1
|
Giacomini A, Taranto S, Gazzaroli G, Faletti J, Capoferri D, Marcheselli R, Sciumè M, Presta M, Sacco A, Roccaro AM. The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma. J Exp Clin Cancer Res 2024; 43:294. [PMID: 39482742 PMCID: PMC11529022 DOI: 10.1186/s13046-024-03217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Among blood cancers, multiple myeloma (MM) represents the second most common neoplasm and is characterized by the accumulation and proliferation of monoclonal plasma cells within the bone marrow. Despite the last few decades being characterized by the development of different therapeutic strategies against MM, at present such disease is still considered incurable. Although MM is highly heterogeneous in terms of genetic and molecular subtypes, about 67% of MM cases are associated with abnormal activity of the transcription factor c-Myc, which has so far revealed a protein extremely difficult to target. We have recently demonstrated that activation of fibroblast growth factor (FGF) signaling protects MM cells from oxidative stress-induced apoptosis by stabilizing the oncoprotein c-Myc. Accordingly, secretion of FGF ligands and autocrine activation of FGF receptors (FGFR) is observed in MM cells and FGFR3 genomic alterations represent some 15-20% MM cases and are associated with poor outcome. Thus, FGF/FGFR blockade may represent a promising strategy to indirectly target c-Myc in MM. On this basis, the present review aims at providing an overview of recently explored connections between the FGF/FGFR system and c-Myc oncoprotein, sustaining the therapeutic potential of targeting the FGF/FGFR/c-Myc axis in MM by using inhibitors targeting FGF ligands or FGF receptors. Importantly, the provided findings may represent the rationale for using FDA approved FGFR TK inhibitors (i.e. Pemigatinib, Futibatinib, Erdafitinib) for the treatment of MM patients presenting with an aberrant activation of this axis.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Sara Taranto
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Marcheselli
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Margherita Sciumè
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy.
| |
Collapse
|
2
|
Patel S, Sathyanathan V, Salaman SD. Molecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: A comprehensive review. Tissue Cell 2024; 88:102377. [PMID: 38626527 DOI: 10.1016/j.tice.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Since the Middle Ages, essential oils (EO) have been widely used for bactericidal, virucidal, fungicidal, insecticidal, medicinal and cosmetic applications, nowadays in pharmaceutical, agricultural and food industries. Recently, EO have emerged as promising adjuvant therapies to mitigate the toxicities induced by anti - cancerous drugs; among them cisplatin induced renal damage amelioration remain remarkable. Cisplatin (cis-diaminedichloroplatinum II, CDDP) is renowned as one of the most effective anti-neoplastic agents, widely used as a broad-spectrum anti-tumor agent for various solid tumors. However, its clinical use is hampered by several side effects, notably nephrotoxicity and acute kidney injury, which arise from the accumulation of CDDP in the proximal tubular epithelial cells (PTECs). To better understand and analyze the molecular mechanisms of CDDP-induced renal damage, it is crucial to investigate potential interventions to protect against cisplatin-mediated nephrotoxicity. These EO have shown the ability to counteract oxidative stress, reduce inflammation, prevent apoptosis, and exert estrogenic effects, all contributing to renal protection. In this review, we have made an effort to summarize the molecular mechanisms and exploring new interventions by which we can pave the way for safer and more effective cancer management in the future.
Collapse
Affiliation(s)
- Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - V Sathyanathan
- Department of Pharmacognosy, Apollo College of Pharmacy, Kanchipuram, Tamil Nadu, India
| | - Samsi D Salaman
- Department of Pharmacognosy, Apollo College of Pharmacy, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
3
|
Carrão Dantas EK, Ferreira CLS, da Cunha Goldstein A, da Silva Fernandes A, Anastacio Ferraz ER, Felzenszwalb I, Araújo-Lima CF. Marketable 1,3-dimethylamylamine and caffeine-based thermogenic supplements: Regulatory genotoxicity assessment through in vitro and in silico approaches. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:245-265. [PMID: 38115604 DOI: 10.1080/15287394.2023.2294925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The consumption of dietary supplements to enhance physical performance has increased significantly in the last century, especially thermogenic pre-workout supplements. Nevertheless, this industry has faced criticism for inadequate safety measures surveillance in regulatory issues regarding their products. The aims of our study were to investigate two pre-workout supplements with respect to (1) mutagenicity utilizing Salmonella/microsome assay; (2) genotoxicity employing cytokinesis-block micronucleus (CBMN) assay protocols; and (3) hepatocytoxicity using WST cell proliferation, activities of lactate dehydrogenase (LDH) and alkaline phosphatase using human liver carcinoma (HepG2) and mouse fibroblast (F C3H) cells. Oxidative stress was determined through glutathione (GSH) measurement and in silico for predictions of pharmacokinetics and toxicity for the most abundant isolated substances present in these supplements. Both supplements induced mutagenicity in all examined bacterial strains, especially in the presence of exogenous metabolism. Further, tested supplements significantly elevated the formation of micronuclei (MN) as well as other cellular phenomena. Concentration- and time-dependent curves were observed for hepatotoxicity in both studied cell lines. In addition, both supplements decreased levels of intracellular and extracellular GSH. In silico predictions showed that the isolated individual compounds failed to induce the observed outcomes. Our findings provide contributions to the molecular mechanisms underlying two pre-workout supplement-induced toxicity and the need for surveillance.
Collapse
Affiliation(s)
- Eduardo Kennedy Carrão Dantas
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Caroline Lopes Simões Ferreira
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alana da Cunha Goldstein
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andreia da Silva Fernandes
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Carlos Fernando Araújo-Lima
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Carrão Dantas EK, Araújo-Lima CF, Ferreira CLS, Goldstein ADC, Aiub CAF, Coelho MGP, Felzenszwalb I. Toxicogenetic assessment of a pre-workout supplement: In vitro mutagenicity, cytotoxicity, genotoxicity and glutathione determination in liver cell lines and in silico ADMET approaches. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 879-880:503517. [PMID: 35914863 DOI: 10.1016/j.mrgentox.2022.503517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The benefits of practicing physical activity, such as weight loss and control, are commonly associated with caloric restriction diets and may be improved by the ingestion of thermogenic and ergogenic supplements. However, there is a lack of safety data on commonly marketed nutritional supplements. Therefore, this investigation aims to evaluate a pre-workout supplement for mutagenicity using the Ames test, hepatocytoxicity in HepG2 and F C3H cells after 24 h, 48 h and 72 h, genotoxicity using the CBMN assay, determination of gluthatione activity and computational prediction of the three major isolated compounds present in the supplement. The mutagenicity test showed a mutagenic response in TA98 His+ revertants of 5 mg/plate in the presence of metabolic activation, cytotoxicity in TA98 of 5 mg/plate in the absence of metabolic conditions, and in TA102 of 0.5 mg/plate both in the presence and absence of metabolic activation. In our in vitro eukaryotic cell viability, WST-1, LDH and alkaline phosphatase assays, the supplement showed hepatocytotoxicity both dose-dependently and time-dependently. In the cytokinesis blocking micronuclei assay, the supplement induced micronuclei, nuclear buds, nucleoplasmatic, bridge formation, and a decreased in nuclear division. In addition, the supplement decreased intra and extracellular GSH. Computational analysis showed that the three isolated compounds most present in the supplement have the potential to cause hepatotoxicity. In the present investigation, the pre-workout supplement induced mutagenic, genotoxic, and cytotoxic responses and GSH decrease. Thus, considering food safety and public health sanitary vigilance, the consumption of this pre-workout supplement may harm the health of its consumers.
Collapse
Affiliation(s)
- Eduardo Kennedy Carrão Dantas
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | - Carlos Fernando Araújo-Lima
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | - Caroline Lopes Simões Ferreira
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | - Alana da Cunha Goldstein
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | - Cláudia Alessandra Fortes Aiub
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, UNIRIO, Rio de Janeiro, Brazil.
| | | | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, UERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Expanding the armory for treating lymphoma: Targeting redox cellular status through thioredoxin reductase inhibition. Pharmacol Res 2022; 177:106134. [DOI: 10.1016/j.phrs.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
|
6
|
Zhao G, Dong R, Teng J, Yang L, Liu T, Wu X, He Y, Wang Z, Pu H, Wang Y. N-Acetyl-l-cysteine Enhances the Effect of Selenium Nanoparticles on Cancer Cytotoxicity by Increasing the Production of Selenium-Induced Reactive Oxygen Species. ACS OMEGA 2020; 5:11710-11720. [PMID: 32478262 PMCID: PMC7254790 DOI: 10.1021/acsomega.0c01034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 05/27/2023]
Abstract
Peritoneal carcinomatosis (PC) has an extremely poor prognosis, which leads to a significantly decreased overall survival in patients with peritoneal implantation of cancer cells. Administration of sodium selenite by intraperitoneal injection is highly effective in inhibiting PC. Our previous study found that selenium nanoparticles (SeNPs) have higher redox activity and safety than sodium selenite. In the present study, we examined the therapeutic effect of SeNPs on PC and elucidated the potential mechanism. Our results revealed that intraperitoneal delivery of SeNPs to cancer cells in the peritoneal cavity of mice at a tolerable dose was beneficial for prolonging the survival time of mice, even better than the optimal dose of cisplatin. The underlying mechanism involved in SeNP-induced reactive oxygen species (ROS) production caused protein degradation and apoptotic response in cancer cells. Interestingly, N-acetyl-l-cysteine (NAC), recognized as a ROS scavenger, without reducing the efficacy of SeNPs, enhanced ROS production and cytotoxicity. The effect of NAC was associated with the following mechanisms: (1) the thiol groups in NAC can increase the biosynthesis of endogenous glutathione (GSH), thus increasing the production of SeNP-induced ROS and cytotoxicity and (2) redox cycling of SeNPs was directly driven by thiol groups in NAC to produce ROS. Moreover, NAC, without increasing the systematic toxicity of SeNPs, decreased SeNP-induced lethality in healthy mice. Overall, we demonstrated that SeNPs exert a potential cytotoxicity effect by inducing ROS production in cancer cells; NAC effectively heightens the property of SeNPs in vitro and in vivo.
Collapse
Affiliation(s)
- Guangshan Zhao
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ruixia Dong
- Department
of Forestry and Technology, Lishui Vocational
and Technical College, Lishui, Zhejiang 323000, P. R. China
| | - Jianyuan Teng
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Lian Yang
- Guangdong
Provincial Engineering Center of Topical Precise Drug Delivery System,
School of Pharmacy, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510006, P. R. China
| | - Tao Liu
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ximing Wu
- Laboratory
of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization,
School of Tea & Food Science, Anhui
Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Yufeng He
- Laboratory
of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization,
School of Tea & Food Science, Anhui
Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zhiping Wang
- Guangdong
Provincial Engineering Center of Topical Precise Drug Delivery System,
School of Pharmacy, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510006, P. R. China
| | - Hanlin Pu
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yifei Wang
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
7
|
Ronca R, Ghedini GC, Maccarinelli F, Sacco A, Locatelli SL, Foglio E, Taranto S, Grillo E, Matarazzo S, Castelli R, Paganini G, Desantis V, Cattane N, Cattaneo A, Mor M, Carlo-Stella C, Belotti A, Roccaro AM, Presta M, Giacomini A. FGF Trapping Inhibits Multiple Myeloma Growth through c-Myc Degradation-Induced Mitochondrial Oxidative Stress. Cancer Res 2020; 80:2340-2354. [PMID: 32094301 DOI: 10.1158/0008-5472.can-19-2714] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Abstract
Multiple myeloma, the second most common hematologic malignancy, frequently relapses because of chemotherapeutic resistance. Fibroblast growth factors (FGF) act as proangiogenic and mitogenic cytokines in multiple myeloma. Here, we demonstrate that the autocrine FGF/FGFR axis is essential for multiple myeloma cell survival and progression by protecting multiple myeloma cells from oxidative stress-induced apoptosis. In keeping with the hypothesis that the intracellular redox status can be a target for cancer therapy, FGF/FGFR blockade by FGF trapping or tyrosine kinase inhibitor impaired the growth and dissemination of multiple myeloma cells by inducing mitochondrial oxidative stress, DNA damage, and apoptotic cell death that were prevented by the antioxidant vitamin E or mitochondrial catalase overexpression. In addition, mitochondrial oxidative stress occurred as a consequence of proteasomal degradation of the c-Myc oncoprotein that led to glutathione depletion. Accordingly, expression of a proteasome-nondegradable c-Myc protein mutant was sufficient to avoid glutathione depletion and rescue the proapoptotic effects due to FGF blockade. These findings were confirmed on bortezomib-resistant multiple myeloma cells as well as on bone marrow-derived primary multiple myeloma cells from newly diagnosed and relapsed/refractory patients, including plasma cells bearing the t(4;14) translocation obtained from patients with high-risk multiple myeloma. Altogether, these findings dissect the mechanism by which the FGF/FGFR system plays a nonredundant role in multiple myeloma cell survival and disease progression, and indicate that FGF targeting may represent a therapeutic approach for patients with multiple myeloma with poor prognosis and advanced disease stage. SIGNIFICANCE: This study provides new insights into the mechanisms by which FGF antagonists promote multiple myeloma cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/11/2340/F1.large.jpg.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia C Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Silvia L Locatelli
- Department of Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS and Humanitas University, Milan, Italy
| | - Eleonora Foglio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Taranto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Matarazzo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giuseppe Paganini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Azienda Ospedaliera Consorziale Universitaria Policlinico di Bari, Bari, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS and Humanitas University, Milan, Italy
| | - Angelo Belotti
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
8
|
Greco C, D'Agnano I, Vitelli G, Vona R, Marino M, Mottolese M, Zuppi C, Capoluongo E, Ameglio F. C-Myc Deregulation is Involved in Melphalan Resistance of Multiple Myeloma: Role of PDGF-BB. Int J Immunopathol Pharmacol 2018. [DOI: 10.1177/205873920601900107] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Oncogenes are important regulators of cancer growth and progression and their action may be modulated by proteins of the growth factor family, such as angiogenic cytokines, known to be strongly involved in neoplastic evolution. Reciprocal interactions between oncogenes and angiogenic modulators may represent, in haematological neoplasms, including multiple myeloma (MM), a possible mechanism of drug resistance. The aim of this work is to investigate in vitro and in vivo whether or not c-myc deregulation is involved in the melphalan resistance elicited by myeloma patients and consequently to clarify the role of the angiogenic factor PDGF-BB in modulating c-myc protein expression. Fifty-one MM patients on chemotherapy with melphalan were analyzed for structural alterations of the c-myc gene, c-Myc protein expression, as well as for serum PDGF-BB release. For the in vitro study, two M14-derived established cell clones, differing for the c-Myc protein expression (c-Myc low -expressing or constitutively expressing clones) were used. Our results show that PDGF-BB is able to up-regulate Myc expression and reduce melphalan sensitivity of tumor cell clones, constitutively expressing c-myc gene product. In addition, down-regulation of c-Myc protein induces the expression of PDGF-β receptor molecules and reduces PDGF-BB release. In agreement with these results, in vivo data show that melphalan-resistant MM patients present overexpressed c-Myc protein and higher serum PDGF-β receptor levels compared to minor responding patients.
Collapse
Affiliation(s)
- C. Greco
- Clinical Pathology Service, Regina Elena Cancer Institute, Rome
| | - I. D'Agnano
- Pharmacology Dept, University of Milan, Regina Elena Cancer Institute, Rome
- Institute of Biomedical Technology-CNR, Milan
| | - G. Vitelli
- Clinical Pathology Service, Regina Elena Cancer Institute, Rome
| | - R. Vona
- Clinical Pathology Service, Regina Elena Cancer Institute, Rome
- Dept of Drug Research and Evaluation Section of Cell Aging and Degeneration, 1st. Superiore di Sanita', Rome, Italy
| | - M. Marino
- Pathological Anatomy Service, Regina Elena Cancer Institute, Rome
| | - M. Mottolese
- Pathological Anatomy Service, Regina Elena Cancer Institute, Rome
| | - C. Zuppi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Rome
| | - E. Capoluongo
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Rome
| | - F. Ameglio
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Sacred Heart, Rome
| |
Collapse
|
9
|
Lee J, Kim MS, Kim MA, Jang YK. Calmidazolium chloride inhibits growth of murine embryonal carcinoma cells, a model of cancer stem-like cells. Toxicol In Vitro 2016; 35:86-92. [PMID: 27247146 DOI: 10.1016/j.tiv.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 01/01/2023]
Abstract
Calmidazolium chloride (CMZ) is widely used as a calmodulin (CaM) antagonist, but is also known to induce apoptosis in certain cancer cell lines. However, in spite of the importance of cancer stem cells (CSCs) in cancer therapy, the effects of CMZ on CSCs are not yet well understood. We investigated the effects of CMZ on the F9 embryonal carcinoma cell (ECC) line as a surrogate model of CSCs. To avoid bias due to culture conditions, F9 ECCs and E14 embryonic stem cells (ESCs) were grown in the same culture medium. Results obtained using a cell-counting kit showed that CMZ significantly inhibited growth in F9 ECCs compared with growth in E14 ESCs. CMZ also induced apoptosis of F9 ECCs, but not of E14 ESCs, which was associated with caspase-3 activation and an increased fraction of the sub-G1 cell population. In addition, our data revealed that the expression of stemness-related genes including c-Myc was selectively down regulated in CMZ-treated F9 ECCs. Our results suggest that CMZ can inhibit the growth of ECCs by inducing apoptosis and down regulating stemness-related genes, without causing any harm to normal stem cells. These findings indicate a potential application of CMZ in the development of anti-CSC therapeutics.
Collapse
Affiliation(s)
- Jina Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Seong Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Min Aeh Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Initiative for Biological Function & Systems, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
10
|
Song L, Li Y, He B, Gong Y. Development of Small Molecules Targeting the Wnt Signaling Pathway in Cancer Stem Cells for the Treatment of Colorectal Cancer. Clin Colorectal Cancer 2015; 14:133-45. [PMID: 25799881 DOI: 10.1016/j.clcc.2015.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) was ranked third in morbidity and mortality in the United States in 2013. Although substantial progress has been made in surgical techniques and postoperative chemotherapy in recent years, the prognosis for colon cancer is still not satisfactory, mainly because of cancer recurrence and metastasis. The latest studies have shown that cancer stem cells (CSCs) play important roles in cancer recurrence and metastasis. Drugs that target CSCs might therefore have great therapeutic potential in prevention of cancer recurrence and metastasis. The wingless-int (Wnt) signaling pathway in CSCs has been suggested to play crucial roles in colorectal carcinogenesis, and has become a popular target for anti-CRC therapy. Dysregulation of the Wnt signaling pathway, mostly by inactivating mutations of the adenomatous polyposis coli tumor suppressor or oncogenic mutations of β-catenin, has been implicated as a key factor in colorectal tumorigenesis. Abnormal increases of β-catenin levels represents a common pathway in Wnt signaling activation and is also observed in other human malignancies. These findings highlight the importance of developing small-molecule drugs that target the Wnt pathway. Herein we provide an overview on the current development of small molecules that target the Wnt pathway in colorectal CSCs and discuss future research directions.
Collapse
Affiliation(s)
- Lele Song
- Department of Radiotherapy, the PLA 309 Hospital, Beijing, China; BioChain (Beijing) Science and Technology, Inc, Beijing, China.
| | - Yuemin Li
- Department of Radiotherapy, the PLA 309 Hospital, Beijing, China.
| | - Baoming He
- Department of Nuclear Medicine, the PLA 309 Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, the PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Shen L, Du M, Wang C, Gu D, Wang M, Zhang Q, Zhao T, Zhang X, Tan Y, Huo X, Gong W, Xu Z, Chen J, Zhang Z. Clinical significance of POU5F1P1 rs10505477 polymorphism in Chinese gastric cancer patients receving cisplatin-based chemotherapy after surgical resection. Int J Mol Sci 2014; 15:12764-77. [PMID: 25046748 PMCID: PMC4139873 DOI: 10.3390/ijms150712764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 01/06/2023] Open
Abstract
This study aimed to investigate the association between POU class5 homeobox 1 pseudogene 1 gene (POU5F1P1) rs10505477 polymorphism and the prognosis of Chinese gastric cancer patients, who received cisplatin-based chemotherapy after surgical resection. POU5F1P1 rs10505477 was genotyped using the SNaPshot method in 944 gastric cancer patients who received gastrectomy. The association of rs10505477 G > A polymorphism with the progression and prognosis in gastric cancer patients was statistically analyzed using the SPSS version 18.0 for Windows. The results reveal that rs10505477 polymorphism has a negatively effect on the overall survival of gastric cancer patients in cisplatin-based chemotherapy subgroup (HR = 1.764, 95% CI = 1.069–2.911, p = 0.023). Our preliminary study indicates for the first time that POU5F1P1 rs10505477 is correlated with survival of gastric cancer patients who receving cisplatin-based chemotherapy after gastrectomy. Further studies are warranted to investigate the mechanism and to verify our results in different populations.
Collapse
Affiliation(s)
- Lili Shen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China.
| | - Chun Wang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China.
| | - Qi Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Tingting Zhao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Xunlei Zhang
- Department of Oncology, Nantong Tumor Hospital, Nantong 226000, 30 Tongyang North Road, China.
| | - Yongfei Tan
- Department of Surgery, Yixing People's Hospital, 75 Tongzhenguan Road, Yixing 214200, China.
| | - Xinying Huo
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, 45 Dongshan East Road, Yixing 214200, China.
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, 818 East Tianyuan Road, Nanjing 211166, China.
| |
Collapse
|
12
|
Abstract
The aim of this study was to assess the efficiency of p53 reactivation and induction of massive apoptosis (PRIMA-1(Met)) in inducing myeloma cell death, using 27 human myeloma cell lines (HMCLs) and 23 primary samples. Measuring the lethal dose (LD50) of HMCLs revealed that HMCLs displayed heterogeneous sensitivity, with an LD50 ranging from 4 μM to more than 200 μM. The sensitivity of HMCLs did not correlate with myeloma genomic heterogeneity or TP53 status, and PRIMA-1(Met) did not induce or increase expression of the p53 target genes CDKN1A or TNFRSF10B/DR5. However, PRIMA-1(Met) increased expression of NOXA in a p53-independent manner, and NOXA silencing decreased PRIMA1(Met)-induced cell death. PRIMA-1(Met) depleted glutathione (GSH) content and induced reactive oxygen species production. The expression of GSH synthetase correlated with PRIMA-1(Met) LD50 values, and we showed that a GSH decrease mediated by GSH synthetase silencing or by and L-buthionine sulphoximine, an irreversible inhibitor of γ-glutamylcysteine synthetase, increased PRIMA-1(Met)-induced cell death and overcame PRIMA-1(Met) resistance. PRIMA-1(Met) (10 μM) induced cell death in 65% of primary cells independent of the presence of del17p; did not increase DR5 expression, arguing against an activation of p53 pathway; and synergized with L-buthionine sulphoximine in all samples. Finally, we showed in mouse TP53(neg) JJN3-xenograft model that PRIMA-1(Met) inhibited myeloma growth and synergized with L-buthionine sulphoximine in vivo.
Collapse
|
13
|
Surget S, Lemieux-Blanchard E, Maïga S, Descamps G, Le Gouill S, Moreau P, Amiot M, Pellat-Deceunynck C. Bendamustine and melphalan kill myeloma cells similarly through reactive oxygen species production and activation of the p53 pathway and do not overcome resistance to each other. Leuk Lymphoma 2014; 55:2165-73. [DOI: 10.3109/10428194.2013.871277] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Fan C, Garcia M, Scherer M, Tran C, Xian CJ. Potential roles of metallothioneins I and II in protecting bone growth following acute methotrexate chemotherapy. J Chemother 2013; 26:37-48. [PMID: 24090452 DOI: 10.1179/1973947813y.0000000108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Metallothioneins (MTs) are known to participate in protection against oxidative stress. This study assessed the effects of MT-I&II gene knockout on methotrexate (MTX)-induced bone damage in growing mice. MT-I&II knockout (MT⁻/⁻) and wild type (MT⁺/⁺) male mice were injected with saline or 12.5 mg kg⁻¹ MTX for three consecutive days. MTX treatment was shown to cause more severe damage in MT⁻/⁻ mice when compared to MT⁺/⁺ mice, as demonstrated by the more obvious thinning of growth plate, reduced proliferation and increased apoptosis of chondrocytes, and reduced metaphysis heights in the knockout mice. Analysis of total liver glutathione (the most abundant intracellular antioxidant) also revealed significant lower glutathione levels in all MT⁻/⁻ mice. In conclusion, MT⁻/⁻ mice were more susceptible than MT⁺/⁺ mice to MTX-induced bone damages, which may be associated with the reduction of basal antioxidant defence, suggesting a protective role of MTs in the growing skeleton against damages caused by MTX chemotherapy.
Collapse
|
15
|
Jarocka I, Gęgotek A, Bielawska A, Bielawski K, Łuczaj W, Hodun T, Skrzydlewska E. Effect of novel dinuclear platinum(II) complexes on redox status of MOLT-4 leukemic cells. Toxicol Mech Methods 2013; 23:641-9. [DOI: 10.3109/15376516.2013.825359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Stanley JA, Sivakumar KK, Nithy TK, Arosh JA, Hoyer PB, Burghardt RC, Banu SK. Postnatal exposure to chromium through mother's milk accelerates follicular atresia in F1 offspring through increased oxidative stress and depletion of antioxidant enzymes. Free Radic Biol Med 2013; 61:179-96. [PMID: 23470461 PMCID: PMC3883978 DOI: 10.1016/j.freeradbiomed.2013.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/29/2022]
Abstract
Hexavalent chromium, CrVI, is a heavy metal endocrine disruptor, known as a mutagen, teratogen, and a group A carcinogen. Environmental contamination with CrVI, including drinking water, has been increasing in more than 30 cities in the United States. CrVI is rapidly converted to CrIII intracellularly, and CrIII can cause DNA strand breaks and cancer or apoptosis through different mechanisms. Our previous study demonstrated that lactational exposure to chromium results in a delay or arrest in follicle development and a decrease in steroid hormone levels in F1 female rats, both of which are mitigated (partial inhibition) by vitamin C. The current study tested the hypothesis that lactational exposure to CrIII accelerates follicle atresia in F1 offspring by increasing reactive oxygen species (ROS) and decreasing cellular antioxidants. Results showed that lactational exposure to CrIII dose-dependently increased follicular atresia and decreased steroidogenesis in postnatal day 25, 45, and 65 rats. Vitamin C mitigated or inhibited the effects of CrIII at all doses. CrIII increased hydrogen peroxide and lipid hydroperoxide in plasma and ovary; decreased the antioxidant enzymes (AOXs) GPx1, GR, SOD, and catalase; and increased glutathione S-transferase in plasma and ovary. To understand the effects of CrVI on ROS and AOXs in granulosa (GC) and theca (TC) cell compartments in the ovary, ROS levels and mRNA expression of cytosolic and mitochondrial AOXs, such as SOD1, SOD2, catalase, GLRX1, GSTM1, GSTM2, GSTA4, GR, TXN1, TXN2, TXNRD2, and PRDX3, were studied in GCs and TCs and in a spontaneously immortalized granulosa cell line (SIGC). Overall, CrVI downregulated each of the AOXs; and vitamin C mitigated the effects of CrVI on these enzymes in GCs and SIGCs, but failed to mitigate CrVI effects on GSTM1, GSTM2, TXN1, and TXN2 in TCs. Thus, these data for the first time reveal that lactational exposure to CrIII accelerated follicular atresia and decreased steroidogenesis in F1 female offspring by altering the ratio of ROS and AOXs in the ovary. Vitamin C is able to protect the ovary from CrIII-induced oxidative stress and follicle atresia through protective effects on GCs rather than TCs.
Collapse
Affiliation(s)
- Jone A Stanley
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Thamizh K Nithy
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Patricia B Hoyer
- Department of Physiology, University of Arizona, Tucson, AZ 85724-5051, USA
| | - Robert C Burghardt
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
17
|
Emadi A, Karp JE. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics 2013; 13:1257-69. [PMID: 22920396 DOI: 10.2217/pgs.12.102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myelogenous leukemia (AML) is an extremely heterogeneous neoplasm with several clinical, pathological, genetic and molecular subtypes. Combinations of various doses and schedules of cytarabine and different anthracyclines have been the mainstay of treatment for all forms of AMLs in adult patients. Although this combination, with the addition of an occasional third agent, remains effective for treatment of some young-adult patients with de novo AML, the prognosis of AML secondary to myelodysplastic syndromes or myeloproliferative neoplasms, treatment-related AML, relapsed or refractory AML, and AML that occurs in older populations remains grim. Taken into account the heterogeneity of AML, one size does not and should not be tried to fit all. In this article, the authors review currently understood, applicable and relevant findings related to cytarabine and anthracycline drug-metabolizing enzymes and drug transporters in adult patients with AML. To provide a prime-time example of clinical applicability of pharmacogenomics in distinguishing a subset of patients with AML who might be better responders to farnesyltransferase inhibitors, the authors also reviewed findings related to a two-gene transcript signature consisting of high RASGRP1 and low APTX, the ratio of which appears to positively predict clinical response in AML patients treated with farnesyltransferase inhibitors.
Collapse
Affiliation(s)
- Ashkan Emadi
- University of Maryland, School of Medicine, Marlene & Stewart Greenebaum Cancer Center, Leukemia & Hematologic Malignancies, Baltimore, MD 21201, USA
| | | |
Collapse
|
18
|
Aghdai MH, Jamshidzadeh A, Nematizadeh M, Behzadiannia M, Niknahad H, Amirghofran Z, Esfandiari E, Azarpira N. Evaluating the Effects of Dithiothreitol and Fructose on Cell Viability and Function of Cryopreserved Primary Rat Hepatocytes and HepG2 Cell Line. HEPATITIS MONTHLY 2013; 13:e7824. [PMID: 23585767 PMCID: PMC3620527 DOI: 10.5812/hepatmon.7824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/07/2012] [Accepted: 12/09/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocytes are used as an in vitro model to evaluate drug metabolism. Human hepatocyte transplant has been considered as the temporary treatment of acute liver failure. Optimization freezing methods is very important to preserve both cell viability and function which are achieved by cryopreservation mostly always. OBJECTIVES The present study aimed to investigate the cryoprotective effect of DTT and fructose on primary rat hepatocytes and HepG2 cells. MATERIALS AND METHODS Both fresh rat hepatocytes and HepG2 cell line were incubated with fructose (100 and 200 mM) and dithiothreitol (DTT) (25, 50, 100, 250, and 500 μM) at 37°C for 1 and 3 hours, respectively. The preincubated hepatocytes were cryopreserved for two weeks. Hepatocytes viability and function were determined post thawing and the results were compared with the control group. RESULTS The viability of both rat hepatocytes and HepG2 cells were significantly increased after one hour preincubation with fructose 200 mM. Preincubation with DTT (50 μM, 100 μM. 250 μM and 500 μM) improved the viability and function upon thawing in both cell types (P < 0.001). In rat hepatocytes, no significant change was observed in albumin, urea production, and LDH leakage after preincubation with fructose or DTT. In HepG2 cells, albumin and urea production were significantly increased after preincubation with DTT (500 μM, 1 hour). The GSH content was significantly increased in DTT (250 and 500 μM, 1 hour) groups in both rat hepatocyte and HepG2 cells. CONCLUSIONS Incubation of hepatocytes with fructose and DTT prior to the cryopreservation can increase the cell viability and function after thawing.
Collapse
Affiliation(s)
- Mahdokht H Aghdai
- Transplant Research Center Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mahsa Nematizadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mahtab Behzadiannia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Zahra Amirghofran
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Elaheh Esfandiari
- Transplant Research Center Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Negar Azarpira
- Transplant Research Center Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Negar Azarpira , Transplant Research Center Zand Street, Namazi Hospital, Shiraz University of Medical Sciences, 7193711351, Shiraz, IR Iran. Tel.: +98-7116474331, Fax: +98-7116474331, E-mail:
| |
Collapse
|
19
|
Wang Y, Lu H, Wang D, Li S, Sun K, Wan X, Taylor EW, Zhang J. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase. Toxicol Appl Pharmacol 2012; 265:342-50. [DOI: 10.1016/j.taap.2012.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 12/29/2022]
|
20
|
Verrax J, Dejeans N, Sid B, Glorieux C, Calderon PB. Intracellular ATP levels determine cell death fate of cancer cells exposed to both standard and redox chemotherapeutic agents. Biochem Pharmacol 2011; 82:1540-8. [PMID: 21843513 DOI: 10.1016/j.bcp.2011.07.102] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022]
Abstract
Cancer cells generally exhibit high levels of reactive oxygen species (ROS) that stimulate cell proliferation and promote genetic instability. Since this biochemical difference between normal and cancer cells represents a specific vulnerability that can be selectively targeted for cancer therapy, various ROS-generating agents are currently in clinical trials, either as single agents or in combination with standard therapy. However, little is known about the potential consequences of an increased oxidative stress for the efficacy of standard chemotherapeutic agents. In this context, we have assessed the influence of an oxidative stress generated by the combination of ascorbate and the redox-active quinone menadione on the capacity of melphalan, a common alkylating agent, to induce apoptosis in a chronic myelogenous leukemia cell line. Our data show that oxidative stress did not inhibit but rather promoted cancer cell killing by melphalan. Interestingly, we observed that, in the presence of oxidative stress, the type of cell death shifted from a caspase-3 dependent apoptosis to necrosis because of an ATP depletion which prevented caspase activation. Taken together, these data suggest that ROS-generating agents could be useful in combination with standard chemotherapy, even if all the molecular consequences of such an addition remain to be determined.
Collapse
Affiliation(s)
- Julien Verrax
- Toxicology and Cancer Biology Research Group (TOXCAN), Louvain Drug Research Institute, Université catholique de Louvain, Belgium.
| | | | | | | | | |
Collapse
|
21
|
Abstract
For in-transit melanoma confined to the extremities, regional chemotherapy in the form of hyperthermic isolated limb perfusion and isolated limb infusion are effective treatment modalities carrying superior response rates to current standard systemic therapy. Despite high response rates, most patients will eventually recur, supporting the role for novel research aimed at improving durable responses and minimizing toxicity. Although the standard cytotoxic agent for regional chemotherapy is melphalan, alternative agents such as temozolomide are currently being tested, with promising preliminary results. Current strategies for improving chemosensitivity to regional chemotherapy are aimed at overcoming classic resistance mechanisms such as drug metabolism and DNA repair, increasing drug delivery, inhibiting tumor-specific angiogenesis, and decreasing the apoptotic threshold of melanoma cells. Concurrent with development and testing of these agents, genomic profiling and biomolecular analysis of acquired tumor tissue may define patterns of tumor resistance and sensitivity from which personalized treatment may be tailored to optimize efficacy. In this article rational strategies for treatment of in-transit melanoma are outlined, with special emphasis on current translational and clinical research efforts.
Collapse
|
22
|
A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS One 2011; 6:e16694. [PMID: 21364753 PMCID: PMC3041770 DOI: 10.1371/journal.pone.0016694] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/24/2010] [Indexed: 12/16/2022] Open
Abstract
Background We initiated a prospective trial to identify transcriptional alterations associated with acquired chemotherapy resistance from pre- and post-biopsy samples from the same patient and uncover potential molecular pathways involved in treatment failure to help guide therapeutic alternatives. Methodology/Principal Findings A prospective, high-throughput transcriptional profiling study was performed using endoscopic biopsy samples from 123 metastatic gastric cancer patients prior to cisplatin and fluorouracil (CF) combination chemotherapy. 22 patients who initially responded to CF were re-biopsied after they developed resistance to CF. An acquired chemotherapy resistance signature was identified by analyzing the gene expression profiles from the matched pre- and post-CF treated samples. The acquired resistance signature was able to segregate a separate cohort of 101 newly-diagnosed gastric cancer patients according to the time to progression after CF. Hierarchical clustering using a 633-gene acquired resistance signature (feature selection at P<0.01) separated the 101 pretreatment patient samples into two groups with significantly different times to progression (2.5 vs. 4.7 months). This 633-gene signature included the upregulation of AKT1, EIF4B, and RPS6 (mTOR pathway), DNA repair and drug metabolism genes, and was enriched for genes overexpressed in embryonic stem cell signatures. A 72-gene acquired resistance signature (a subset of the 633 gene signature also identified in ES cell-related gene sets) was an independent predictor for time to progression (adjusted P = 0.011) and survival (adjusted P = 0.034) of these 101 patients. Conclusion/Significance This signature may offer new insights into identifying new targets and therapies required to overcome the acquired resistance of gastric cancer to CF.
Collapse
|
23
|
Penella E, Sandoval J, Zaragozá R, García C, Viña JR, Torres L, García-Trevijano ER. Molecular mechanisms of Id2 down-regulation in rat liver after acetaminophen overdose. Protection by N-acetyl-L-cysteine. Free Radic Res 2011; 44:1044-53. [PMID: 20815767 DOI: 10.3109/10715762.2010.498825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Id2 is a pleiotropic protein whose function depends on its expression levels. Id2-deficient cells show increased cell death. This study explored the molecular mechanisms for the modulation of Id2 expression elicited by GSH and oxidative stress in the liver of acetaminophen (APAP)-intoxicated rats. APAP-overdose induced GSH depletion, Id2 promoter hypoacetylation, RNApol-II released and, therefore, Id2 down-regulation. Id2 expression depends on c-Myc binding to its promoter. APAP-overdose decreased c-Myc content and binding to Id2 promoter. Reduction of c-Myc was not accompanied by decreased c-myc mRNA, suggesting a mechanism dependent on protein stability. Administration of N-acetyl-cysteine prior to APAP-overload prevented GSH depletion and c-Myc degradation. Consistently, c-Myc was recruited to Id2 promoter, histone-H3 was hyperacetylated, RNApol II was bound to Id2 coding region and Id2 repression prevented. The results suggest a novel transcriptional-dependent mechanism of Id2 regulation by GSH and oxidative stress induced by APAP-overdose through the indirect modulation of the proteasome pathway.
Collapse
Affiliation(s)
- Estela Penella
- Departamento de Bioquímica y Biología Molecular, Fundación Investigación Hospital Clínico Valencia / INCLIVA, Universidad de Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Three-gene predictor of clinical outcome for gastric cancer patients treated with chemotherapy. THE PHARMACOGENOMICS JOURNAL 2010; 12:119-27. [PMID: 21173787 PMCID: PMC3321506 DOI: 10.1038/tpj.2010.87] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To identify transcriptional profiles predictive of the clinical benefit of cisplatin and fluorouracil (CF) chemotherapy to gastric cancer patients, endoscopic biopsy samples from 96 CF-treated metastatic gastric cancer patients were prospectively collected before therapy and analyzed using high-throughput transcriptional profiling and array comparative genomic hybridization. Transcriptional profiling identified 917 genes that are correlated with poor patient survival after CF at P<0.05 (poor prognosis signature), in which protein synthesis and DNA replication/recombination/repair functional categories are enriched. A survival risk predictor was then constructed using genes, which are included in the poor prognosis signature and are contained within identified genomic amplicons. The combined expression of three genes—MYC, EGFR and FGFR2—was an independent predictor for overall survival of 27 CF-treated patients in the validation set (adjusted P=0.017), and also for survival of 40 chemotherapy-treated gastric cancer patients in a published data set (adjusted P=0.026). Thus, combined expression of MYC, EGFR and FGFR2 is predictive of poor survival in CF-treated metastatic gastric cancer patients.
Collapse
|
25
|
Campbell RA, Sanchez E, Steinberg J, Shalitin D, Li ZW, Chen H, Berenson JR. Vorinostat enhances the antimyeloma effects of melphalan and bortezomib. Eur J Haematol 2010; 84:201-11. [DOI: 10.1111/j.1600-0609.2009.01384.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Yamada T, Egashira N, Imuta M, Yano T, Yamauchi Y, Watanabe H, Oishi R. Role of oxidative stress in vinorelbine-induced vascular endothelial cell injury. Free Radic Biol Med 2010; 48:120-7. [PMID: 19837156 DOI: 10.1016/j.freeradbiomed.2009.10.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/30/2009] [Accepted: 10/12/2009] [Indexed: 01/09/2023]
Abstract
Vinorelbine (VNR), a vinca alkaloid anticancer drug, often causes vascular injury such as venous irritation, vascular pain, phlebitis, and necrotizing vasculitis. The purpose of this study was to identify the mechanisms that mediate the cell injury induced by VNR in porcine aorta endothelial cells (PAECs). PAECs were exposed to VNR for 10 min followed by further incubation in serum-free medium without VNR. The exposure to VNR (0.3-30 microM) decreased the cell viability concentration and time dependently. The incidence of apoptotic cells significantly increased at 12 h after transient exposure to VNR. At the same time, VNR increased the activity of caspases. Interestingly, VNR rapidly depleted intracellular glutathione (GSH) and increased intracellular reactive oxygen species (ROS) production. Moreover, VNR depolarized the mitochondrial membrane potential and decreased cellular ATP levels. These VNR-induced cell abnormalities were almost completely inhibited by GSH and N-acetylcysteine. On the other hand, L-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH synthesis, aggravated the VNR-induced loss of cell viability. These results clearly demonstrate that VNR induces oxidative stress by depleting intracellular GSH and increasing ROS production in PAECs, and oxidative stress plays an important role in the VNR-induced cell injury.
Collapse
Affiliation(s)
- Takaaki Yamada
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Padsis J, Turley R, Tyler D. Pharmacotherapy of regional melanoma therapy. Expert Opin Pharmacother 2009; 11:79-93. [DOI: 10.1517/14656560903428003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Loiseau D, Morvan D, Chevrollier A, Demidem A, Douay O, Reynier P, Stepien G. Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy. Mol Carcinog 2009; 48:733-41. [PMID: 19347860 DOI: 10.1002/mc.20539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cancer cells mainly rely on glycolysis for energetic needs, and mitochondrial ATP production is almost inactive. However, cancer cells require the integrity of mitochondrial functions for their survival, such as the maintenance of the internal membrane potential gradient (DeltaPsim). It thus may be predicted that DeltaPsim regeneration should depend on cellular capability to produce sufficient ATP by upregulating glycolysis or recruiting oxidative phosphorylation (OXPHOS). To investigate this hypothesis, we compared the response to an anticancer agent chloroethylnitrosourea (CENU) of two transformed cell lines: HepG2 (hepatocarcinoma) with a partially differentiated phenotype and 143B (osteosarcoma) with an undifferentiated one. These cells types differ by their mitochondrial OXPHOS background; the most severely impaired being that of 143B cells. Treatment effects were tested on cell proliferation, O(2) consumption/ATP production coupling, DeltaPsim maintenance, and global metabolite profiling by NMR spectroscopy. Our results showed an OXPHOS uncoupling and a lowered DeltaPsim, leading to an increased energy request to regenerate DeltaPsim in both models. However, energy request could not be met by undifferentiated cells 143B, which ATP content decreased after 48 h leading to cell death, while partially differentiated cells (HepG2) could activate their oxidative metabolism and escape chemotherapy. We propose that mitochondrial OXPHOS background confers a survival advantage to more differentiated cells in response to chemotherapy. This suggests that the mitochondrial bioenergetic background of tumors should be considered for anticancer treatment personalization.
Collapse
|
29
|
Dierickx KME, Morandini R, Nguyen TH, Salès F, Kauffmann JM, Ghanem GE. A novel transport and delivery mechanism underpins the effectiveness of prolyl-m-sarcolysyl-p-fluorophenylalanine (PSF) in a human melanoma xenograft nude-mouse model. Pigment Cell Melanoma Res 2008; 21:439-50. [PMID: 18627526 DOI: 10.1111/j.1755-148x.2008.00471.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alkylating peptide PSF shows very promising results in vitro on different cancer cells but its efficacy in animals has not been assessed. Here we evaluate the efficacy of PSF in human melanoma-bearing nude mice and examine the underlying mechanism. In melanoma-bearing nude mice, escalating doses of PSF showed dose-dependent responses and reached tumor regression with an optimal dose of 20 mg/kg for 1 month. A comparison of PSF with its free moiety m-sarcolysin and melphalan showed a highly significant advantage of PSF. Furthermore, dose fractionation yielded an even better control of tumor regrowth. In vitro studies unraveled an original delivery mechanism based on the rapid binding of PSF mainly due to red blood cells to form a pro-drug complex and the subsequent release of active metabolites by tumor-associated proteolytic enzymes. Blood kinetics showed one major metabolite partially released over time, while in the presence of melanoma cells three additional metabolites are generated. Interestingly, tumor-shed proteases also induce the production of these metabolites and varying combinations of enzyme inhibitors indicate the involvement of metallo- and other families of proteases in the delivery process. This particular transport and delivery of such an alkylating agent may have several benefits, mainly lowering the drug-free moiety in plasma and at the same time increasing its concentration in protease rich areas such as tumors.
Collapse
Affiliation(s)
- Karen M E Dierickx
- Laboratory of Oncology and Experimental Surgery, Institut J Bordet, Université libre de Bruxelles, Belgium.
| | | | | | | | | | | |
Collapse
|
30
|
Padussis JC, Steerman SN, Tyler DS, Mosca PJ. Pharmacokinetics & drug resistance of melphalan in regional chemotherapy: ILP versus ILI. Int J Hyperthermia 2008; 24:239-49. [PMID: 18393002 DOI: 10.1080/02656730701816410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Two forms of regional chemotherapy for the treatment of advanced melanoma or sarcoma of the extremity are isolated limb perfusion (ILP) and the more recently described isolated limb infusion (ILI). Melphalan is the most commonly employed agent in both ILP and ILI, although it is often used in conjunction with other cytotoxic and/or biologic therapies. While ILP and ILI are far more effective for the treatment of extremity disease than is systemic therapy, there is still significant room for improvement in outcomes, from the standpoint of both response rate and toxicity. An understanding of the pharmacokinetics of regional chemotherapy would allow for the prediction of tumor response and toxicity and therefore patient outcomes. In addition, elucidating the mechanisms of drug resistance would lead to opportunities to develop effective chemo-modulators that enhance the effectiveness of ILP and ILI. This paper reviews progress in these two key areas of active investigation.
Collapse
Affiliation(s)
- James C Padussis
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
31
|
Han YH, Kim SH, Kim SZ, Park WH. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) as an O2(*-) generator induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells. Lung Cancer 2008; 63:201-9. [PMID: 18585819 DOI: 10.1016/j.lungcan.2008.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 04/22/2008] [Accepted: 05/05/2008] [Indexed: 01/14/2023]
Abstract
Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) is an uncoupler of mitochondrial oxidative phosphorylation in eukaryotic cells. Here, we investigated an involvement of O(2)(*-) and GSH in FCCP-induced Calu-6 cell death and examined whether ROS scavengers rescue cells from FCCP-induced cell death. Levels of intracellular O(2)(*-) were markedly increased depending on the concentrations (5-100 microM) of FCCP. A depletion of intracellular GSH content was also observed after exposing cells to FCCP. Stable SOD mimetics, Tempol and Tiron did not change the levels of intracellular O(2)(*-), apoptosis and the loss of mitochondrial membrane potential (DeltaPsi(m)). Treatment with thiol antioxidants, NAC and DTT, showed the recovery of GSH depletion and the reduction of O(2)(*-) levels in FCCP-treated cells, which were accompanied by the inhibition of apoptosis. In contrast, BSO, a well-known inhibitor of GSH synthesis, aggravated GSH depletion, oxidative stress of O(2)(*-) and cell death in FCCP-treated cells. Taken together, our data suggested that FCCP as an O(2)(*-) generator, induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells.
Collapse
Affiliation(s)
- Yong Hwan Han
- Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University, Jeonju 561-180, Republic of Korea
| | | | | | | |
Collapse
|
32
|
Ong PL, Weng BC, Lu FJ, Lin ML, Chang TT, Hung RP, Chen CH. The anticancer effect of protein-extract from Bidens alba in human colorectal carcinoma SW480 cells via the reactive oxidative species- and glutathione depletion-dependent apoptosis. Food Chem Toxicol 2007; 46:1535-47. [PMID: 18226850 DOI: 10.1016/j.fct.2007.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/30/2007] [Accepted: 12/09/2007] [Indexed: 10/22/2022]
Abstract
Bidens alba has been used for healing cuts, injuries, swellings, hypertension, jaundice, and diabetes in some countries. However, the effect of B. alba on human cancer remains poorly understood. The goal of this study was to investigate whether B. alba protein-extract could have an anticancer property against human colorectal cancer. The human colorectal cancer SW 480 cells treated with the protein-extract of B. alba would cause marked DNA damages and apoptosis-related cellular morphologies. Treatment with 225 microg/ml B. alba protein-extract also led to the SW480 cells to produce readily intracellular reactive oxygen species (ROS) after 1h of treatment and last to 24 h. The intracellular glutathione (GSH) depletion occurred after 12-24h of treatment. The treatment of the protein-extract would also caused mitochondrial transmembrane potential (DeltaPsi(m)) to decrease and cytosolic cytochrome c to increase. The caspase 3/7 activities were activated from 3 to 6 h after the treatment. The percentages of apoptosis induced by the protein-extract of B. alba decreased 26.4%, 10.1%, and 29.4% when the SW 480 cells were pretreated with Vitamin C, N-acetylcysteine, and Boc-Asp(OMe)-fmk, respectively. Taken together, we demonstrated for the first time that the protein-extract of B. alba could induce apoptosis that was related to the ROS production and GSH depletion in human colorectal cancer. The protein-extract of B. alba might have therapeutic value against the human colorectal cancer.
Collapse
Affiliation(s)
- Ping-Lin Ong
- Department of Biochemical Science and Technology, College of Life Sciences, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Pastorino F, Mumbengegwi DR, Ribatti D, Ponzoni M, Allen TM. Increase of therapeutic effects by treating melanoma with targeted combinations of c-myc antisense and doxorubicin. J Control Release 2007; 126:85-94. [PMID: 18166243 DOI: 10.1016/j.jconrel.2007.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/13/2007] [Indexed: 11/26/2022]
Abstract
Patients with advanced or metastatic melanoma have a very poor prognosis, due to the resistance of melanoma cells to conventional chemotherapy. We previously reported that coated cationic liposomes targeted with a monoclonal antibody against the disialoganglioside GD(2) and containing c-myc antisense oligodeoxynucleotides (alpha GD(2)-CCL[c-myc-as]) induced partial tumor growth arrest in melanoma xenografts. Here we addressed the role of c-myc-asODN treatment in the susceptibility to doxorubicin (DXR) in human melanoma cells. Cytotoxicity studies revealed that growth of melanoma cells was inhibited to a greater extent by alpha GD(2)-CCL[c-myc-as] than by the corresponding non-targeted formulations or by free c-myc-as. Targeted c-myc-as sensitized cells to DXR, reducing the IC(50) by approximately 10-fold. Scrambled ODNs had no effect on the IC(50) of DXR. Compared to either treatment alone, combination of targeted c-myc-as and DXR resulted in earlier apoptosis and in cell death after 2 days of treatment. In vivo experiments revealed that liposomal formulations of c-myc-as and DXR, both targeted via GD(2), led to the most pronounced delay in tumor growth when administered in a sequential manner. As a result, their combination translates into a statistically significant suppression of blood vessel density and an enhanced apoptosis, compared to all treatments given separately. Our data indicate the increasing cell sensitivity to DXR by c-myc-asODNs as a promising basis for developing novel anti-tumor strategy against advanced melanoma.
Collapse
Affiliation(s)
- Fabio Pastorino
- Differentiation Therapy Unit, Laboratory of Oncology, G. Gaslini Children's Hospital, 16148-Genoa, Italy.
| | | | | | | | | |
Collapse
|
34
|
Vita F, Abbate R, Borelli V, Brochetta C, Soranzo MR, Zabucchi G. BCG-induced rabbit alveolar macrophages are endowed with strengthened antioxidant metabolic pathways. Inflammation 2007; 31:9-23. [PMID: 17909954 DOI: 10.1007/s10753-007-9045-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/23/2007] [Indexed: 10/22/2022]
Abstract
Following i.v. BCG infection, a new population of macrophages are recruited in the rabbit lung. These macrophages, known as activated macrophages, substitute the resident macrophages and can play a key role in the defence against mycobacteria. We report here that BCG-activated alveolar macrophages are equipped with a more active hexose monophosphate pathway, which can maintain an optimal intracellular concentration of NADPH and GSH, and allow to produce mycobactericidal free radicals and to become resistant to mycobacterium-induced programmed cell death. These findings suggest that sustaining the anti-oxidant properties of macrophages could represent a candidate process to be considered as a good therapeutic target in fighting Mycobacterium spp infections.
Collapse
Affiliation(s)
- Francesca Vita
- Dipartimento di Fisiologia e Patologia, Università di Trieste, Trieste, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Leonetti C, Biroccio A, D'Angelo C, Semple SC, Scarsella M, Zupi G. Therapeutic integration of c-myc and bcl-2 antisense molecules with docetaxel in a preclinical model of hormone-refractory prostate cancer. Prostate 2007; 67:1475-85. [PMID: 17654511 DOI: 10.1002/pros.20636] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The response of hormone-refractory prostate cancer (HRPC) to chemotherapy remains modest, necessitating the search for new forms of treatment to improve the prognosis. Since an increased expression of oncogenes, including c-myc and bcl-2, accompanies the transition to HRPC, we evaluated whether the concomitant downregulation of these oncogenes by antisense strategy sensitized HRPC to chemotherapy. METHODS PC-3 prostate cancer cells were exposed in vitro to c-myc (INX-6295) and bcl-2 (G3139) antisense oligodeoxynucleotides (ODNs) and docetaxel given alone or in combination. Therapeutic efficacy of the different treatments was also evaluated in xenografts. RESULTS We show that the triple combination of drugs given in the sequence G3139/docetaxel/INX-6295 was the most active in reducing the survival of PC-3. Likewise, the combination triggered apoptosis in more than 80% of cells. A marked tumor weight inhibition was observed in PC-3 xenografts after G3139/docetaxel/INX-6295 treatment, with a complete tumor regression being noted in half the mice. A 111% overall increase in life survival and a complete cure in two out of eight mice was also reported. This treatment remained effective even when started at a very late stage of tumor growth producing about 80% tumor weight inhibition (TWI), with tumor regression being maintained for 1 month. Finally, the antitumor effect resulted in a significant increase (70%) in mice survival. CONCLUSIONS These data indicate that the combined targeting of genes involved in uncontrolled proliferation and evasion of apoptosis renders HRPC responsive to chemotherapy making this treatment a promising antineoplastic strategy.
Collapse
Affiliation(s)
- Carlo Leonetti
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Benassi B, Zupi G, Biroccio A. γ-Glutamylcysteine Synthetase Mediates the c-Myc-Dependent Response to Antineoplastic Agents in Melanoma Cells. Mol Pharmacol 2007; 72:1015-23. [PMID: 17628013 DOI: 10.1124/mol.107.038687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aims to investigate the role of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme for glutathione (GSH) synthesis, in the c-Myc-dependent response to antineoplastic agents. We found that specific c-Myc inhibition depleted cells of GSH by directly reducing the gene expression of both heavy and light subunits of the gamma-GCS enzyme and increased their susceptibility to antineoplastic drugs with different mechanisms of action, such as cisplatin (CDDP), staurosporine (STR), and 5-fluorouracil (5-FU). The effect caused by c-Myc inhibition on CDDP and STR response, but not to 5-FU treatment, is directly linked to the impairment of the gamma-GCS expression, because up-regulation of gamma-GCS reverted drug sensitivity, whereas the interference of GSH synthesis increased drug susceptibility as much as after c-Myc down-regulation. The role of gamma-GCS in the c-Myc-directed drug response depends on the capacity of drugs to trigger reactive oxygen species (ROS) production. Indeed, although 5-FU exposure did not induce any ROS, CDDP- and STR-induced oxidative stress enhanced the recruitment of c-Myc on both gamma-GCS promoters, thus stimulating GSH neosynthesis and allowing cells to recover from ROS-induced drug damage. In conclusion, our data demonstrate that the gamma-GCS gene is the downstream target of c-Myc oncoprotein, driving the response to ROS-inducing drugs. Thus, gamma-GCS impairment might specifically sensitize high c-Myc tumor cells to chemotherapy.
Collapse
Affiliation(s)
- Barbara Benassi
- Experimental Chemotherapy Laboratory, Experimental Research Center, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | |
Collapse
|
37
|
Coban YK, Ergun Y, Ciralik H. Depletion of glutathione by buthionine sulfoximine decreases random-pattern skin flap viability in rats. J Surg Res 2007; 143:247-52. [PMID: 17583742 DOI: 10.1016/j.jss.2007.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Revised: 01/31/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Glutathione (GSH) is one of the most highly concentrated intracellular antioxidants. Exogenous GSH has been shown to increase random-pattern skin flap survival. However, the effects of endogenous GSH depletion on random-pattern skin flap viability have never been studied. MATERIALS AND METHODS To evaluate the effects of systemic glutathione depletion on random-pattern skin flap survival in rats, 28 Wistar albino rats were divided into control, sham, and BSO (buthionine sulfoximide, a selective inhibitor for gamma-glutamylcysteine synthetase) groups. Dorsal, cranial-based random-pattern skin-flaps were elevated and the percentage of flap necrosis was measured in all rats at the postoperative day 7. RESULTS BSO-treated rats showed increased skin flap necrosis when compared with untreated animals (P < 0.001). High-dose BSO treatment group had more clinically evident necrosis than low dose group (P < 0.05). CONCLUSIONS This study reveals the importance of endogenous GSH for random skin-flap viability.
Collapse
Affiliation(s)
- Yusuf Kenan Coban
- Department of Plastic Surgery, Sutcuimam University School of Medicine, Kahramanmaras, Turkey.
| | | | | |
Collapse
|
38
|
Ramer R, Eichele K, Hinz B. Upregulation of tissue inhibitor of matrix metalloproteinases-1 confers the anti-invasive action of cisplatin on human cancer cells. Oncogene 2007; 26:5822-7. [PMID: 17369856 DOI: 10.1038/sj.onc.1210358] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer cell invasion is one of the crucial events in local spreading, growth and metastasis of tumors. The present study investigates the mechanism underlying the anti-invasive action of the chemotherapeutic cisplatin. In human cervical carcinoma cells (HeLa), cisplatin caused a time- and concentration-dependent suppression of cell invasion through Matrigel. Inhibition of invasion was accompanied by upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), whereas levels of matrix metalloproteinase-2 (MMP-2), MMP-9 and TIMP-2 remained unchanged. Cisplatin's effects on TIMP-1 expression and invasion were associated with phosphorylations of p38 and p42/44 mitogen-activated protein kinases and were abrogated by specific inhibitors of both pathways. The impact of TIMP-1 in the anti-invasive action of cisplatin was proven by transfecting cells with small interfering RNA targeting TIMP-1, which completely reversed suppression of invasion by cisplatin. A functional relevance of TIMP-1 upregulation was substantiated by findings showing a concentration-dependent inhibition of Matrigel invasion by recombinant TIMP-1. The essential role of TIMP-1 in the anti-invasive action of cisplatin was confirmed using another human cervical carcinoma cell line (C33A) and human lung carcinoma cells (A549). Altogether, our data demonstrate a hitherto unknown mechanism by which cisplatin exerts its antimetastatic properties on highly invasive cancer cells.
Collapse
Affiliation(s)
- R Ramer
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
39
|
Wang YM, Peng SQ, Zhou Q, Wang MW, Yan CH, Yang HY, Wang GQ. Depletion of intracellular glutathione mediates butenolide-induced cytotoxicity in HepG2 cells. Toxicol Lett 2006; 164:231-8. [PMID: 16495022 DOI: 10.1016/j.toxlet.2006.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 01/18/2023]
Abstract
Butenolide, 4-acetamido-4-hydroxy-2-butenoic acid gamma-lactone is one of the mycotoxins produced by Fusarium species which are often found on cereal grains and animal feeds throughout the world. It has been implicated as the etiology of some diseases both in animals and in humans. Though butenolide represents a potential threat to animal and human heath, there are few studies on its toxicity so far, especially on the toxic mechanisms. In this study, we investigated the cytotoxicity of butenolide on HepG2 cells and its possible mechanism from the viewpoint of oxidative stress. Butenolide reduced cell viability in a concentration- and time-dependent manner. A rapid depletion of intracellular glutathione (GSH) was observed after exposure cells to butenolide, concomitantly an increase in intracellular reactive oxygen species (ROS) production prior to cell death, indicating that oxidative stress was involved in butenolide cytotoxicity. To elucidate the role of GSH in the cytotoxicity of butenolide, intracellular GSH content was modulated before exposure to butenolide. l-buthionine-[S,R]-sulfoximine (BSO), a well-known inhibitor of GSH synthesis, aggravated butenolide-induced GSH depletion, ROS production and the loss in cell viability; in contrast, GSH depletion and ROS production was strongly inhibited, and the loss in cell viability was completely abrogated by thiol-containing compounds GSH, N-acetylcysteine (NAC) and dithiothreitol (DTT). Furthermore, a ROS scavenger catalase obviously abated ROS production and cytotoxicity induced by butenolide. Together, these results clearly demonstrate that oxidative stress plays an important role in butenolide cytotoxicity, and intracellular GSH depletion may be an original trigger of the onset of butenolide cytotoxicity.
Collapse
Affiliation(s)
- Yi-Mei Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M, Zupi G, Biroccio A. c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell 2006; 21:509-19. [PMID: 16483932 DOI: 10.1016/j.molcel.2006.01.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/18/2005] [Accepted: 01/09/2006] [Indexed: 11/17/2022]
Abstract
Aside from the well-established roles of c-Myc in the regulation of cell cycle, differentiation, and apoptosis, a recent picture is beginning to emerge linking c-Myc to the regulation of metabolic pathways. Here, we define a further function for c-Myc in determining cellular redox balance, identifying glutathione (GSH) as the leading molecule mediating this process. The link between c-Myc and GSH is gamma-glutamyl-cysteine synthetase (gamma-GCS), the rate-limiting enzyme catalyzing GSH biosynthesis. Indeed, c-Myc transcriptionally regulates gamma-GCS by binding and activating the promoters of both gamma-GCS heavy and light subunits. Exposure to H2O2 enhances c-Myc recruitment to gamma-GCS regulatory regions through ERK-dependent phosphorylation. Phosphorylation at Ser-62 is required for c-Myc recruitment to gamma-GCS promoters and determines the cellular response to oxidative stress induced by different stimuli. Thus, the c-Myc phosphorylation-dependent activation of the GSH-directed survival pathway can contribute to oxidative stress resistance in tumor cells, which generally exhibit deregulated c-Myc expression.
Collapse
Affiliation(s)
- Barbara Benassi
- Experimental Chemotherapy Laboratory, Experimental Research Center, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rehemtulla A, Ross BD. A review of the past, present, and future directions of neoplasia. Neoplasia 2006; 7:1039-46. [PMID: 16354585 PMCID: PMC1501177 DOI: 10.1593/neo.05793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
42
|
Bressin C, Bourgarel-Rey V, Carré M, Pourroy B, Arango D, Braguer D, Barra Y. Decrease in c-Myc activity enhances cancer cell sensitivity to vinblastine. Anticancer Drugs 2006; 17:181-7. [PMID: 16428936 DOI: 10.1097/00001813-200602000-00009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The c-myc oncogene encodes for a transcriptional factor involved in many cellular processes such as proliferation, differentiation and apoptosis. According to these different functions, the role of c-Myc protein in cellular sensitivity to anti-cancer drugs is controversial. We defined the role of c-Myc in cancer cell sensitivity to vinblastine (VLB) using human colon cancer cells: LoVo wild-type or transfected with a plasmid containing the human c-myc gene in antisense orientation (LoVo-mycANS). Analysis of VLB cytotoxicity demonstrated a 3-fold increase in VLB sensitivity in LoVo-mycANS cells. Comparison between cells revealed different apoptosis kinetics: accumulation of cells in sub-G1 phase and poly(ADP-ribose) polymerase cleavage occurred earlier in LoVo-mycANS. Then, we demonstrated a mitochondrial membrane potential disruption followed by cytochrome c release that indicates the involvement of mitochondria in this apoptotic signaling pathway. This earlier apoptosis was accompanied by a Bcl-2 decrease and a p53 increase. In conclusion, the decrease in c-Myc expression enhanced the VLB sensitivity, triggering earlier apoptosis through induction of the intrinsic pathway. Thus, c-myc induction is a resistance factor and our findings suggest that tumors carrying low levels of c-Myc protein could be more responsive to vinca alkaloids treatment. Moreover, the downregulation of c-myc oncogene by an antisense strategy might represent a useful goal for improving the efficacy of this anti-neoplastic drug family.
Collapse
Affiliation(s)
- Céline Bressin
- CNRS FRE 2737, UFR Pharmacie, University of La Mediterranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Del Bufalo D, Rizzo A, Trisciuoglio D, Cardinali G, Torrisi MR, Zangemeister-Wittke U, Zupi G, Biroccio A. Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ 2005; 12:1429-38. [PMID: 15920535 DOI: 10.1038/sj.cdd.4401670] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Here, we investigated the role of telomerase on Bcl-2-dependent apoptosis. To this end, the 4625 Bcl-2/Bcl-xL bispecific antisense oligonucleotide and the HA14-1 Bcl-2 inhibitor were used. We found that apoptosis induced by 4625 oligonucleotide was associated with decreased Bcl-2 protein expression and telomerase activity, while HA14-1 triggered apoptosis without affecting both Bcl-2 and telomerase levels. Interestingly, HA14-1 treatment resulted in a profound change from predominantly nuclear to a predominantly cytoplasmic localization of hTERT. Downregulation of endogenous hTERT protein by RNA interference markedly increased apoptosis induced by both 4625 and HA14-1, while overexpression of wild-type hTERT blocked Bcl-2-dependent apoptosis in a p53-independent manner. Catalytically and biologically inactive hTERT mutants showed a similar behavior as the wild-type form, indicating that hTERT inhibited the 4625 and HA14-1-induced apoptosis regardless of telomerase activity and its ability to lengthening telomeres. Finally, hTERT overexpression abrogated 4625 and HA14-1-induced mitochondrial dysfunction and nuclear translocation of hTERT. In conclusion, our results demonstrate that hTERT is involved in mitochondrial apoptosis induced by targeted inhibition of Bcl-2.
Collapse
Affiliation(s)
- D Del Bufalo
- Experimental Chemotherapy Laboratory, Experimental Research Center, Regina Elena Cancer Institute, Rome 00158, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kohno K, Uchiumi T, Niina I, Wakasugi T, Igarashi T, Momii Y, Yoshida T, Matsuo KI, Miyamoto N, Izumi H. Transcription factors and drug resistance. Eur J Cancer 2005; 41:2577-86. [PMID: 16209921 DOI: 10.1016/j.ejca.2005.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intrinsic or acquired resistance to anticancer agents is a major obstacle to the success of chemotherapy. Anticancer agents are known to modulate signal transduction pathways and alter expression of genes that play an important role in drug resistance. Emerging evidence suggests that the complexity of genomic response against anticancer agents arise from elaborate gene expression by multiple transcription factors. Here, we briefly describe the development of solid tumours and the appearance of drug-resistant cells. We also review what is known of the transcription factors that are involved in resistance to drugs, particularly cisplatin.
Collapse
Affiliation(s)
- Kimitoshi Kohno
- Department of Molecular Biology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Fukuoka 807-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
McEligot AJ, Yang S, Meyskens FL. REDOX REGULATION BY INTRINSIC SPECIES AND EXTRINSIC NUTRIENTS IN NORMAL AND CANCER CELLS. Annu Rev Nutr 2005; 25:261-95. [PMID: 16011468 DOI: 10.1146/annurev.nutr.25.050304.092633] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells in multicellular organisms are exposed to both endogenous oxidative stresses generated metabolically and to oxidative stresses that originate from neighboring cells and from other tissues. To protect themselves from oxidative stress, cells are equipped with reducing buffer systems (glutathione/GSH and thioredoxin/thioredoxin reductase) and have developed several enzymatic mechanisms against oxidants that include catalase, superoxide dismutase, and glutathione peroxidase. Other major extrinsic defenses (from the diet) include ascorbic acid, beta-carotene and other carotenoids, and selenium. Recent evidence indicates that in addition to their antioxidant function, several of these redox species and systems are involved in regulation of biological processes, including cellular signaling, transcription factor activity, and apoptosis in normal and cancer cells. The survival and overall well-being of the cell is dependent upon the balance between the activity and the intracellular levels of these antioxidants as well as their interaction with various regulatory factors, including Ref-1, nuclear factor-kappaB, and activating protein-1.
Collapse
Affiliation(s)
- Archana Jaiswal McEligot
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868, USA.
| | | | | |
Collapse
|
46
|
Coming of Age in the Life of Neoplasia. Neoplasia 2004. [DOI: 10.1593/neo.6-6ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|