Toshihiro Isobe
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Pakorn Opaprakasit
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Paiboon Sreearunothai
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, Thailand.
| |
Collapse
|
16
|
Zhang B, Chen J, Wang C, Wang P, Cui G, Zhang J, Hu Y, Gao H. Insight into different adsorption behaviors of two fluoroquinolone antibiotics by sediment aggregation fractions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24329-24343. [PMID: 36335180 DOI: 10.1007/s11356-022-23947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Sediment, consisting of different aggregation fractions, is a hotspot site for transport and transformation of various pollutants including antibiotics. However, the fate of different antibiotics in aquatic sediments mediated by sediment aggregation fraction adsorption and the mechanism behinds are still unclear. In this study, we investigated the adsorption behavior of two fluoroquinolone antibiotics (ciprofloxacin and ofloxacin) on four aggregation fractions separated from the sediment of Taihu Lake, a typical lake contaminated by antibiotics in China. The results showed that the adsorption of ciprofloxacin and ofloxacin fitted the Freundlich model, irrespective of sediment aggregation size. The adsorption of ciprofloxacin and ofloxacin was depended on the size of sediment aggregation fractions, and the macroaggregation (> 200 μm) exhibited the strongest capacity, followed by large microaggregation (63-200 μm), medium microaggregation (20-63 μm), and small and primary microaggregation (< 20 μm). This fraction size-dependent effects of sediment aggregations on antibiotic adsorption might be closely related to the differences in their specific surface areas, organic matter contents, and surface functional groups. The adsorption of ciprofloxacin and ofloxacin by sediment aggregation fractions was characterized by a combination of chemical and physical adsorptions, with the former being the dominant process. Compared with ofloxacin, ciprofloxacin could be more rapidly and easily absorbed by four sediment aggregation fractions, and more readily complexed with carboxyl groups on macroaggregation surface. The adsorption of two antibiotics by extracellular polymeric substance showed that tryptophan and tyrosine protein-like, humic-like substance on the surface of sediment could bind to both antibiotics through a complexation reaction. The π-π electron donor-acceptor interaction and hydrogen bonds were responsible for the antibiotic adsorption by sediment aggregation.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Ge Cui
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road No.1Jiangsu Province, Nanjing, 210098, People's Republic of China
| |
Collapse
|
17
|
Kitamura RSA, Vicentini M, Bitencourt V, Vicari T, Motta W, Brito JCM, Cestari MM, Prodocimo MM, de Assis HCS, Gomes MP. Salvinia molesta phytoremediation capacity as a nature-based solution to prevent harmful effects and accumulation of ciprofloxacin in Neotropical catfish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41848-41863. [PMID: 36639588 DOI: 10.1007/s11356-023-25226-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Phytoremediation has been a potential solution for the removal of pharmaceuticals from water. Here, we evaluated the toxicological safety of ciprofloxacin-contaminated water treated by 96 h with Salvinia molesta. The Neotropical catfish Rhamdia quelen was used as a model, and the potential of the phytoremediation technique for mitigating the drug accumulation in the fishes was also studied. Fish exposed to Cipro (1 and 10 µg·L-1) in untreated water showed toxic responses (alteration of hematological, genotoxicity, biochemical, and histopathological biomarkers) and accumulated Cipro in their muscles at concentrations high for human consumption (target hazardous quotient > 1). Fish exposed to water treated with S. molesta showed no toxic effect and no accumulation of Cipro in their tissues. This must be related to the fact that S. molesta removed up to 97% of Cipro from the water. The decrease in Cipro concentrations after water treatment with S. molesta not only prevented the toxic effects of Cipro on R. quelen fish but also prevented the antimicrobial accumulation in fish flesh, favouring safe consumption by humans. For the very first time, we showed the potential of phytoremediation as an efficiently nature-based solution to prevent environmental toxicological effects of antimicrobials to nontarget organisms such as fish and humans. The use of S. molesta for Cipro-removal from water is a green technology to be considered in the combat against antimicrobial resistance.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
- Department of Botany, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil.
| | - Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Vitória Bitencourt
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Taynah Vicari
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | - Welton Motta
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | | | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19071, Curitiba, PR, 81530-980, Brazil
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81537-980, Brazil
| | - Helena Cristina Silva de Assis
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| | - Marcelo Pedrosa Gomes
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
- Department of Botany, Federal University of Paraná, PO Box 19031, Curitiba, PR, 81530-980, Brazil
| |
Collapse
|
18
|
Kitamura RSA, Brito JCM, Silva de Assis HC, Gomes MP. Physiological responses and phytoremediation capacity of floating and submerged aquatic macrophytes exposed to ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:622-639. [PMID: 35904744 DOI: 10.1007/s11356-022-22253-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (Cipro) water contamination is a global concern, having reached disturbing concentrations and threatening the aquatic ecosystems. We investigated the physiological responses and Cipro-phytoremediation capacity of one floating (Salvinia molesta D.S. Mitchell) and one submerged (Egeria densa Planch.) species of aquatic macrophytes. The plants were exposed to increased concentrations of Cipro (0, 1, 10, and 100 µg.Cipro.L-1) in artificially contaminated water for 96 and 168 h. Although the antibiotic affected the activities of mitochondrial electron transport chain enzymes, the resulting increases in H2O2 concentrations were not associated with oxidative damage or growth reductions, mainly due to the activation of antioxidant systems for both species. In addition to being tolerant to Cipro, after only 96 h, plants were able to reclaim more than 58% of that from the media. The phytoremediation capacity did not differ between the species, however, while S. molesta bioaccumulate, E. densa appears to metabolize Cipro in their tissues. Both macrophytes are indicated for Cipro-phytoremediation projects.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
- Laboratório de Toxicologia Ambiental, Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Avenue Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba , Paraná, 81531-980, Brazil
| | - Júlio César Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Helena Cristina Silva de Assis
- Laboratório de Toxicologia Ambiental, Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba , Paraná, 81531-980, Brazil.
| |
Collapse
|
19
|
Bhatt S, Chatterjee S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation - A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120440. [PMID: 36265724 DOI: 10.1016/j.envpol.2022.120440] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics play an essential role in the medical healthcare world, but their widespread usage and high prevalence have posed negative environmental consequences. During the past few decades, various antibiotic drugs have been detected in aquatic and terrestrial ecosystems. Among them, the Fluoroquinolones (FQ) group is ubiquitous in the environment and has emerged as a major environmental pollutant. FQs are very significant, broad-spectrum antibiotics used in treating various pathogenic diseases of humans and animals. The most known and used FQs are ciprofloxacin, norfloxacin, ofloxacin, levofloxacin, enrofloxacin, danofloxacin, and moxifloxacin. After human and animal administration, about 70% of these drugs are excreted out in unaltered form into the environment. Besides, wastewater discharge from pharmaceutical industries, hospitals, and agriculture runoff is the major contributor to the accumulation of FQs into the ecosystem. Their long-term presence in the environment creates selection pressure on microorganisms and contributes to the emergence of multi-drug-resistant bacteria. In addition to the resistance, these antibiotics also impose ecotoxicological effects on various animals and plant species. The presence of the fluorine atom in Fluoroquinolones makes them highly electronegative, strong, recalcitrant, and less compatible with microbial degradation. Many biological and chemical processes have been invented and successfully implemented during the past few decades for the elimination of these pollutants from the environment. This review provides a detailed overview of the classification, occurrence, distribution, and ecotoxicological effects of Fluoroquinolones. Their modes of action, resistance mechanism, detection and analysis methods, and remediation strategies have also been discussed in detail.
Collapse
Affiliation(s)
- Sunidhi Bhatt
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block, Shahpur District, Kangra, Himachal Pradesh, 176206, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block, Shahpur District, Kangra, Himachal Pradesh, 176206, India; Bioremediation and Metabolomics Research Group, Dept. of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India.
| |
Collapse
|
20
|
Er AG, Alonso AAR, Marin-Leon I, Sayiner A, Bassetti S, Demirkan K, Lacor P, Lode H, Lesniak W, Tanriover MD, Kalyoncu AF, Merchante N, Unal S. Community-acquired pneumonia - An EFIM guideline critical appraisal adaptation for internists. Eur J Intern Med 2022; 106:1-8. [PMID: 36272872 DOI: 10.1016/j.ejim.2022.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND In real-life settings, guidelines frequently cannot be followed since many patients are multimorbid and/or elderly or have other complicating conditions which carry an increased risk of drug-drug interactions. This document aimed to adapt recommendations from existing clinical practice guidelines (CPGs) to assist physicians' decision-making processes concerning specific and complex scenarios related to acute CAP. METHODS The process for the adaptation procedure started with the identification of unsolved clinical questions (PICOs) in patients with CAP and continued with critically appraising the updated existing CPGs and choosing the recommendations, which are most applicable to these specific scenarios. RESULTS Seventeen CPGs were appraised to address five PICOs. Twenty-seven recommendations were endorsed based on 7 high, 9 moderate, 10 low, and 1 very low-quality evidence. The most valid recommendations applicable to the clinical practice were the following ones: Respiratory virus testing is strongly recommended during periods of increased respiratory virus activity. Assessing the severity with a validated prediction rule to discriminate where to treat the patient is strongly recommended along with reassessing the patient periodically for improvement as expected. In adults with multiple comorbidities, polypharmacy, or advanced age, it is strongly recommended to check for possible drug interactions before starting treatment. Strong graded recommendations exist on antibiotic treatment and its duration. Recommendations on the use of biomarkers such as C-reactive protein or procalcitonin to improve severity assessment are reported. CONCLUSION This document provides a simple and reliable updated guide for clinical decision-making in the management of complex patients with multimorbidity and CAP in the real-life setting.
Collapse
Affiliation(s)
- Ahmet Gorkem Er
- Hacettepe University Faculty of Medicine Department of Infectious Diseases and Clinical Microbiology, Turkey
| | | | - Ignacio Marin-Leon
- CIBERESP-IBIS-ROCIO-University Hospital, Fundación Enebro, Seville, Spain
| | - Abdullah Sayiner
- Department of Chest Diseases, Ege University Faculty of Medicine, Izmir, Turkey
| | - Stefano Bassetti
- Division of Internal Medicine and Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Kutay Demirkan
- Department of Clinical Pharmacy, Hacettepe University, Faculty of Pharmacy, Turkey
| | - Patrick Lacor
- Department of Internal Medicine, Infectious Diseases Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hartmut Lode
- RCCOS, affil. Institute Clinical Pharmacology, Charite Universitätsmedizin Berlin, Germany
| | - Wiktoria Lesniak
- Evidence-Based Medicine Unit, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Mine Durusu Tanriover
- Section of General Internal Medicine, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Fuat Kalyoncu
- Hacettepe University Faculty of Medicine Department of Chest Diseases Division of Allergy and Clinical Immunology, Turkey
| | - Nicolás Merchante
- Chief of Infectious Disease Department, Valme University Hospital, Associated Professor, University of Seville- Institute of Biomedicine (IBIS), Seville, Spain
| | - Serhat Unal
- Hacettepe University Faculty of Medicine Department of Infectious Diseases and Clinical Microbiology, Turkey.
| |
Collapse
|
21
|
Electro-Chemical Degradation of Norfloxacin Using a PbO2-NF Anode Prepared by the Electrodeposition of PbO2 onto the Substrate of Nickel Foam. Catalysts 2022. [DOI: 10.3390/catal12111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel three-dimensional network nickel foam/PbO2 combination electrode (PbO2-NF) with high electrochemical degradation efficiency to norfloxacin was successfully fabricated through the electrodeposition of PbO2 on the substrate of nickel foam. The characterization of an PbO2-NF electrode, including surface morphology, elemental components, electrochemical performance, and stability was performed. In electrochemical oxidation tests, the removal efficiency of norfloxacin (initial concentration for 50 mg/L) on PbO2-NF reached 88.64% within 60 min of electrolysis, whereas that of pure nickel foam was only 30%. In the presence of PbO2-NF, the optimum current density, solution pH, electrode spacing for norfloxacin degradation were 30 mA/cm2, 11, and 3 cm, respectively. The electric energy consumption for 80% norfloxacin was approximately 5 Wh/L. Therefore, these results provide a new anode to improve the removal of norfloxacin in the wastewater with high efficiency and low energy consumption.
Collapse
|
22
|
Sun W, Zheng Z. Research on removal of fluoroquinolones in rural domestic wastewater by vertical flow constructed wetlands under different hydraulic loads. CHEMOSPHERE 2022; 303:135100. [PMID: 35644233 DOI: 10.1016/j.chemosphere.2022.135100] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics had attracted more and more attention in recent years due to their harmfulness. Fluoroquinolones (FQs), one class of antibiotics widely used in human and veterinary medicine, were found in various water bodies in China. Therefore, in order to found an efficient method for removing FQs in rural domestic wastewater and optimize the process parameters, ceramsite and soil were applied in vertical flow constructed wetlands (VFCWs) to study the effects of different hydraulic loads and different substrates on the removal of FQs and conventional pollutants. The results showed the VFCW-D filled with 45 cm soil layer and 15 cm ceramasite layer had the highest removal efficiency of conventional pollutants and FQs under low hydraulic load. Nevertheless, the removal efficiency of conventional pollutants was significantly declined for the VFCWs which contained soil substrates under high hydraulic load due to the soil pores were clogged by the accumulation of organic matter. Finally, VFCW-A filled with 60 cm ceramasite layer revealed good ability to remove conventional pollutants and FQs under high hydraulic load. Deinococcus played a vital role here due to its excellent removal effect on conventional pollutants. The microbial composition in the substrate changed greatly after adding antibiotics under high hydraulic load. Devosia, Pseudorhodoferax, Cellvibrio, Bosea, Caulobacter, Acinetobacter, Zoogloea, Arcobacter, Dechloromonas, Flavobacterium, Nakamurella, Chloroplast, Clostridium_sensu_stricto_1, Pelosinus, UTCFX1 and Hypnocyclicus became the new dominated genera and were essential to remove pollutants. In summary, VFCW was an effective system to remove fluoroquinolones in rural domestic wastewater.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
23
|
Shaker RAE, Nagy YI, Adly ME, Khattab RA, Ragab YM. Acinetobacter baumannii, Klebsiella pneumoniae and Elizabethkingia miricola isolated from wastewater have biodegradable activity against fluoroquinolone. World J Microbiol Biotechnol 2022; 38:187. [PMID: 35972564 PMCID: PMC9381475 DOI: 10.1007/s11274-022-03367-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Ciprofloxacin (CIP) and levofloxacin (LEV), widely used fluoroquinolone antibiotics, are often found in sewage from the sewage treatment plants and marine environment. In this study, CIP and LEV biodegrading bacterial consortia were obtained from industrial wastewater. Microorganisms in these consortia were identified as Acinetobacter baumannii (A. baumannii), Klebsiella pneumoniae (K. pneumoniae) and Elizabethkingia miricola (E. miricola). The impacts of the critical operating parameters on the elimination of CIP and LEV by bacterial consortia have been investigated and optimized to achieve the maximum levels of CIP and LEV biodegradation. Using liquid chromatography with tandem mass spectrometry (LC-MS-MS), possible degradation pathways for CIP and LEV were suggested by analyzing the intermediate degradation products. The role of the enzymes fluoroquinolone-acetylating aminoglycoside (6'-N-acetyltransferase) and cytochrome P450 (CYP450) in the breakdown of fluoroquinolones (FQs) was investigated as well. According to our findings, various biodegradation mechanisms have been suggested, including cleavage of piperazine ring, substitution of F atom, hydroxylation, decarboxylation, and acetylation, as the main biotransformation reactions. This study discovers the ability of non-reported bacterial strains to biodegrade both CIP and LEV as a sole carbon source, providing new insights into the biodegradation of CIP and LEV.
Collapse
Affiliation(s)
- Reham Alaa Eldin Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt.
| | - Mina E Adly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| | - Rania Abdelmonem Khattab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| |
Collapse
|
24
|
Li Z, Dong D, Zhang L, Li Y, Guo Z. Effect of fulvic acid concentration levels on the cleavage of piperazinyl and defluorination of ciprofloxacin photodegradation in ice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119499. [PMID: 35597482 DOI: 10.1016/j.envpol.2022.119499] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Ice is an important physical and chemical sink for various pollutants in cold regions. The photodegradation of emerging fluoroquinolone (FQ) antibiotic contaminants with dissolved organic matter (DOM) in ice remains poorly understood. Here, the photodegradation of ciprofloxacin (CIP) and fulvic acid (FA) in different proportions as representative FQ and DOM in ice were investigated. Results suggested that the photodegradation rate constant of CIP in ice was 1.9 times higher than that in water. When CFA/CCIP ≤ 60, promotion was caused by FA sensitization. FA increased the formation rate of cleavage in the piperazine ring and defluorination products. When 60 < CFA/CCIP < 650, the effect of FA on CIP changed from promoting to inhibiting. When 650 ≤ CFA/CCIP ≤ 2600, inhibition was caused by both quenching effects of 143.9%-51.3% and light screening effects of 0%-48.7%. FA inhibited cleavage in the piperazine ring for CIP by the scavenging reaction intermediate of aniline radical cation in ice. When CFA/CCIP > 2600, the light screening effect was greater than the quenching effect. This work provides new insights into how DOM affects the FQ photodegradation with different concentration proportions, which is beneficial for understanding the environmental behaviors of fluorinated pharmaceuticals in cold regions.
Collapse
Affiliation(s)
- Zhuojuan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yanchun Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| |
Collapse
|
25
|
Nwafia IN, Ike AC, Orabueze IN, Nwafia WC. Carbapenemase producing Enterobacteriaceae: Environmental reservoirs as primary targets for control and prevention strategies. Niger Postgrad Med J 2022; 29:183-191. [PMID: 35900453 DOI: 10.4103/npmj.npmj_95_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) have become one of the greatest public health challenges globally. In the past decade, antimicrobial resistance (AMR) was viewed as a clinical problem in many parts of the world; hence, the role and magnitude of the contribution of the environment were not well appreciated. This review article was done with online published articles extracted from different databases using search terms related to the work. Evidence has shown that there exists the presence of carbapenemase genes in the environment, consequently fuelling the dissemination with alarming consequences. CPE when acquired causes life-threatening infections in humans. The health and economic impact of these infections are numerous, including treatment failure due to limited therapeutic options which hamper the containment of infectious diseases, further contaminating the environment and worsening the public health challenge. It is a well-known fact that the rate of emergence of resistant genes has outpaced the production of new antimicrobial agents, so it is pertinent to institute effective environmental measures to combat the spread of AMR organisms before it will completely gain a foothold and take us back to 'the pre-antibiotic era'. Environmental sources and reservoirs of resistant genes should therefore be amongst the primary targets for the control and prevention of the spread of resistant genes in the environment. This calls for the effective implementation of the 'one health' strategy with stakeholders committed to the design and enforcement of environmental mitigation policies and guidelines.
Collapse
Affiliation(s)
- Ifeyinwa Nkeiruka Nwafia
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka; Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Anthony Chibuogwu Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ibuchukwu Nkeonyenasoya Orabueze
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka; Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Walter Chukwuma Nwafia
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria
| |
Collapse
|
26
|
Kitamura RSA, Vicentini M, Perussolo MC, Lirola JR, Cirilo Dos Santos CF, Moreira Brito JC, Cestari MM, Prodocimo MM, Gomes MP, Silva de Assis HC. Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish Rhamdia quelen. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118935. [PMID: 35131333 DOI: 10.1016/j.envpol.2022.118935] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 μg.L-1) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 μg.L-1. In addition, at 100 μg.L-1, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.
Collapse
Affiliation(s)
- Rafael Shinji Akiyama Kitamura
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil; Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81537-980, Curitiba, PR, Brazil
| | - Maiara Vicentini
- Ecology and Conservation Post-Graduation Program, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil
| | - Maiara Carolina Perussolo
- Department of Pharmacology, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil; Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Juliana Roratto Lirola
- Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980, Curitiba, PR, Brazil
| | | | | | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, PO Box 19071, 81530-980, Curitiba, PR, Brazil
| | - Maritana Mela Prodocimo
- Department of Cell Biology, Federal University of Paraná, PO Box 19031, 81537-980, Curitiba, PR, Brazil
| | - Marcelo Pedrosa Gomes
- Department of Botany, Federal University of Paraná, PO Box 19031, 81530-980, Curitiba, PR, Brazil
| | | |
Collapse
|
27
|
Saya L, Malik V, Gautam D, Gambhir G, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Among various classes of antibiotics, fluoroquinolones, especially Levofloxacin, are being administered on a large scale for numerous purposes. Being highly stable to be completely metabolized, residual quantities of Levofloxacin get accumulated into the food chain proving a great global threat for aquatic as well as terrestrial ecosystems. Various removal techniques including both conventional and advanced methods have been reported for this purpose. This review is a novel attempt to make a critical analysis of the recent advances made exclusively toward the sequestration of Levofloxacin from wastewater through an extensive literature survey (2015-2021). Adsorption and advanced oxidation processes especially photocatalytic degradation are the most tested techniques in which assorted nanomaterials play a significant role. Several photocatalysts exhibited up to 100% degradation of LEV which makes photocatalytic degradation the best method among other tested methods. However, the degraded products need to be further monitored in terms of their toxicity. Biological degradation may prove to be the most environment-friendly with the least toxicity, unfortunately, not much research is reported in the field. With these key findings and knowledge gaps, authors suggest the scope of hybrid techniques, which have been experimented on other antibiotics. These can potentially minimize the disadvantages of the individual techniques concurrently improving the efficiency of LEV removal. Besides, techniques like column adsorption, membrane treatment, and ozonation, being least reported, reserve good perspectives for future research. With these implications, the review will certainly serve as a breakthrough for researchers working in this field to aid their future findings.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Vipin Malik
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Drashya Gautam
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
28
|
Klementová Š, Poncarová M, Langhansová H, Lieskovská J, Kahoun D, Fojtíková P. Photodegradation of fluoroquinolones in aqueous solution under light conditions relevant to surface waters, toxicity assessment of photoproduct mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13941-13962. [PMID: 34599454 DOI: 10.1007/s11356-021-16182-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Photochemical degradation of fluoroquinolones ciprofloxacin, enrofloxacin and norfloxacin in aqueous solution under light conditions relevant to surface waters at neutral and alkaline pH was found to proceed readily with half-lives between 0.9 and 2.7 min. The products of photochemical degradation identified by HPLC-MS included defluorinated, hydroxylated, and decarboxylated structures as well as structures with opened cyclic structures. For all of the studied substances, the reaction pathways were influenced significantly by the pH of the reaction system, with more products formed at alkaline pH than at neutral pH: the ratios of products in neutral and alkaline pH were 16/26, 9/19, 15/23 for ciprofloxacin, enrofloxacin, and norfloxacin, respectively. The structures of photoproducts and pathways of photochemical degradation are proposed. The antibacterial activities of photoproduct mixtures tested on E. coli and S. epidermidis were significantly higher in comparison to parental antibiotics in the case of both ciprofloxacin and enrofloxacin with p-values less than 0.0001 in most cases. The effect of the photoproducts was shown to be dependent on the pH value of the original antibiotic solutions before photodegradation: for ciprofloxacin, antibacterial activity against E. coli was more notably pronounced with regard to neutral pH photoproducts, while a less significant, or in one case not significant, effect of pH was observed against S. epidermidis; for norfloxacin, antibacterial activity against both E. coli and S. epidermidis was especially high with regard to alkaline pH photoproducts.
Collapse
Affiliation(s)
- Šárka Klementová
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Martina Poncarová
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jaroslava Lieskovská
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - David Kahoun
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavla Fojtíková
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
29
|
Kong X, Dong R, King T, Chen F, Li H. Biodegradation Potential of Bacillus sp. PAH-2 on PAHs for Oil-Contaminated Seawater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030687. [PMID: 35163953 PMCID: PMC8839208 DOI: 10.3390/molecules27030687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Microbial degradation is a useful tool for inhibiting or preventing polycyclic aromatic hydrocarbons (PAHs) widely distributed in marine environment after oil spill accidents. This study aimed to evaluate the potential and diversity of bacteria Bacillus sp. PAH-2 on Benzo (a) anthracene (BaA), Pyrene (Pyr), and Benzo (a) pyrene (BaP), their composite system, aromatic components system, and crude oil. The seven-day degradation rates against BaA, Pyr, and BaP were 20.6%, 12.83%, and 17.49%, respectively. Further degradation study of aromatic components demonstrated PAH-2 had a high degradation rate of substances with poor stability of molecular structure. In addition, the degradation of PAHs in crude oil suggested PAH-2 not only made good use of PAHs in such a more complex structure of pollutants but the saturated hydrocarbons in the crude oil also showed a good application potential.
Collapse
Affiliation(s)
- Xianghui Kong
- Fisheries College, Ocean University of China, Qingdao 266003, China;
| | - Ranran Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; (R.D.); (F.C.)
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Thomas King
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada;
| | - Feifei Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; (R.D.); (F.C.)
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; (R.D.); (F.C.)
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
- Correspondence:
| |
Collapse
|
30
|
Mei H, Li C, Li X, Hu B, Lu L, Tomberlin JK, Hu W. Characteristics of tylosin and enrofloxacin degradation in swine manure digested by black soldier fly (Hermetia illucens L.) larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118495. [PMID: 34785289 DOI: 10.1016/j.envpol.2021.118495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae) larvae (BSF larvae or BSFL) offer an environmental-friendly method for degrading antibiotics, such as tylosin (TYL) and enrofloxacin (EF), in swine manure. This study examined the impact of temperature on this process, role of associated microbes, dynamics of resistant genes, and a description of the microbial community associated with the BSF larval gut, how microbes isolated from the BSF larval gut as inoculants impact the process as well as enhance antibiotic digestion, and finally a quantification of antibiotics in BSF larvae fed manure with TYL or EF. Antibiotic degradation in manure was optimized at 28 °C with at least 10% greater than 23 °C and 37 °C. More than 40% reduction in TYL and EF concentrations in the manure occurred when BSF larval gut associated microbes were present. Furthermore, DNA extracted from the gut of non-sterile BSF larvae fed manure with TYL or EF indicated at least two 2-△△Ct fold increase in antibiotic resistance genes for TYL and EF. We identified 250, 4, and 16 unique operational taxa for larvae fed control manure and manure with either TYL or EF. Intestinal microbes isolated from non-sterile larvae fed manure with TYL or EF, were identified, cultured, and examined for their ability to degrade TYL and EF in Luria-Bertani (LB) medium. Three strains (two strains of Enterococcus faecalis and one strain of Proteus mirabilis) resulted in at least 50% TYL or EF degradation within 96 h. Sterile BSF larvae inoculated with P. mirabilis recovered >60% of the degradation ability exhibited by non-sterile larvae. Finally, no TYL residuals were found in 14-d-old larvae, prepupae, or pupae of BSF immatures fed manure containing these antibiotics. While ∼65 μg/g and ∼20 μg/g of EF were found in larval contents and pupal exoskeleton, respectively.
Collapse
Affiliation(s)
- Hanjie Mei
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong Province, 510642, China
| | - Chujun Li
- Guangzhou Unique Biotechnology Co., Ltd., Guangzhou, Guangdong Province, 510640, China; Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Xueling Li
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong Province, 510642, China
| | - Bin Hu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Lizhu Lu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong Province, 510642, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Wenfeng Hu
- Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, 483 Wushan Street, Guangzhou, Guangdong Province, 510642, China; State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China.
| |
Collapse
|
31
|
Hussain A, Altamimi MA, Alshehri S. Green nanoemulsion (water/ethanol/triton X100/capmul MCM C8) to remove ciprofloxacin from a bulk aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Diaz-Diaz S, Recacha E, García-Duque A, Docobo-Pérez F, Blázquez J, Pascual A, Rodríguez-Martínez JM. Effect of RecA inactivation and detoxification systems on the evolution of ciprofloxacin resistance in Escherichia coli. J Antimicrob Chemother 2021; 77:641-645. [PMID: 34878138 PMCID: PMC8864997 DOI: 10.1093/jac/dkab445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background Suppression of SOS response and overproduction of reactive oxygen species (ROS) through detoxification system suppression enhance the activity of fluoroquinolones. Objectives To evaluate the role of both systems in the evolution of resistance to ciprofloxacin in an isogenic model of Escherichia coli. Methods Single-gene deletion mutants of E. coli BW25113 (wild-type) (ΔrecA, ΔkatG, ΔkatE, ΔsodA, ΔsodB), double-gene (ΔrecA-ΔkatG, ΔrecA-ΔkatE, ΔrecA-ΔsodA, ΔrecA-ΔsodB, ΔkatG-ΔkatE, ΔsodB-ΔsodA) and triple-gene (ΔrecA-ΔkatG-ΔkatE) mutants were included. The response to sudden high ciprofloxacin pressure was evaluated by mutant prevention concentration (MPC). The gradual antimicrobial pressure response was evaluated through experimental evolution and antibiotic resistance assays. Results For E. coli BW25113 strain, ΔkatE, ΔsodB and ΔsodB/ΔsodA mutants, MPC values were 0.25 mg/L. The ΔkatG, ΔsodA, ΔkatG/katE and ΔrecA mutants showed 2-fold reductions (0.125 mg/L). The ΔkatG/ΔrecA, ΔkatE/ΔrecA, ΔsodA/ΔrecA, ΔsodB/ΔrecA and ΔkatG/ΔkatE/ΔrecA strains showed 4–8-fold reductions (0.03–0.06 mg/L) relative to the wild-type. Gradual antimicrobial pressure increased growth capacity for ΔsodA and ΔsodB and ΔsodB/ΔsodA mutants (no growth in 4 mg/L) compared with the wild-type (no growth in the range of 0.5–2 mg/L). Accordingly, increased growth was observed with the mutants ΔrecA/ΔkatG (no growth in 2 mg/L), ΔrecA/ΔkatE (no growth in 2 mg/L), ΔrecA/ΔsodA (no growth in 0.06 mg/L), ΔrecA/ΔsodB (no growth in 0.25 mg/L) and ΔrecA/ΔkatG/ΔkatE (no growth in 0.5 mg/L) compared with ΔrecA (no growth in the range of 0.002–0.015 mg/L). Conclusions After RecA inactivation, gradual exposure to ciprofloxacin reduces the evolution of resistance. After suppression of RecA and detoxification systems, sudden high exposure to ciprofloxacin reduces the evolution of resistance in E. coli.
Collapse
Affiliation(s)
- S Diaz-Diaz
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - E Recacha
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - A García-Duque
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
| | - F Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - A Pascual
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J M Rodríguez-Martínez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
33
|
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021; 26:7153. [PMID: 34885734 PMCID: PMC8658791 DOI: 10.3390/molecules26237153] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
Broad antibacterial spectrum, high oral bioavailability and excellent tissue penetration combined with safety and few, yet rare, unwanted effects, have made the quinolones class of antimicrobials one of the most used in inpatients and outpatients. Initially discovered during the search for improved chloroquine-derivative molecules with increased anti-malarial activity, today the quinolones, intended as antimicrobials, comprehend four generations that progressively have been extending antimicrobial spectrum and clinical use. The quinolone class of antimicrobials exerts its antimicrobial actions through inhibiting DNA gyrase and Topoisomerase IV that in turn inhibits synthesis of DNA and RNA. Good distribution through different tissues and organs to treat Gram-positive and Gram-negative bacteria have made quinolones a good choice to treat disease in both humans and animals. The extensive use of quinolones, in both human health and in the veterinary field, has induced a rise of resistance and menace with leaving the quinolones family ineffective to treat infections. This review revises the evolution of quinolones structures, biological activity, and the clinical importance of this evolving family. Next, updated information regarding the mechanism of antimicrobial activity is revised. The veterinary use of quinolones in animal productions is also considered for its environmental role in spreading resistance. Finally, considerations for the use of quinolones in human and veterinary medicine are discussed.
Collapse
Affiliation(s)
- Ana R. Millanao
- Facultad de Ciencias, Instituto de Farmacia, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Aracely Y. Mora
- Programa de Doctorado en Bioquímica, Universidad de Chile, Santiago 8380544, Chile;
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Sergio A. Bucarey
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Alejandro A. Hidalgo
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago 8370071, Chile
| |
Collapse
|
34
|
Cho HJ, Kang E, Kim S, Yang DC, Nam J, Jin E, Choe W. Impact of Zr 6 Node in a Metal-Organic Framework for Adsorptive Removal of Antibiotics from Water. Inorg Chem 2021; 60:16966-16976. [PMID: 34662513 DOI: 10.1021/acs.inorgchem.1c01890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quinolone-based antibiotics commonly detected in surface, ground, and drinking water are difficult to remove and therefore pose a threat as organic contaminants of aqueous environment. We performed adsorptive removal of quinolone antibiotics, nalidixic acid and ofloxacin, using a zirconium-porphyrin-based metal-organic framework (MOF), PCN-224. PCN-224 exhibits the highest adsorption capacities for both nalidixic acid and ofloxacin among those reported for MOFs to date. The accessible metal sites of Zr metal nodes are responsible for efficient adsorptive removal. This study offers a pragmatic approach to design MOFs optimized for adsorptive removal of antibiotics.
Collapse
Affiliation(s)
- Hye Jin Cho
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Eunyoung Kang
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Seonghoon Kim
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - D ChangMo Yang
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Joohan Nam
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute Science and Technology, 50 UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
35
|
The role of chemotaxis and efflux pumps on nitrate reduction in the toxic regions of a ciprofloxacin concentration gradient. THE ISME JOURNAL 2021; 15:2920-2932. [PMID: 33927341 PMCID: PMC8443623 DOI: 10.1038/s41396-021-00975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
Spatial concentration gradients of antibiotics are prevalent in the natural environment. Yet, the microbial response in these heterogeneous systems remains poorly understood. We used a microfluidic reactor to create an artificial microscopic ecosystem that generates diffusive gradients of solutes across interconnected microenvironments. With this reactor, we showed that chemotaxis toward a soluble electron acceptor (nitrate) allowed Shewanella oneidensis MR-1 to inhabit and sustain metabolic activity in highly toxic regions of the antibiotic ciprofloxacin (>80× minimum inhibitory concentration, MIC). Acquired antibiotic resistance was not observed for cells extracted from the reactor, so we explored the role of transient adaptive resistance by probing multidrug resistance (MDR) efflux pumps, ancient elements that are important for bacterial physiology and virulence. Accordingly, we constructed an efflux pump deficient mutant (∆mexF) and used resistance-nodulation-division (RND) efflux pump inhibitors (EPIs). While batch results showed the importance of RND efflux pumps for microbial survival, microfluidic studies indicated that these pumps were not necessary for survival in antibiotic gradients. Our work contributes to an emerging body of knowledge deciphering the effects of antibiotic spatial heterogeneity on microorganisms and highlights differences of microbial response in these systems versus well-mixed batch conditions.
Collapse
|
36
|
Chen J, Liu M, Yuan H, Chen X, Zhao J. Rapid detection of sulfamethazine and ofloxacin residues in duck meat using synchronous fluorescence spectroscopy coupled with chemometric methods. Poult Sci 2021; 100:101378. [PMID: 34391174 PMCID: PMC8374452 DOI: 10.1016/j.psj.2021.101378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/26/2021] [Accepted: 07/04/2021] [Indexed: 11/27/2022] Open
Abstract
Rapid detection of antibiotic residues in duck meat is of great significance for strengthening food safety and quality supervision of duck meat and fighting against inferior products in the duck meat market. The objective of the current paper was to evaluate the potential of synchronous fluorescence spectroscopy (SFS) coupled with chemometric methods for the rapid detection of sulfamethazine (SM2) and ofloxacin (OFL) residues in duck meat.The SFS spectral data from duck meat containing different concentrations of SM2 and OFL were preprocessed by baseline offset. The detection conditions, including the adding amounts of β-mercaptoethanol solution and o-phthalaldehyde solution, as well as the reaction time, were optimized by a single factor experiment for obtaining a better detection effect, and their optimal values were 400 μL , 25 μL , and 40 min, respectively. By comparing 2 chemometric models based on peak-height algorithm and peak-area algorithm, the prediction model based on peak-height algorithm was a better quantitative model with correlation coefficient for the prediction set (Rp) of 0.9031 and 0.9981, the root mean error for the prediction set (RMSEP) of 7.9509 and 0.5267 mg/kg, recovery of 81.7 to 155.1% and 96.4 to 111.2%, and relative standard deviation (RSD) of 4.1 to 6.7% and 2.9 to 6.8% to predict SM2 and OFL residues in duck meat, respectively. Overall, the results of this investigation showed that SFS technique was an effective and rapid tool for the detection of SM2 and OFL residues in duck meat.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Muhua Liu
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haichao Yuan
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiongfei Chen
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinhui Zhao
- Key Laboratory of Modern Agricultural Equipment in Jiangxi Province, College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
37
|
Shu W, Zhang Y, Wen D, Wu Q, Liu H, Cui MH, Fu B, Zhang J, Yao Y. Anaerobic biodegradation of levofloxacin by enriched microbial consortia: Effect of electron acceptors and carbon source. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125520. [PMID: 33677321 DOI: 10.1016/j.jhazmat.2021.125520] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
For improving the understanding of anaerobic degradation mechanism of fluoroquinolone antibiotics (FQs), the degradation of a representative FQs, levofloxacin (LEV), by six enriched anaerobic consortia were explored in this study. The effect of sulfate and nitrate as the electron acceptor and glucose as the carbon source on LEV anaerobic degradation were investigated. Addition of glucose and nitrate alone deteriorated LEV removal from 36.5% to 32.7% and 29.1%, respectively. Addition of sulfate slightly improved LEV removal to 39.6%, while simultaneous addition of glucose and sulfate significantly enhanced LEV removal to 53.1%. Twelve biodegradation intermediates were identified, which indicated that cleavage of piperazine ring is prior to that of quinolone ring, and hydroxylation, defluorination, demethylation, and decarboxylation were the primary steps of LEV anaerobic degradation. Lactobacillus, unclassified _f_Enterobacteriaceae, and Bacillus were enriched by simultaneous addition of glucose and sulfate, with relative abundance of 63.5%, 32.7%, and 3.3%, respectively. The predicted high gene abundance of xenobiotics biodegradation & metabolism, carbohydrate metabolism, and assimilatory sulfate reduction in the consortium, indicated a co-metabolism between carbohydrate metabolism, sulfate metabolism, and LEV degradation under glucose and sulfate added condition. The study revealed that simultaneous addition of glucose and sulfate is the favorable condition for LEV anaerobic degradation.
Collapse
Affiliation(s)
- Wenhui Shu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qinyue Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Bo Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Jie Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ye Yao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
38
|
Copete-Pertuz LS, Serna-Galvis EA, Plácido J, Torres-Palma RA, Mora-Martínez AL. Coupling chemical oxidation processes and Leptosphaerulina sp. myco-remediation to enhance the removal of recalcitrant organic pollutants in aqueous systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145449. [PMID: 33581522 DOI: 10.1016/j.scitotenv.2021.145449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
This research evaluated for the first time, the coupling of chemical oxidation processes with Leptosphaerulina sp. (a Colombian fungus), to degrade a refractory pollutant. For such purpose, a model contaminant (crystal violet, CV) was considered. Initially, the pollutant, at high concentrations (i.e., 200 and 50 mg L-1), was submitted to the fungus action. However, the CV inhibited the growth and enzymatic production of the fungus. Then, three chemical oxidation processes: TiO2-photocatalysis, sonochemistry, or electrochemistry (with a Ti/IrO2 anode in sodium chloride) were used as treatments previous to the myco-remediation. These oxidative treatments led to the pollutant degradation (~100%) by the action of radicals or active chlorine species, but they showed low mineralization. Indeed, the total organic carbon removal (TOC) was 54, ~15, and 31% to TiO2-photocatalysis (after 12 h), sonochemistry (after 12 h), and electrochemistry (after 1.33 h), respectively. Thus, the resultant solutions from the chemical oxidations were submitted to the action of Leptosphaerulina sp. (this time effective fungus growth and enzymes production were observed). It was found that the TOC removals by the fungus were 87, 84, and 83% for solutions pre-treated by TiO2-photocatalysis (12 h), sonochemical (12 h), and electrochemical (1.33 h) treatments, respectively. Regarding the enzymatic production, TiO2-photocatalysis/Leptosphaerulina sp., ultrasonication/Leptosphaerulina sp., and electrochemical oxidation/Leptosphaerulina sp. combinations reached the highest activities of laccase (0.6 U mg-1, at day 15), manganese peroxidase (1.35 U mg-1, at day 7) and versatile peroxidase (1.72 U mg-1, at day 15), respectively. The results from this work evidence feasibility of the pre-treatment with chemical oxidation processes as a strategy to enhance Leptosphaerulina sp. action toward recalcitrant organic pollutants (as CV) in water.
Collapse
Affiliation(s)
- Ledys S Copete-Pertuz
- Grupo de Investigación Producción Estructura y Aplicación de Biomoléculas (PROBIOM), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Medellín, Calle 59A No 63-20, Medellín, Colombia; Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jersson Plácido
- Institute of Life Science, Medical School, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Amanda L Mora-Martínez
- Grupo de Investigación Producción Estructura y Aplicación de Biomoléculas (PROBIOM), Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia - Sede Medellín, Calle 59A No 63-20, Medellín, Colombia.
| |
Collapse
|
39
|
Use of Natural Clinoptilolite in the Preparation of an Efficient Adsorbent for Ciprofloxacin Removal from Aqueous Media. MINERALS 2021. [DOI: 10.3390/min11050518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The adsorption of the antibiotic ciprofloxacin (CIP) from an aqueous solution by natural zeolite, the calcium-rich clinoptilolite (CLI), and magnetite-coated CLI (MAG-CLI) was investigated. Both CLI and MAG-CLI showed a high adsorption affinity towards CIP at 283, 288 and 293 K at a pH of 5. Adsorption kinetics studied for the initial concentrations of 15–75 mg CIP dm−3 follow Lagergren’s pseudo-second order equation and the adsorption is best represented by the Langmuir model. The adsorption mechanism involves strong electrostatic interactions between negatively charged aluminosilicate lattice and the cationic form of CIP accompanied by an ion-exchange reaction. Magnetite coverage (approx. 12 wt.%) induces magnetism, which can facilitate the separation process. The coverage does not influence the adsorption activity of CLI. The leaching test showed that the MAG coating protects the adsorbent from CIP leaching. This is ascribed to interactions between the CIP carboxyl groups and magnetite nano-particles. Antibacterial tests showed strong antibacterial activity of the ciprofloxacin-containing adsorbents towards pathogenic E. coli and S. aureus.
Collapse
|
40
|
de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, Munoz RAA. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta 2021; 1173:338569. [PMID: 34172150 DOI: 10.1016/j.aca.2021.338569] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Several antibiotics have been applied to veterinary medicine due to their broad-spectrum of antibacterial activity and prophylactic power. Residues of these antibiotics can be accumulated in dairy cattle, in addition to promoting contamination of the environment and, in more serious cases, in milk, causing a public health problem. Different regulatory agencies establish maximum residue limits for these antibiotics in milk, so it becomes important to develop sensitive analytical methods for monitoring these compounds. Electrochemical techniques are important analytical tools in analytical chemistry because they present low cost, simplicity, high sensitivity, and adequate analytical frequency (sample throughput) for routine analyses. In this sense, this review summarizes the state of the art of the main electrochemical sensors and biosensors, instrumental techniques, and sample preparation used for the development of analytical methods, published in the last five years, for the monitoring of different classes of antibiotics: aminoglycosides, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, in milk samples. The different strategies to develop electrochemical sensors and biosensors are critically compared considering their analytical features. The mechanisms of electrochemical oxidation/reduction of the antibiotics are revised and discussed considering strategies to improve the selectivity of the method. In addition, current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Lucas Vinícius de Faria
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Náira da Silva Campos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Guilherme Figueira Alves
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | |
Collapse
|
41
|
Optimization of a Method for Extraction and Determination of Residues of Selected Antimicrobials in Soil and Plant Samples Using HPLC-UV-MS/MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031159. [PMID: 33525616 PMCID: PMC7908302 DOI: 10.3390/ijerph18031159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022]
Abstract
The residues of antimicrobials used in human and veterinary medicine are popular pollutants of anthropogenic origin. The main sources of introducing antimicrobials into the environment are sewage treatment plants and the agricultural industry. Antimicrobials in animal manure contaminate the surrounding soil as well as groundwater, and can be absorbed by plants. The presence of antimicrobials in food of plant origin may pose a threat to human health due to their high biological activity. As part of the research, a procedure was developed for the extraction and determination of ciprofloxacin, enrofloxacin, cefuroxime, nalidixic acid and metronidazole in environmental samples (soil and parsley root). An optimized solid-liquid extraction (SLE) method was used to separate antimicrobials from the solid samples and a mixture of citrate buffer (pH = 4): methanol (1:1; v/v) was used as the extraction solvent. Solid phase extraction (SPE) with OASIS® HLB cartridges was used to purify and pre-concentrate the sample. The recovery of the developed method was in the range of 55–108%. Analytes were determined by high-performance liquid chromatography coupled with an ultraviolet (UV) detector and a tandem mass spectrometer (HPLC-UV-MS/MS). The procedure was validated and applied to the determination of selected antimicrobials in soil and parsley root samples. Five types of soil and five types of parsley roots of different origins were analyzed. The presence of nalidixic acid in the parsley root samples was found in the concentration range of 0.14–0.72 ng g−1. It has been shown that antimicrobials are absorbed by the plant and can accumulate antimicrobials in its edible parts.
Collapse
|
42
|
Zhou X, Cuasquer GJP, Li Z, Mang HP, Lv Y. Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine. ENVIRONMENT INTERNATIONAL 2021; 146:106280. [PMID: 33395931 PMCID: PMC7786438 DOI: 10.1016/j.envint.2020.106280] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Human urine is a source of fertilizer and, with proper management, it can be reused in agriculture. Determining the contamination issue of antibiotics in source-separated urine is important because the majority of antibiotics are excreted with urine. In this study, source-separated urine samples were randomly collected from a male toilet in a university building and analyzed in terms of 30 typical antibiotics (including 14 sulfonamides, 4 tetracyclines, and 12 fluoroquinolones) and tetracycline-resistant Escherichia coli, as well as its antibiotic-resistant genes to determine the contamination characteristics of antibiotic-related pollution in fresh and stored urine. Results showed that 18 out of 30 typical antibiotics were detected in fresh source-separated human urine. The dominant antibiotic was oxytetracycline with a frequency of 100%, followed by tetracycline, sparfloxacin, enrofloxacin, and ofloxacin, which demonstrated a detection frequency of 55%. Among the detected values, sulfonamides (2 antibiotics), tetracyclines (4 antibiotics), and fluoroquinolones (12 antibiotics) had a concentration range of 0.25-2.94, 0.94-41.2, and 0.06-163.16 ng/mL, respectively. Furthermore, tetracycline-resistant Escherichia coli, which was measured using plate count method, and its related gene, tet M, exhibited a maximum cell density of (200,000 ± 5000) CFU/100 mL and (2.73 ± 0.261) × 107 copies/mL, respectively. When the fresh urine was stored in an ambient environment for 30 days to simulate the real circumstances of urine management, a significant reduction in antibiotics and antibiotic-resistant bacteria was observed, while the change in antibiotic-resistant genes was insignificant. The results of this study suggest that risks associated with antibiotics and their antibiotic-resistant bacteria and genes are retained during collection and storage. Hence, these kinds of microcontaminants must be considered in further urine utilization.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Gabriela Jacqueline Perez Cuasquer
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Heinz Peter Mang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yaping Lv
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
43
|
Carneiro JF, Aquino JM, Silva BF, Silva AJ, Rocha-Filho RC. Comparing the electrochemical degradation of the fluoroquinolone antibiotics norfloxacin and ciprofloxacin using distinct electrolytes and a BDD anode: evolution of main oxidation byproducts and toxicity. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104433. [PMID: 32953450 PMCID: PMC7487200 DOI: 10.1016/j.jece.2020.104433] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 05/04/2023]
Abstract
The effects of the supporting electrolytes (SEs) Na2SO4, NaCl, Na2CO3, NaNO3, and Na3PO4 on the anodic oxidation of norfloxacin (NOR) and ciprofloxacin (CIPRO), assessed by the respective degradation kinetics and byproducts and electrolyzed solution antimicrobial activity, are compared. Galvanostatic anodic oxidations were performed in a filter-press flow cell fitted with a boron-doped diamond anode. Removal rates higher than the theoretical one for a process purely controlled by mass transfer were found for all SEs, indicative of contribution by indirect oxidation processes. However, the removal rates for NaCl were about tenfold higher, with the lowest energy consumption per order (EC O) of targeted pollutant removal rate (ca. 0.7 kW h m-3 order-1), a very competitive performance. The TOC removal rates were also affected by the SE, but not as markedly. The antimicrobial activity of the electrolyzed solutions against Escherichia coli showed distinct temporal profiles, depending on the fluoroquinolone and SE. For instance, when Na3PO4 was used, the antimicrobial activity was completely removed for NOR, but none for CIPRO; conversely, when NaCl was used, complete removal was attained only for CIPRO. From LC-MS/MS analyses of Na3PO4 electrolyzed solutions, rupture of the fluoroquinolone ring leading to byproducts with no toxicity against E. coli occurred only for NOR, whereas exactly the opposite occurred for the NaCl solutions. Clearly, the nature of both the SE and the fluoroquinolone influence the oxidation steps of the respective molecule; this was also evidenced by the distinct short-chain carboxylic acids identified in the degradation of NOR and CIPRO.
Collapse
Affiliation(s)
- Jussara F Carneiro
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| | - José M Aquino
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| | - Bianca F Silva
- Instituto de Química de Araraquara, Departamento de Química Analítica, Universidade Estadual Paulista, 14800-900 Araraquara, SP, Brazil
| | - Adilson J Silva
- Departamento de Engenharia Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| | - Romeu C Rocha-Filho
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
44
|
Rani R, Deep A, Mizaikoff B, Singh S. Copper Based Organic Framework Modified Electrosensor for Selective and Sensitive Detection of Ciprofloxacin. ELECTROANAL 2020. [DOI: 10.1002/elan.202060274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reetu Rani
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific & Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Akash Deep
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific & Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry University of Ulm 89081 Ulm Germany
| | - Suman Singh
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific & Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|
45
|
Cuprys A, Thomson P, Ouarda Y, Suresh G, Rouissi T, Kaur Brar S, Drogui P, Surampalli RY. Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121890. [PMID: 31862355 DOI: 10.1016/j.jhazmat.2019.121890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The combination of electro-oxidation and enzymatic oxidation was tested to evaluate the potency of this system to remove ciprofloxacin (CIP), a fluoroquinolone antibiotic, from water. For the electro-oxidation boron-doped diamond (BDD) and mixed metal oxides anodes were tested, at three current densities (4.42, 17.7 and 35.4 A/cm2). BDD anode at 35.4 A/cm2 exhibited the highest removal efficiency in the shortest time (>90 % removal in 6 min). For the enzymatic oxidation, laccase from Trametes versicolor was chosen. Laccase alone was not able to remove CIP; hence the influence of redox mediators was investigated. The addition of syringaldehyde (SA) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) resulted in enhanced CIP transformation. About 48.9±4.0 % of CIP remained after 4 h of treatment when SA-mediated laccase was applied and 87.8±6.6 % in the case of ABTS-mediated laccase. The coupling of enzymatic oxidation followed by electro-oxidation led to 73 % removal of the antibiotic. Additionally, the antimicrobial activity increased up to its original efficiency after the treatment. The combination of electro-oxidation followed by enzymatic oxidation led to 97-99 % removal of CIP. There was no antimicrobial activity of the solution after the treatment. The tests with wastewater confirmed the efficacy of the system to remove CIP from the complex matrix.
Collapse
Affiliation(s)
- Agnieszka Cuprys
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Paisley Thomson
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Yassine Ouarda
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Gayatri Suresh
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Satinder Kaur Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3 Canada.
| | - Patrick Drogui
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9 Canada
| | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105, Lincoln, NE 68588-6105, USA
| |
Collapse
|
46
|
Li K, Jin Y, Jung D, Park K, Kim H, Lee J. In situ formation of thymol-based hydrophobic deep eutectic solvents: Application to antibiotics analysis in surface water based on liquid-liquid microextraction followed by liquid chromatography. J Chromatogr A 2020; 1614:460730. [DOI: 10.1016/j.chroma.2019.460730] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
|
47
|
Mohammed AA, Atiya MA, Hussein MA. Studies on membrane stability and extraction of ciprofloxacin from aqueous solution using pickering emulsion liquid membrane stabilized by magnetic nano-Fe2O3. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Osorio A, Toledo-Neira C, Bravo MA. Critical evaluation of third-order advantage with highly overlapped spectral signals. Determination of fluoroquinolones in fish-farming waters by fluorescence spectroscopy coupled to multivariate calibration. Talanta 2019; 204:438-445. [DOI: 10.1016/j.talanta.2019.06.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 11/26/2022]
|
49
|
Huang P, Luan J. Dispersed GaOOH rods loaded on the surface of ZnBiNbO 5 particles with enhanced photocatalytic activity toward enrofloxacin. RSC Adv 2019; 9:32027-32033. [PMID: 35530812 PMCID: PMC9073095 DOI: 10.1039/c9ra06153c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
A GaOOH/ZnBiNbO5 composite was constructed by loading dispersed GaOOH rods on the surface of ZnBiNbO5 particles and characterizations, including SEM-EDS, XRD, FT-IR spectroscopy, XPS, and UV-Vis DRS, were performed to analyze the morphology, structure and optical properties of the GaOOH/ZnBiNbO5 composite. The characterization results showed that ZnBiNbO5 was not destroyed by a high temperature and high pressure in the solvothermal process and that GaOOH was successfully dispersed on the surface of ZnBiNbO5. Simultaneously, there was a red-shift of the absorbance edge for GaOOH/ZnBiNbO5 compared with those of pure ZnBiNbO5 and pure GaOOH. The band gaps of ZnBiNbO5, GaOOH and GaOOH/ZnBiNbO5 were calculated to be 2.96 eV, 4.76 eV and 2.93 eV, respectively. The photocatalytic activity of GaOOH/ZnBiNbO5 was explored by degrading enrofloxacin under illumination. After ultraviolet light irradiation for 60 min, the removal rate of enrofloxacin with GaOOH/ZnBiNbO5 as a photocatalyst was 15.11% higher than that of pure ZnBiNbO5 and was 29.29% higher than that of pure GaOOH. In addition, the contribution of the free radicals in the photocatalytic process was confirmed to be ·O2− > ·OH > h+. The construction of the GaOOH/ZnBiNbO5 composite improved the performance of the single ZnBiNbO5 photocatalyst and single GaOOH photocatalyst, thereby increasing their practical application potential. A GaOOH/ZnBiNbO5 composite was constructed by loading dispersed GaOOH rods on the surface of ZnBiNbO5 particles and characterizations, including SEM-EDS, XRD, FT-IR spectroscopy, XPS, and UV-Vis DRS were performed.![]()
Collapse
Affiliation(s)
- Panqi Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 People's Republic of China
| | - Jingfei Luan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 People's Republic of China
| |
Collapse
|
50
|
Synergistic Effects of Anionic/Cationic Dendrimers and Levofloxacin on Antibacterial Activities. Molecules 2019; 24:molecules24162894. [PMID: 31395831 PMCID: PMC6719981 DOI: 10.3390/molecules24162894] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the numerous studies on dendrimers for biomedical applications, the antibacterial activity of anionic phosphorus dendrimers has not been explored. In our research, we evaluated the antibacterial activity of modified polycationic and polyanionic dendrimers in combination with levofloxacin (LVFX) against Gram-negative (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. In the case of Gram-negative bacteria, we concluded that a combination of dendrimers and antibiotic gave satisfactory results due to a synergistic effect. The use of fluoroquinolone antibiotics, such as LVFX, not only caused resistance in disease-causing microorganisms but also increased environmental pollution. Therefore, reduction of drug dosage is of general interest.
Collapse
|