1
|
Rosidah I, Renggani TN, Firdausi N, Ningsih S, Yunianto P, Permatasari D, Pongtuluran OB, Bahua H, Efendi J, Kusumastuti SA, Nuralih, El Muttaqien S, Nizar, Kusumaningrum S, Agustini K. Acute and Subchronic Toxicological Study of the Cocktail Extract from Curcuma xanthorrhiza Roxb, Phyllanthus niruri L. and Morinda citrifolia L. J Toxicol 2024; 2024:9445226. [PMID: 38571743 PMCID: PMC10990647 DOI: 10.1155/2024/9445226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Curcuma xanthorrhiza Roxb, Phyllanthus niruri L., and Morinda citrifolia L. are Indonesian medicinal herbs used empirically as traditional therapeutics for maintaining health. The cocktail extract of these three plants (CECPM) had been developed and demonstrated immunostimulant activity in rats. This study aimed to evaluate the acute and subchronic toxicity of CECPM in vivo. The acute toxicity assay was conducted by orally administering a range dose of CECPM (313, 625, 1250, 2500, or 5000 mg/kg body weight (bw) on female mice once and then evaluating the toxic symptom every day for 14 days later. The chronic toxicity test was carried out by giving various doses of CECPM (600, 800, and 1000 mg/kg·bw) to female and male rats orally continuously for 90 consecutive days. The signs of toxicities were evaluated at the 90- and 28 days postadministration. The acute oral toxicity assays showed that there was no toxic syndrome and mortality found during the period of the experiment. The lethal dose level (LD50) of CECPM was more than 5000 g/kg, which was categorized as practically non-toxic. Meanwhile, in the sub-chronic toxicity study, some parameters tested at 90 days postadministration and after 28 days of withdrawal, such as the body weight, relative organ weight, food intake, hematological and biochemical blood parameters, and also histopathological examination of five primary tissues (heart, liver, kidney, spleen, and lung) revealed no abnormalities. There was no-observed adverse effect level (NOAEL) for the present study of CECPM 1000 mg/kg·bw of the rat. Therefore, it is concluded that the orally administered CECPM was relatively nontoxic during acute and subchronic toxicology studies.
Collapse
Affiliation(s)
- Idah Rosidah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tiya Novlita Renggani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nisrina Firdausi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Sri Ningsih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Prasetyawan Yunianto
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Devi Permatasari
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Olivia Bunga Pongtuluran
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Hismiaty Bahua
- Research Center for Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Julham Efendi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Nuralih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Nizar
- Directorate of Utilization of Research and Innovation by Industry, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Susi Kusumaningrum
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kurnia Agustini
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
2
|
Gamal Sherif S, Tarek M, Gamal Sabry Y, Hassan Abou Ghalia A. Effect of apigenin on dynamin-related protein 1 in type 1 diabetic rats with cardiovascular complications. Gene 2024; 898:148107. [PMID: 38141690 DOI: 10.1016/j.gene.2023.148107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Cardiovascular complications cause increased mortality rates among diabetics. The molecular mechanisms of aberrant mitochondrial dynamics in diabetes mellitus (DM) are not fully understood. Dynamin-related protein 1 (Drp1) is thought to be a major regulator of mitochondrial fission. There is lack of studies that examined the relationship between apigenin and Drp1 expression in DM. Thus, the current study aimed to explore the expression of Drp1 in diabetic rats with cardiovascular complications, as well as to appraise the role of apigenin in modulating this expression. METHODS Twenty-eight adult male albino Wister rats were randomly and equally allocated into four groups: naive, streptozotocin-induced type 1 diabetic control and two apigenin-injected diabetic groups (early and late). Body weight, heart weight, blood pressure and ECG were recorded. Evaluation of blood glucose level, lipid profile and cardiac functions were measured. Determination of Drp1 mRNA expression, and histological examination of cardiac tissues from the four groups were performed. RESULTS Diabetic control rats developed decrease of body weight, increase of blood pressure, deterioration of the normal ECG pattern and upregulation of Drp1 mRNA expression in cardiac tissues. There was a significant correlation between the relative expression of Drp1 and all examined parameters. Apigenin-injection improved fasting blood glucose, lipid profile and cardiac function indicators (i.e., ECG parameters, CK-MB and troponin) as well as the cardiac histological structure. The decrease of Drp1 expression was more evident with early than with late apigenin-injection, however, without statistical significance. CONCLUSIONS Increased level of Drp1 expression in diabetic rats may be involved in the pathogenesis of diabetic cardiovascular complications. The changes that occurred in response to apigenin injection highlight its potential ameliorative effect on the diabetic cardiovascular complications and pave the route for further investigations.
Collapse
Affiliation(s)
- Sara Gamal Sherif
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Egypt.
| | - Marwa Tarek
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Egypt.
| | | | - Azza Hassan Abou Ghalia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Egypt.
| |
Collapse
|
3
|
Hassan Z, Singh D, Suhaimi FW, Chear NJY, Harun N, See CP, Kaur G, Mat NH, Bakar SNS, Yusof NSM, Kasinather VB, Chawarski MC, Murugaiyah V, Ramanathan S. Evaluation of toxicity profile of kratom (Mitragyna speciosa Korth) decoction in rats. Regul Toxicol Pharmacol 2023; 143:105466. [PMID: 37536550 DOI: 10.1016/j.yrtph.2023.105466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Mitragyna speciosa Korth also known as kratom, is an herbal drug preparation for its therapeutic properties and opioid-replacement therapy. Kratom is consumed in a brewed decoction form in Malaysia and to date, no studies have characterized its chemical and toxicity profile. Thus, this study aims to evaluate kratom decoction's safety and toxicity profile after 28 days of treatment. Mitragynine content was quantified in kratom decoction and used as a marker to determine the concentration. Male and female Sprague Dawley rats were orally treated with vehicle or kratom decoction (10, 50 or 150 mg/kg) and two satellite groups were treated with vehicle and kratom decoction (150 mg/kg). Blood and organs were collected for hematology, biochemical and histopathology analysis at the end of treatment. No mortality was found after 28 days of treatment and no significant changes in body weight and hematology profile, except for low platelet count. High amounts of uric acid, AST, ALT and alkaline phosphatase were found in the biochemical analysis. Histological investigation of the heart and lungs detected no alterations except for the kidney, liver and brain tissues. In conclusion, repeated administration of kratom decoction provided some evidence of toxicity in the kidney and liver with no occurrence of mortality.
Collapse
Affiliation(s)
- Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | | | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Cheah Pike See
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Noorul Hamizah Mat
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | | | | | - Marek C Chawarski
- Departments of Psychiatry and Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
4
|
Bouabsa F, Tir Touil A, Al Zoubi MS, Chelli N, Leke A, Meddah B. Caffeine citrate effects on gastrointestinal permeability, bacterial translocation and biochemical parameters in newborn rats after long-term oral administration. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-211544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Caffeine is a potent central and respiratory acting agent used in neonatology to treat apnea in premature newborns. OBJECTIVE: This study investigates the effects of caffeine orally administered to newborn rats on gastrointestinal permeability, bacterial translocation and different biochemical parameters. METHODS: Newborn rats were divided into different groups (N = 06). The treated newborn rats were orally administered with standard caffeine doses (12 mg/kg per day), and the control groups received a placebo. The animals were weighed daily until sacrifice. Blood samples, mesenteric lymph nodes (MLN) and organs were aseptically collected. Furthermore, different biochemical (D-Lactate) and oxidative stress biomarkers (MDA, CAT, SOD and GSH) levels were examined. Microbiological analyses were performed to assess microbiota alterations and bacterial translocation. RESULTS: Preliminary results showed that caffeine administration decreased the level of bacterial translocation over time. The treatment reduced plasma D-lactate levels (p < 0.05). Additionally, caffeine induced a disturbance in the concentrations of biochemical parameters and oxidative stress biomarkers. Indeed, liver enzymes (AST and ALT) were significantly (p < 0.05) risen after caffeine treatment. Glutathione (GSH) levels were significantly higher in caffeine treated groups (75.12±0.32; 51.98±1.12 U/mg; p < 0.05) comparing to control ones (40.82±0.25; 42.91±0.27 U/mg; p < 0.05) in the ileum and the colon, respectively. CONCLUSIONS: Thus, besides improving gastrointestinal permeability, our data show that caffeine has beneficial effects on the intestinal antioxidant system.
Collapse
Affiliation(s)
- Foufa Bouabsa
- Bioconversion, Microbiology Engineering and Health Safety Laboratory (LBGMSS), Nature and Life Sciences Faculty, Mustapha Stambouli University, Mascara, Algeria
| | - Aicha Tir Touil
- Bioconversion, Microbiology Engineering and Health Safety Laboratory (LBGMSS), Nature and Life Sciences Faculty, Mustapha Stambouli University, Mascara, Algeria
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Nadia Chelli
- Bioconversion, Microbiology Engineering and Health Safety Laboratory (LBGMSS), Nature and Life Sciences Faculty, Mustapha Stambouli University, Mascara, Algeria
| | - André Leke
- Pediatric Neonatal Department, CHU Nord-Amiens, France
| | - Boumediene Meddah
- Bioconversion, Microbiology Engineering and Health Safety Laboratory (LBGMSS), Nature and Life Sciences Faculty, Mustapha Stambouli University, Mascara, Algeria
| |
Collapse
|
5
|
MARQUES JNADV, CAPELA JP. Potential health risks surrounding ingredients of pre-workout and post-workout dietary supplements: a thorough label analysis. REV NUTR 2022. [DOI: 10.1590/1678-9865202235e200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
ABSTRACT Objective Dietary supplements use is increasing. Dietary supplements may contain high doses of substances or dangerous ingredient combinations. This article aims to investigate, by analyzing dietary supplements labels, if there are any doping substances or dangerous amounts of any other component in the reviewed dietary supplements. Methods Several brands which possessed their supplements sorted in pre-workout and post-workout were analyzed. 40 dietary supplements with all ingredients described were included. The minimum and maximum dosages of dietary supplements were statistically described as Mean±SD. Results Citrus aurantium extract, Yohimbe extract, Garcinia cambogia extract and Maca root extract were reported in some of the analyzed dietary supplements. Regarding caffeine, the pre-workout group displayed higher mean caffeine (241±86mg) than the post-workout group (183±68mg), and the minimal mean dose was 226±84mg; meanwhile, the maximal mean dose was 242±88mg. Concerning creatine, the pre-workout group displayed lower mean creatine (3106±1079mg) than the post-workout group (4137±4177mg), and the minimal mean dose was 3167±1728mg; meanwhile, the maximal mean dose was 3917±3643mg. The salt content in the post-workout group displayed a much higher mean (2155±4486mg) than the pre-workout group (464±605mg), and the minimal mean dose was 1635±3930mg; meanwhile, the maximal mean dose was 1708±3926g. Conclusions No doping substances were reported in the dietary supplements, but consumption recommendations on the label could lead to excessive consumption of some not yet fully tested ingredients.
Collapse
Affiliation(s)
| | - João Paulo CAPELA
- Universidade Fernando Pessoa, Portugal; Universidade do Porto, Portugal
| |
Collapse
|
6
|
Leão TK, Ribeiro DL, Machado ART, Costa TR, Sampaio SV, Antunes LMG. Synephrine and caffeine combination promotes cytotoxicity, DNA damage and transcriptional modulation of apoptosis-related genes in human HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 868-869:503375. [PMID: 34454690 DOI: 10.1016/j.mrgentox.2021.503375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
The abusive consumption of thermogenic supplements occurs worldwide and deserves special attention due to their use to stimulate weight loss and prevent obesity. Thermogenic formulations usually contain Synephrine (SN) and Caffeine (CAF), stimulating compounds extracted from natural sources, but no genetic toxicology studies have predicted this hazardous combination potential. This study examined the toxicogenomic responses induced by SN and CAF, either alone or in combination, in the human hepatic cell line HepG2 in vitro. SN (0.03-30 μM) and CAF (0.6-600 μM) alone did neither decrease cell viability nor induce DNA damage, as assessed using the MTT and comet assays, respectively. SN (3 μM) and CAF (30-600 μM) were combined at concentrations similar to those found in commercial dietary supplements. SN/CAF at 3:90 and 3:600 μM ratios significantly decreased cell viability and increased DNA damage levels in HepG2 cells. CAF (600 μM) and the SN/CAF association at 3:60, 3:90, and 3:600 μM ratios promoted cell death by apoptosis, as demonstrated by flow cytometry. Similar results were observed in gene expression (RT-qPCR): SN/CAF up-regulated the expression of apoptosis- (BCL-2 and CASP9) and DNA repair-related (XPC) genes. SN/CAF at 3:90 μM also downregulated the expression of cell cycle control (CDKN1A) genes. In conclusion, the SN/CAF combination reduces cell viability by inducing apoptosis, damages DNA, and modulates the transcriptional expression of apoptosis-, cell cycle-, and DNA repair-related genes in human hepatic (HepG2) cells in vitro. These effects can be worrisome to consumers of thermogenic supplements.
Collapse
Affiliation(s)
- Tainá Keiller Leão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Diego Luís Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, CEP: 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Tássia Rafaela Costa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, CEP: 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Ribeiro DL, Machado ART, Machado C, Ferro Aissa A, Dos Santos PW, Barcelos GRM, Antunes LMG. p-synephrine induces transcriptional changes via the cAMP/PKA pathway but not cytotoxicity or mutagenicity in human gastrointestinal cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:196-212. [PMID: 33292089 DOI: 10.1080/15287394.2020.1855490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
p-Synephrine (SN) is an alkaloid added to thermogenic formulations for weight loss that is predominantly absorbed in the human gastrointestinal tract (GI). As the adverse effects of SN on GI cells remain unclear, the aim of present study was to examine whether SN affected cell viability, cell cycle kinetics, genomic stability, redox status, and expression of cAMP/PKA pathway genes related to metabolism/energy homeostasis in stomach mucosa (MNP01) and colon adenocarcinoma (Caco-2) human cells. p-Synephrine at 25-5000 μM was not cytotoxic to both cell lines. At 2-200 μM, SN increased the formation of reactive oxygen species (ROS) but also enhanced levels of antioxidant defense molecules glutathione (GSH) and catalase (CAT) activity, which may account for the absence of cytotoxicity/mutagenicity in both cell lines. SN induced expression of the cAMP/PKA pathway genes ADCY3 and MAPK1 in MNP01 cells and MAPK1, GNAS, PRKACA, and PRKAR2A in Caco-2 cells, as well as modulated the transcription of genes related to cell proliferation (JUN; AKT1) and inflammation (RELA; TNF) in both cell lines. Therefore, the improved antioxidant state mitigated pro-oxidative effects attributed to SN. Evidence indicates that SN does not appear to exhibit adverse potential but modulated the cAMP/PKA pathway in human GI cell lines.
Collapse
Affiliation(s)
- Diego Luis Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo ,Ribeirão Preto, Brazil
| | - Ana Rita Thomazela Machado
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | - Carla Machado
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo ,Ribeirão Preto, Brazil
| | - Alexandre Ferro Aissa
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | - Patrick Wellington Dos Santos
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| | | | - Lusânia Maria Greggi Antunes
- Department Of Clinical Analyses, Toxicology, And Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo , : Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Ribeiro DL, Machado ART, da Silva Machado C, Santos PWDS, Aissa AF, Barcelos GRM, Antunes LMG. Analysis of the cytotoxic, genotoxic, mutagenic, and pro-oxidant effect of synephrine, a component of thermogenic supplements, in human hepatic cells in vitro. Toxicology 2019; 422:25-34. [PMID: 31004705 DOI: 10.1016/j.tox.2019.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Thermogenic supplements containing synephrine (SN) are widely used to weight loss. SN is a proto-alkaloid naturally found in the bark of immature fruits of Citrus aurantium (bitter orange) that has been added to thermogenic supplements due to its chemical and pharmacological similarity with adrenergic amines, such as ephedrine and amphetamines. Although orally ingested SN is mainly metabolized in the liver, it remains unclear whether it affects the redox status and genetic material of human hepatic cells. The present study aims to examine whether SN affects cell viability, cell cycle, redox balance, genomic stability, and expression of the DNA damage response (DDR)-related genes ATM, ATR, CHEK1, CHECK2, TP53, and SIRT1 in HepG2 cells - used as in vitro hepatocyte model. SN induced overproduction of intracellular reactive oxygen species (ROS) after 6 h of treatment with the three concentrations tested (2, 20 and 200 μM). After 24 h of treatment, SN at 200 μM induced intracellular ROS overproduction and exerted cytostatic effects, while SN at 20 and 200 μM increased the levels of GPx and GSH. SN was not cytotoxic (2-5000 μM), genotoxic, and mutagenic and did not alter the expression of DDR-related genes (2-200 μM), indicating that the fast/specific SN metabolization and upregulation of antioxidant defense components to detoxify intracellular ROS were sufficient to prevent intracellular damage in HepG2 cells. In conclusion, SN showed no cytotoxic, genotoxic, and mutagenic potential at relevant concentrations for thermogenic users in human hepatic cells in vitro, although, it plays pro-oxidative action, and cytostatic effects. Taken together, our results suggest that other investigations about the hazard absence of this thermogenic compound should be performed.
Collapse
Affiliation(s)
- Diego Luís Ribeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Carla da Silva Machado
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes, 3900, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Patrick Wellington da Silva Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre Ferro Aissa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua Silva Jardim, 136, 11015-020, Santos, São Paulo, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, 14040-903, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|