1
|
Saadh MJ, Allela OQB, Sattay ZJ, Al Zuhairi RAH, Ahmad H, Eldesoky GE, Adil M, Ali MS. Deciphering the functional landscape and therapeutic implications of noncoding RNAs in the TGF-β signaling pathway in colorectal cancer: A comprehensive review. Pathol Res Pract 2024; 255:155158. [PMID: 38320438 DOI: 10.1016/j.prp.2024.155158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Colorectal cancer (CRC) remains a major global health concern, necessitating an in-depth exploration of the intricate molecular mechanisms underlying its progression and potential therapeutic interventions. Transforming Growth Factor-β (TGF-β) signaling, a pivotal pathway implicated in CRC plays a dual role as a tumor suppressor in the early stages and a promoter of tumor progression in later stages. Recent research has shed light on the critical involvement of noncoding RNAs (ncRNAs) in modulating the TGF-β signaling pathway, introducing a new layer of complexity to our understanding of CRC pathogenesis. This comprehensive review synthesizes the current state of knowledge regarding the function and therapeutic potential of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the context of TGF-β signaling in CRC. The intricate interplay between these ncRNAs and key components of the TGF-β pathway is dissected, revealing regulatory networks that contribute to the dynamic balance between tumor suppression and promotion. Emphasis is placed on how dysregulation of specific ncRNAs can disrupt this delicate equilibrium, fostering CRC initiation, progression, and metastasis. Moreover, the review provides a critical appraisal of the emerging therapeutic strategies targeting ncRNAs associated with TGF-β signaling in CRC. The potential of these ncRNAs as diagnostic and prognostic biomarkers is discussed, highlighting their clinical relevance. Additionally, the challenges and prospects of developing RNA-based therapeutics, such as RNA interference and CRISPR/Cas-based approaches, are explored in the context of modulating TGF-β signaling for CRC treatment. In conclusion, this review offers a comprehensive overview of the intricate interplay between ncRNAs and the TGF-β signaling pathway in CRC. By unraveling the functional significance of these regulatory elements, we gain valuable insights into the molecular landscape of CRC, paving the way for the development of novel and targeted therapeutic interventions aimed at modulating the TGF-β signaling cascade through the manipulation of ncRNAs.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Zahraa Jasim Sattay
- Department of Medical Laboratory Technology l, University of imam Jaafar Al-Sadiq, Iraq
| | | | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, Rome 00186, Italy; Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Gaber E Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
2
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Petillo S, Sproviero E, Loconte L, Cuollo L, Zingoni A, Molfetta R, Fionda C, Soriani A, Cerboni C, Petrucci MT, Fazio F, Paolini R, Santoni A, Cippitelli M. NEDD8-activating enzyme inhibition potentiates the anti-myeloma activity of natural killer cells. Cell Death Dis 2023; 14:438. [PMID: 37460534 DOI: 10.1038/s41419-023-05949-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Natural Killer (NK) cells act as important regulators in the development and progression of hematological malignancies and their suppressor activity against Multiple Myeloma (MM) cells has been confirmed in many studies. Significant changes in the distribution of NK cell subsets and dysfunctions of NK cell effector activities were described in MM patients and correlated with disease staging. Thus, restoring or enhancing the functionality of these effectors for the treatment of MM represents a critical need. Neddylation is a post-translational modification that adds a ubiquitin-like molecule, NEDD8, to the substrate protein. One of the outcomes is the activation of the Cullin Ring Ligases (CRLs), a class of ubiquitin-ligases that controls the degradation of about 20% of proteasome-regulated proteins. Overactivation of CRLs has been described in cancer and can lead to tumor growth and progression. Thus, targeting neddylation represents an attractive approach for cancer treatment. Our group has recently described how pharmacologic inhibition of neddylation increases the expression of the NKG2D activating receptor ligands, MICA and MICB, in MM cells, making these cells more susceptible to NK cell degranulation and killing. Here, we extended our investigation to the direct role of neddylation on NK cell effector functions exerted against MM. We observed that inhibition of neddylation enhanced NK cell-mediated degranulation and killing against MM cells and improved Daratumumab/Elotuzumab-mediated response. Mechanistically, inhibition of neddylation increased the expression of Rac1 and RhoA GTPases in NK cells, critical mediators for an efficient degranulation at the immunological synapse of cytotoxic lymphocytes, and augmented the levels of F-actin and perforin polarization in NK cells contacting target cells. Moreover, inhibition of neddylation partially abrogated TGFβ-mediated repression of NK cell effector activity. This study describes the role of neddylation on NK cell effector functions and highlights the positive immunomodulatory effects achieved by the inhibition of this pathway in MM.
Collapse
Affiliation(s)
- Sara Petillo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Sproviero
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Loconte
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Fazio
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS, Neuromed, Pozzilli, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Yang L, Zhou W, Lin H. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer. Front Oncol 2021; 10:610663. [PMID: 33718111 PMCID: PMC7950759 DOI: 10.3389/fonc.2020.610663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Smad ubiquitination regulatory factors (Smurfs) belong to the Nedd4 subfamily of HECT-type E3 ubiquitin ligases. Under normal situations, Smurfs are exactly managed by upstream regulators, and thereby strictly control tumor biological processes, including cell growth, differentiation, apoptosis, polarization, epithelial mesenchymal transition (EMT), and invasion. Disruption of Smurf activity has been implicated in cancer progression, and Smurf activity is controlled by a series of posttranslational modifications (PTMs), including phosphorylation, ubiquitination, neddylation, sumoylation, and methylation. The effect and function of Smurfs depend on PTMs and regulate biological processes. Specifically, these modifications regulate the functional expression of Smurfs by affecting protein degradation and protein interactions. In this review, we summarize the complexity and diversity of Smurf PTMs from biochemical and biological perspectives and highlight the understanding of their roles in cancer.
Collapse
Affiliation(s)
- Longtao Yang
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Wenwen Zhou
- Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
RNF11 at the Crossroads of Protein Ubiquitination. Biomolecules 2020; 10:biom10111538. [PMID: 33187263 PMCID: PMC7697665 DOI: 10.3390/biom10111538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis.
Collapse
|
6
|
Mattioni A, Boldt K, Auciello G, Komada M, Rappoport JZ, Ueffing M, Castagnoli L, Cesareni G, Santonico E. Ring Finger Protein 11 acts on ligand-activated EGFR via the direct interaction with the UIM region of ANKRD13 protein family. FEBS J 2020; 287:3526-3550. [PMID: 31985874 DOI: 10.1111/febs.15226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/13/2019] [Accepted: 01/22/2020] [Indexed: 01/07/2023]
Abstract
RING finger protein 11 (RNF11) is an evolutionary conserved Really Interesting New Gene E3 ligase that is overexpressed in several human tumours. Although several reports have highlighted its involvement in crucial cellular processes, the mechanistic details underlying its function are still poorly understood. Utilizing stable isotope labelling by amino acids in culture (SILAC)-based proteomics analysis, we identified 51 proteins that co-immunoprecipitate with wild-type RNF11 and/or with its catalytically inactive mutant. We focused our attention on the interaction of RNF11 with Ankyrin repeat domain-containing protein 13 (ANKRD13)s family. Members of the ANKRD13 family contain ubiquitin-interacting motifs (UIM) that recognize the Lys-63-linked ubiquitin (Ub) chains appended to Epidermal growth factor receptor (EGFR) soon after ligand binding. We show that ANKRD13A, ANKRD13B and ANKRD13D form a complex with RNF11 in vivo and that the UIMs are required for complex formation. However, at odds with the conventional UIM binding mode, Ub modification of RNF11 is not required for the interaction with ANKRD13 proteins. We also show that the interaction between ANKRD13A and RNF11 is modulated by the EGF stimulus and that a complex formed by ANKRD13A, RNF11 and activated EGFR is transiently assembled in the early phases of receptor endocytosis. Moreover, loss of function of the E3 ligases Itchy E3 ubiquitin-protein ligase (ITCH) or RNF11, respectively, abrogates or increases the ubiquitination of endogenous ANKRD13A, affecting its ability to bind activated EGFR. We propose a model whereby the ANKRD13 proteins act as molecular scaffolds that promote the transient formation of a complex between the activated EGFR and the E3 ligases ITCH and RNF11. By regulating the ubiquitination status of ANKRD13A and consequently its endocytic adaptor function, RNF11 promotes sorting of the activated EGFR for lysosomal degradation.
Collapse
Affiliation(s)
- Anna Mattioni
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Karsten Boldt
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Giulio Auciello
- Istituto di Ricerche di Biologia Molecolare (IRBM), Pomezia, Italy
| | - Masayuki Komada
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Marius Ueffing
- Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | | | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Italy
| |
Collapse
|
7
|
Yuan T, Chen Z, Yan F, Qian M, Luo H, Ye S, Cao J, Ying M, Dai X, Gai R, Yang B, He Q, Zhu H. Deubiquitinating enzyme USP10 promotes hepatocellular carcinoma metastasis through deubiquitinating and stabilizing Smad4 protein. Mol Oncol 2019; 14:197-210. [PMID: 31721429 PMCID: PMC6944132 DOI: 10.1002/1878-0261.12596] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/10/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most prevalent life-threatening cancers, and the high mortality rate is largely due to the metastasis. The sustained activation of Smad4 and transforming growth factor-β (TGF-β) is closely associated with advanced HCC metastasis. However, the regulatory mechanism underlying the aberrant activation of Smad4 and TGF-β pathway remains elusive. In this study, using a functional screen of USPs siRNA library, we identified ubiquitin-specific proteases USP10 as a deubiquitinating enzyme (DUB) that sustains the protein level of Smad4 and activates TGF-β signaling. Further analysis showed that USP10 directly interacts with Smad4 and stabilizes it through the cleavage of its proteolytic ubiquitination, thus promoting HCC metastasis. The suppression of USP10 by either shRNAs or catalytic inhibitor Spautin-1 significantly inhibited the migration of HCC cells, whereas the reconstitution of Smad4 was able to efficiently rescue this defect. Overall, our study not only uncovers the regulatory effect of USP10 on the protein abundance of Smad4, but also indicates that USP10 could be regarded as a potential intervention target for the metastatic HCC in Smad4-positive patients.
Collapse
Affiliation(s)
- Tao Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zibo Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Luo
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Song Ye
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyang Dai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Renhua Gai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Reprogrammed Cells Display Distinct Proteomic Signatures Associated with Colony Morphology Variability. Stem Cells Int 2019; 2019:8036035. [PMID: 31827534 PMCID: PMC6885794 DOI: 10.1155/2019/8036035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are of high interest because they can be differentiated into a vast range of different cell types. Ideally, reprogrammed cells should sustain long-term culturing in an undifferentiated state. However, some reprogrammed cell lines represent an unstable state by spontaneously differentiating and changing their cellular phenotype and colony morphology. This phenomenon is not fully understood, and no method is available to predict it reliably. In this study, we analyzed and compared the proteome landscape of 20 reprogrammed cell lines classified as stable and unstable based on long-term colony morphology. We identified distinct proteomic signatures associated with stable colony morphology and with unstable colony morphology, although the typical pluripotency markers (POU5F1, SOX2) were present with both morphologies. Notably, epithelial to mesenchymal transition (EMT) protein markers were associated with unstable colony morphology, and the transforming growth factor beta (TGFB) signalling pathway was predicted as one of the main regulator pathways involved in this process. Furthermore, we identified specific proteins that separated the stable from the unstable state. Finally, we assessed both spontaneous embryonic body (EB) formation and directed differentiation and showed that reprogrammed lines with an unstable colony morphology had reduced differentiation capacity. To conclude, we found that different defined patterns of colony morphology in reprogrammed cells were associated with distinct proteomic profiles and different outcomes in differentiation capacity.
Collapse
|
9
|
New Aspects of HECT-E3 Ligases in Cell Senescence and Cell Death of Plants. PLANTS 2019; 8:plants8110483. [PMID: 31717304 PMCID: PMC6918304 DOI: 10.3390/plants8110483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 01/17/2023]
Abstract
Plant cells undergo massive orderly changes in structure, biochemistry, and gene expression during cell senescence. These changes cannot be distinguished from the hydrolysis/degradation function controlled by the ubiquitination pathway, autophagy, and various hydrolases in cells. In this mini-review, we summarized current research progress that the human HECT (homologous to the E6AP carboxyl terminus)-type ubiquitin E3 ligases have non-redundant functions in regulating specific signaling pathways, involved in a number of human diseases, especially aging-related diseases, through the influence of DNA repair, protein stability, and removal efficiency of damaged proteins or organelles. We further compared HECT E3 ligases’ structure and functions between plant and mammalian cells, and speculated new aspects acting as degrading signals and regulating signals of HECT E3 ligase in cell senescence and the cell death of plants.
Collapse
|
10
|
Wang J, Yang ZY, Guo YF, Kuang JY, Bian XW, Yu SC. Targeting different domains of gap junction protein to control malignant glioma. Neuro Oncol 2019; 20:885-896. [PMID: 29106645 DOI: 10.1093/neuonc/nox207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A rational treatment strategy for glioma, the most common primary central nervous system tumor, should focus on early invasive growth and resistance to current therapeutics. Connexin 43 (Cx43), a gap junction protein, plays important roles not only in the development of the central nervous system and but also in the progression of glioma. The different structural domains of Cx43, including extracellular loops, transmembrane domains, and an intracellular carboxyl terminal, have distinct functions in the invasion and proliferation of gliomas. Targeting these domains of Cx43, which is expressed in distinct patterns in the heterogeneous glioma cell population, can inhibit tumor cell invasion and new tumor formation. Thus, this review summarizes the structural characteristics of Cx43, the effects of regulating different Cx43 domains on the biological characteristics of glioma cells, intervention strategies targeting different domains of Cx43, and future research directions.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Ze-Yu Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| |
Collapse
|
11
|
Li CJ, Chu PY, Yiang GT, Wu MY. The Molecular Mechanism of Epithelial-Mesenchymal Transition for Breast Carcinogenesis. Biomolecules 2019; 9:biom9090476. [PMID: 31514467 PMCID: PMC6770718 DOI: 10.3390/biom9090476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway plays multiple regulatory roles in the tumorigenesis and development of cancer. TGF-β can inhibit the growth and proliferation of epithelial cells and induce apoptosis, thereby playing a role in inhibiting breast cancer. Therefore, the loss of response in epithelial cells that leads to the inhibition of cell proliferation due to TGF-β is a landmark event in tumorigenesis. As tumors progress, TGF-β can promote tumor cell invasion, metastasis, and drug resistance. At present, the above-mentioned role of TGF-β is related to the interaction of multiple signaling pathways in the cell, which can attenuate or abolish the inhibition of proliferation and apoptosis-promoting effects of TGF-β and enhance its promotion of tumor progression. This article focuses on the molecular mechanisms through which TGF-β interacts with multiple intracellular signaling pathways in tumor progression and the effects of these interactions on tumorigenesis.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
12
|
Majolée J, Kovačević I, Hordijk PL. Ubiquitin-based modifications in endothelial cell-cell contact and inflammation. J Cell Sci 2019; 132:132/17/jcs227728. [PMID: 31488505 DOI: 10.1242/jcs.227728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-cell contacts are essential for vascular integrity and physiology, protecting tissues and organs from edema and uncontrolled invasion of inflammatory cells. The vascular endothelial barrier is dynamic, but its integrity is preserved through a tight control at different levels. Inflammatory cytokines and G-protein-coupled receptor agonists, such as histamine, reduce endothelial integrity and increase vascular leakage. This is due to elevated myosin-based contractility, in conjunction with phosphorylation of proteins at cell-cell contacts. Conversely, reducing contractility stabilizes or even increases endothelial junctional integrity. Rho GTPases are key regulators of such cytoskeletal dynamics and endothelial cell-cell contacts. In addition to signaling-induced regulation, the expression of junctional proteins, such as occludin, claudins and vascular endothelial cadherin, also controls endothelial barrier function. There is increasing evidence that, in addition to protein phosphorylation, ubiquitylation (also known as ubiquitination) is an important and dynamic post-translational modification that regulates Rho GTPases, junctional proteins and, consequently, endothelial barrier function. In this Review, we discuss the emerging role of ubiquitylation and deubiquitylation events in endothelial integrity and inflammation. The picture that emerges is one of increasing complexity, which is both fascinating and promising given the clinical relevance of vascular integrity in the control of inflammation, and of tissue and organ damage.
Collapse
Affiliation(s)
- Jisca Majolée
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Igor Kovačević
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
13
|
Fuchs C, Medici G, Trazzi S, Gennaccaro L, Galvani G, Berteotti C, Ren E, Loi M, Ciani E. CDKL5 deficiency predisposes neurons to cell death through the deregulation of SMAD3 signaling. Brain Pathol 2019; 29:658-674. [PMID: 30793413 DOI: 10.1111/bpa.12716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare encephalopathy characterized by early onset epilepsy and severe intellectual disability. CDD is caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene, a member of a highly conserved family of serine-threonine kinases. Only a few physiological substrates of CDKL5 are currently known, which hampers the discovery of therapeutic strategies for CDD. Here, we show that SMAD3, a primary mediator of TGF-β action, is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes SMAD3 protein stability. Importantly, we found that restoration of the SMAD3 signaling through TGF-β1 treatment normalized defective neuronal survival and maturation in Cdkl5 knockout (KO) neurons. Moreover, we demonstrate that Cdkl5 KO neurons are more vulnerable to neurotoxic/excitotoxic stimuli. In vivo treatment with TGF-β1 prevents increased NMDA-induced cell death in hippocampal neurons from Cdkl5 KO mice, suggesting an involvement of the SMAD3 signaling deregulation in the neuronal susceptibility to excitotoxic injury of Cdkl5 KO mice. Our finding reveals a new function for CDKL5 in maintaining neuronal survival that could have important implications for susceptibility to neurodegeneration in patients with CDD.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Gennaccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisa Ren
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci 2018; 75:3121-3141. [PMID: 29858610 PMCID: PMC6063350 DOI: 10.1007/s00018-018-2848-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/09/2023]
Abstract
Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein-protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.
Collapse
Affiliation(s)
- Jasper Sluimer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus Medical Center, Wijtemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Chandhoke AS, Chanda A, Karve K, Deng L, Bonni S. The PIAS3-Smurf2 sumoylation pathway suppresses breast cancer organoid invasiveness. Oncotarget 2017; 8:21001-21014. [PMID: 28423498 PMCID: PMC5400561 DOI: 10.18632/oncotarget.15471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022] Open
Abstract
Tumor metastasis profoundly reduces the survival of breast cancer patients, but the mechanisms underlying breast cancer invasiveness and metastasis are incompletely understood. Here, we report that the E3 ubiquitin ligase Smurf2 acts in a sumoylation-dependent manner to suppress the invasive behavior of MDA-MB-231 human breast cancer cell-derived organoids. We also find that the SUMO E3 ligase PIAS3 inhibits the invasive growth of breast cancer cell-derived organoids. In mechanistic studies, PIAS3 maintains breast cancer organoids in a non-invasive state via sumoylation of Smurf2. Importantly, the E3 ubiquitin ligase activity is required for sumoylated Smurf2 to suppress the invasive growth of breast cancer-cell derived organoids. Collectively, our findings define a novel role for the PIAS3-Smurf2 sumoylation pathway in the suppression of breast cancer cell invasiveness. These findings lay the foundation for the development of novel biomarkers and targeted therapeutic approaches in breast cancer.
Collapse
Affiliation(s)
- Amrita Singh Chandhoke
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Ayan Chanda
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Kunal Karve
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Lili Deng
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada, T2N 4N1
| |
Collapse
|
16
|
Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG, Liu B. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun 2017; 8:318. [PMID: 28827661 PMCID: PMC5566498 DOI: 10.1038/s41467-017-00396-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Distant metastasis is the main cause of breast cancer-related death; however, effective therapeutic strategies targeting metastasis are still scarce. This is largely attributable to the spatiotemporal intratumor heterogeneity during metastasis. Here we show that protein deacetylase SIRT7 is significantly downregulated in breast cancer lung metastases in human and mice, and predicts metastasis-free survival. SIRT7 deficiency promotes breast cancer cell metastasis, while temporal expression of Sirt7 inhibits metastasis in polyomavirus middle T antigen breast cancer model. Mechanistically, SIRT7 deacetylates and promotes SMAD4 degradation mediated by β-TrCP1, and SIRT7 deficiency activates transforming growth factor-β signaling and enhances epithelial-to-mesenchymal transition. Significantly, resveratrol activates SIRT7 deacetylase activity, inhibits breast cancer lung metastases, and increases survival. Our data highlight SIRT7 as a modulator of transforming growth factor-β signaling and suppressor of breast cancer metastasis, meanwhile providing an effective anti-metastatic therapeutic strategy.Metastatic disease is the major reason for breast cancer-related deaths; therefore, a better understanding of this process and its players is needed. Here the authors report the role of SIRT7 in inhibiting SMAD4-mediated breast cancer metastasis providing a possible therapeutic avenue.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ni Xie
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Zuojun Liu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Minxian Qian
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Fanbiao Meng
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qingyang Xu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Mingyan Zhou
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xinyue Cao
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Baohua Liu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China.
- Center for Anti-aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
17
|
SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat Commun 2017; 8:14570. [PMID: 28216630 PMCID: PMC5321737 DOI: 10.1038/ncomms14570] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 01/10/2017] [Indexed: 01/17/2023] Open
Abstract
Coordination between osteoblasts and osteoclasts is required for bone health and homeostasis. Here we show that mice deficient in SMURF2 have severe osteoporosis in vivo. This low bone mass phenotype is accompanied by a pronounced increase in osteoclast numbers, although Smurf2-deficient osteoclasts have no intrinsic alterations in activity. Smurf2-deficient osteoblasts display increased expression of RANKL, the central osteoclastogenic cytokine. Mechanistically, SMURF2 regulates RANKL expression by disrupting the interaction between SMAD3 and vitamin D receptor by altering SMAD3 ubiquitination. Selective deletion of Smurf2 in the osteoblast lineage recapitulates the phenotype of germline Smurf2-deficient mice, indicating that SMURF2 regulates osteoblast-dependent osteoclast activity rather than directly affecting the osteoclast. Our results reveal SMURF2 as an important regulator of the critical communication between osteoblasts and osteoclasts. Furthermore, the bone mass phenotype in Smurf2- and Smurf1-deficient mice is opposite, indicating that SMURF2 has a non-overlapping and, in some respects, opposite function to SMURF1. The balance between osteoclast and osteoblast-mediated bone turnover is essential for bone health and homeostasis. Here the authors show that both germline and osteoblast-specific Smurf2-deficient mice have osteoporosis as a result of increased osteoblast RANKL production and excess osteoclastogenesis.
Collapse
|
18
|
Jung B, Staudacher JJ, Beauchamp D. Transforming Growth Factor β Superfamily Signaling in Development of Colorectal Cancer. Gastroenterology 2017; 152:36-52. [PMID: 27773809 PMCID: PMC5550896 DOI: 10.1053/j.gastro.2016.10.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β cytokines signal via a complex network of pathways to regulate proliferation, differentiation, adhesion, migration, and other functions in many cell types. A high percentage of colorectal tumors contain mutations that disrupt TGF-β family member signaling. We review how TGF-β family member signaling is altered during development of colorectal cancer, models of study, interaction of pathways, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Jung
- University of Illinois at Chicago, Chicago, Illinois.
| | | | | |
Collapse
|
19
|
Mateo Sánchez S, Freeman SD, Delacroix L, Malgrange B. The role of post-translational modifications in hearing and deafness. Cell Mol Life Sci 2016; 73:3521-33. [PMID: 27147466 PMCID: PMC11108544 DOI: 10.1007/s00018-016-2257-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Post-translational modifications (PTMs) are key molecular events that modify proteins after their synthesis and modulate their ultimate functional properties by affecting their stability, localisation, interaction potential or activity. These chemical changes expand the size of the proteome adding diversity to the molecular pathways governing the biological outcome of cells. PTMs are, thus, crucial in regulating a variety of cellular processes such as apoptosis, proliferation and differentiation and have been shown to be instrumental during embryonic development. In addition, alterations in protein PTMs have been implicated in the pathogenesis of many human diseases, including deafness. In this review, we summarize the recent progress made in understanding the roles of PTMs during cochlear development, with particular emphasis on the enzymes driving protein phosphorylation, acetylation, methylation, glycosylation, ubiquitination and SUMOylation. We also discuss how these enzymes may contribute to hearing impairment and deafness.
Collapse
Affiliation(s)
- Susana Mateo Sánchez
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Stephen D Freeman
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium.
| |
Collapse
|
20
|
Nedd8 targets ubiquitin ligase Smurf2 for neddylation and promote its degradation. Biochem Biophys Res Commun 2016; 474:51-56. [PMID: 27086113 DOI: 10.1016/j.bbrc.2016.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 02/08/2023]
Abstract
E3 ubiquitin ligases are pivotal effectors of the ubiquitin-proteasome system as they determine the substrate specificity and transfer ubiquitin to the substrate. HECT-type ubiquitin ligase Smad ubiquitination regulatory factor 2 (Smurf2) has been demonstrated functions as a tumor suppressor. However, the mechanisms underlying regulation of Smurf2 is still unclear. Here we show that ubiquitin-like protein Nedd8 targets the HECT-type ubiquitin ligase Smurf2 for neddylation, and promotes Smurf2 degradation. Neddylation of Smurf1 activates its ubiquitin ligase activity and Smurf2 exerts Nedd8 ligase activity. This study provided new clues of Smurf2 activation regulation.
Collapse
|
21
|
Sandhu V, Bowitz Lothe IM, Labori KJ, Skrede ML, Hamfjord J, Dalsgaard AM, Buanes T, Dube G, Kale MM, Sawant S, Kulkarni-Kale U, Børresen-Dale AL, Lingjærde OC, Kure EH. Differential expression of miRNAs in pancreatobiliary type of periampullary adenocarcinoma and its associated stroma. Mol Oncol 2015; 10:303-16. [PMID: 26590090 DOI: 10.1016/j.molonc.2015.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
Periampullary adenocarcinomas can be of two histological subtypes, intestinal or pancreatobiliary. The latter is more frequent and aggressive, and characterized by a prominent desmoplastic stroma, which is tightly related to the biology of the cancer, including its poor response to chemotherapy. Whereas miRNAs are known to regulate various cellular processes and interactions between cells, their exact role in periampullary carcinoma remains to be characterized, especially with respect to the prominent stromal component of pancreatobiliary type cancers. The present study aimed at elucidating this role by miRNA expression profiling of the carcinomatous and stromal component in twenty periampullary adenocarcinomas of pancreatobiliary type. miRNA expression profiles were compared between carcinoma cells, stromal cells and normal tissue samples. A total of 43 miRNAs were found to be differentially expressed between carcinoma and stroma of which 11 belong to three miRNA families (miR-17, miR-15 and miR-515). The levels of expression of miRNAs miR-17, miR-20a, miR-20b, miR-223, miR-10b, miR-2964a and miR-342 were observed to be higher and miR-519e to be lower in the stromal component compared to the carcinomatous and normal components. They follow a trend where expression in stroma is highest followed by carcinoma and then normal tissue. Pathway analysis revealed that pathways regulating tumor-stroma interactions such as ECM interaction remodeling, epithelial-mesenchymal transition, focal adhesion pathway, TGF-beta, MAPK signaling, axon guidance and endocytosis were differently regulated. The miRNA-mRNA mediated interactions between carcinoma and stromal cells add new knowledge regarding tumor-stroma interactions.
Collapse
Affiliation(s)
- V Sandhu
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department for Environmental Health and Science, Telemark University College, Bø in Telemark, Norway
| | - I M Bowitz Lothe
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - K J Labori
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
| | - M L Skrede
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - J Hamfjord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - A M Dalsgaard
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - T Buanes
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - G Dube
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - M M Kale
- Department of Statistics, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - S Sawant
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - U Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - A-L Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - O C Lingjærde
- K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Computer Science, University of Oslo, Oslo, Norway
| | - E H Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department for Environmental Health and Science, Telemark University College, Bø in Telemark, Norway.
| |
Collapse
|
22
|
Tian Y, Liao F, Wu G, Chang D, Yang Y, Dong X, Zhang Z, Zhang Y, Wu G. Ubiquitination and regulation of Smad7 in the TGF-β1/Smad signaling of aristolochic acid nephropathy. Toxicol Mech Methods 2015; 25:645-52. [PMID: 26108275 DOI: 10.3109/15376516.2015.1061082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aristolochic acid I (AAI) affects TGF-β1/Smad signaling, which causes AA nephropathy (AAN), but the mechanisms are not fully understood. We aimed to clarify whether Arkadia and UCH37 participate in TGF-β1/Smad signaling via Smad7, and the regulatory mechanisms of Smad7. One side, mice and cultured mouse renal tubular epithelial cells (RTECs) were treated with various AAI doses and concentrations, respectively; on the other side, RTECs were transfected with small interfering RNA (siRNA) expression vectors against Arkadia and UCH37 and then treated with 10 µg/ml AAI. And then detect the mRNA and protein levels of Smad7, UCH37, Arkadia and any other relative factors by RT-PCR and Western blotting. In kidney tissues and RTECs, the mRNA and protein levels of Smad7 decreased with increasing AAI doses concentrations by real-time PCR and Western blotting, whereas those of Arkadia, UCH37, Smad2, Smad3 and TβRI increased. Cells transfected with the Arkadia siRNA expression vector showed reduced mRNA and protein levels of vimentin, α-SMA, Smad2, Smad3 and TβRI after AAI treatment, while those of CK18 and Smad7 increased compared with those of untransfected RTECs. Conversely, cells transfected with the UCH37 siRNA expression vector showed the opposite effect on analyzed signaling molecules after AAI treatment. Arkadia and UCH37 participate in TGF-β1/Smad signaling-mediated renal fibrosis, and Smad7 blocks TGF-β1 signaling by inhibiting Smad2/Smad3 phosphorylation and enhancing the degradation of TβRI.
Collapse
Affiliation(s)
- Yahui Tian
- a Laboratory of Veterinary Pharmacology , Animal Science and Technology College, Beijing University of Agriculture , Beijing , China
| | - Fangfang Liao
- a Laboratory of Veterinary Pharmacology , Animal Science and Technology College, Beijing University of Agriculture , Beijing , China
| | - Guoying Wu
- b Maternity and Child Care Center , Changchun, Jilin , China , and
| | - Di Chang
- a Laboratory of Veterinary Pharmacology , Animal Science and Technology College, Beijing University of Agriculture , Beijing , China
| | - Yaohui Yang
- a Laboratory of Veterinary Pharmacology , Animal Science and Technology College, Beijing University of Agriculture , Beijing , China
| | - Xiaokai Dong
- a Laboratory of Veterinary Pharmacology , Animal Science and Technology College, Beijing University of Agriculture , Beijing , China
| | - Zhongwen Zhang
- a Laboratory of Veterinary Pharmacology , Animal Science and Technology College, Beijing University of Agriculture , Beijing , China
| | - Yu Zhang
- c Wanger Biotechnology Co., Ltd. , Beijing , PR China
| | - Guojuan Wu
- a Laboratory of Veterinary Pharmacology , Animal Science and Technology College, Beijing University of Agriculture , Beijing , China
| |
Collapse
|
23
|
Abstract
Identifying novel mechanisms, which are at the core of breast cancer biology, is of critical importance. Such mechanisms may explain response to treatment, reveal novel targets or drive detection assays. To uncover such novel mechanisms, we used survival analysis on gene expression datasets encompassing 1363 patients. By iterating over the compendia of genes, we screened for their significance as prognosis biomarkers and identified SUMO-specific protease 5 (SENP5) to significantly stratify patients into two survival groups across five unrelated tested datasets. According to these findings, low expression of SENP5 is associated with good prognosis among breast cancer patients. Following these findings, we analyzed SENP5 silencing and show it is followed by inhibition of anchorage-independence growth, proliferation, migration and invasion in breast cancer cell lines. We further show that these changes are conducted via regulation of TGFβRI levels. These data relate to recent reports about the SUMOylation of TGFβRI. Following TGFβRI changes in expression, we show that one of its target genes, MMP9, which plays a key role in degrading the extracellular matrix and contributes to TGFβ-induced invasion, is dramatically down regulated upon SENP5 silencing. This is the first report represents SENP5-TGFβ-MMP9 cascade and its mechanistic involvement in breast cancer.
Collapse
|
24
|
Tian Y, Yang Y, Gao L, Zhao H, Peng X, Zhang Z, Wu G. Expression of histone deacetylase-1 and p300 in aristolochic acid nephropathy models. Toxicol Mech Methods 2014; 24:377-84. [PMID: 24796935 DOI: 10.3109/15376516.2014.920448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aristolochic acid nephropathy (AAN) is mainly caused by aristolochic acid I (AAI), but the actual mechanism is still uncertain. The current study explored the correlation among the expression of Smad7, p300, histone deacetylase-1 (HDAC1) and the development of AAN using transmission electron microscopy (TEM), RT-PCR, and western blotting in the AAN mouse model and in the AAN cell model. TEM revealed that the renal tubular epithelial cells from the AAI-treated mice presented organelle damages and nuclear deformation. We found that a certain dose of AAI caused renal fibrosis and induced renal tubular epithelial cells to differentiate into myofibroblasts. There was a gradual increase in the expression of HDAC1 mRNA and protein observed using RT-PCR and western blotting in the AAN cell model compared with the control group. Gradual decrease in the expression of Smad7 and p300 mRNA and protein was revealed in the AAN mouse and cell models compared with the control group. These results suggest that AAI dose dependently contributed to the development of AAN, and HDAC1 and p300 participate in the modulation of TGF-β/Smad pathway-mediated renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yahui Tian
- Laboratory of Pharmacology of Chinese Veterinary Medicine, Department of Animal Science and Technology, College of Animal Science and Technology, Beijing University of Agriculture , Beijing , China
| | | | | | | | | | | | | |
Collapse
|
25
|
Caputo V, Bocchinfuso G, Castori M, Traversa A, Pizzuti A, Stella L, Grammatico P, Tartaglia M. Novel SMAD4 mutation causing Myhre syndrome. Am J Med Genet A 2014; 164A:1835-40. [PMID: 24715504 DOI: 10.1002/ajmg.a.36544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/23/2014] [Indexed: 11/12/2022]
Abstract
Myhre syndrome (MYHRS, OMIM 139210) is an autosomal dominant disorder characterized by developmental and growth delay, athletic muscular built, variable cognitive deficits, skeletal anomalies, stiffness of joints, distinctive facial gestalt and deafness. Recently, SMAD4 (OMIM 600993) was identified by exome sequencing as the disease gene mutated in MYHRS. Previously only three missense mutations affecting Ile500 (p.Ile500Thr, p.Ile500Val, and p.Ile500Met) have been described in 22 unrelated subjects with MYHRS or a clinically related phenotype. Here we report on a 15-year-old boy with typical MYHRS and a novel heterozygous SMAD4 missense mutation affecting residue Arg496. This finding provides further information about the distinctive SMAD4 mutation spectrum in MYHRS. In silico structural analyses exploring the impact of the Arg-to-Cys change at codon 496 suggested that conformational changes promoted by replacement of Arg496 impact the stability of the SMAD heterotrimer and/or proper SMAD4 ubiquitination.
Collapse
Affiliation(s)
- Viviana Caputo
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Association study confirmed susceptibility loci with keloid in the Chinese Han population. PLoS One 2013; 8:e62377. [PMID: 23667473 PMCID: PMC3646817 DOI: 10.1371/journal.pone.0062377] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 03/21/2013] [Indexed: 11/19/2022] Open
Abstract
Keloid is benign fibroproliferative dermal tumors with unknown etiology. Recently, a genome-wide association study (GWAS) in Japanese population has identified 3 susceptibility loci (rs873549 at 1q41, rs940187 and rs1511412 at 3q22.3, rs8032158 at 15p21.3) for keloid. In order to examine whether these susceptibility loci are associated with keloid in the Chinese Han population, twelve previously reported SNPs were selected for replication in 714 cases and 2,944 controls by using Sequenom MassArray system. We found three SNPs in two regions showed significant association with keloid in the Chinese Han population: 1q41 (rs873549, P = 3.03×10−33, OR = 2.05, 95% CI: 1.82–2.31 and rs1442440, P = 9.85×10−18, OR = 0.56, 95% CI: 0.49–0.64, respectively) and 15q21.3 (rs2271289 located in NEDD4, P = 1.02×10−11, OR = 0.66, 95% CI: 0.58–0.74). We also detected one risk haplotype AG (P = 1.36×10−31, OR = 2.02) and two protective haplotypes of GA and AA (GA, P = 1.94×10−19, OR = 0.53, AA, P = 0.00043, OR = 0.78, respectively) from the two SNPs (rs873549 and rs1442440). Our study confirmed two previously reported loci 1q41 and 15q21.3 for keloid in the Chinese Han population, which suggested the common genetic factor predisposing to the development of keloid shared by the Chinese Han and Japanese populations.
Collapse
|
27
|
Yu YL, Chou RH, Shyu WC, Hsieh SC, Wu CS, Chiang SY, Chang WJ, Chen JN, Tseng YJ, Lin YH, Lee W, Yeh SP, Hsu JL, Yang CC, Hung SC, Hung MC. Smurf2-mediated degradation of EZH2 enhances neuron differentiation and improves functional recovery after ischaemic stroke. EMBO Mol Med 2013; 5:531-47. [PMID: 23526793 PMCID: PMC3628108 DOI: 10.1002/emmm.201201783] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/20/2022] Open
Abstract
EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. Previously, we showed that EZH2 downregulation enhances neuron differentiation of human mesenchymal stem cells (hMSCs); however, the underlying mechanisms of EZH2-regulated neuron differentiation are still unclear. Here, we identify Smurf2 as the E3 ubiquitin ligase responsible for the polyubiquitination and proteasome-mediated degradation of EZH2, which is required for neuron differentiation. A ChIP-on-chip screen combined with gene microarray analysis revealed that PPARγ was the only gene involved in neuron differentiation with significant changes in both its modification and expression status during differentiation. Moreover, knocking down PPARγ prevented cells from undergoing efficient neuron differentiation. In animal model, rats implanted with intracerebral EZH2-knocked-down hMSCs or hMSCs plus treatment with PPARγ agonist (rosiglitazone) showed better improvement than those without EZH2 knockdown or rosiglitazone treatment after a stroke. Together, our results support Smurf2 as a regulator of EZH2 turnover to facilitate PPARγ expression, which is specifically required for neuron differentiation, providing a molecular mechanism for clinical applications in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yung-Luen Yu
- Graduate Institute of Cancer Biology, Center for Molecular Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
N-linked glycosylation is a critical determinant of protein structure and function, regulating processes such as protein folding, stability and localization, ligand–receptor binding and intracellular signalling. TβRII [type II TGF-β (transforming growth factor β) receptor] plays a crucial role in the TGF-β signalling pathway. Although N-linked glycosylation of TβRII was first demonstrated over a decade ago, it was unclear how this modification influenced TβRII biology. In the present study, we show that inhibiting the N-linked glycosylation process successfully hinders binding of TGF-β1 to TβRII and subsequently renders cells resistant to TGF-β signalling. The lung cancer cell line A549, the gastric carcinoma cell line MKN1 and the immortal cell line HEK (human embryonic kidney)-293 exhibit reduced TGF-β signalling when either treated with two inhibitors, including tunicamycin (a potent N-linked glycosylation inhibitor) and kifunensine [an inhibitor of ER (endoplasmic reticulum) and Golgi mannosidase I family members], or introduced with a non-glycosylated mutant version of TβRII. We demonstrate that defective N-linked glycosylation prevents TβRII proteins from being transported to the cell surface. Moreover, we clearly show that not only the complex type, but also a high-mannose type, of TβRII can be localized on the cell surface. Collectively, these findings demonstrate that N-linked glycosylation is essentially required for the successful cell surface transportation of TβRII, suggesting a novel mechanism by which the TGF-β sensitivity can be regulated by N-linked glycosylation levels of TβRII.
Collapse
|
29
|
Dupont S, Inui M, Newfeld SJ. Regulation of TGF-β signal transduction by mono- and deubiquitylation of Smads. FEBS Lett 2012; 586:1913-20. [PMID: 22710170 PMCID: PMC3383349 DOI: 10.1016/j.febslet.2012.03.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 01/17/2023]
Abstract
Polyubiquitylation leading to proteasomal degradation is a well-established mechanism for regulating TGF-β signal transduction components such as receptors and Smads. Recently, an equally important role was suggested for monoubiquitylation of both Smad4 and receptor-associated Smads that regulates their function without protein degradation. Monoubiquitylation of Smads was discovered following the identification of deubiquitylases required for TGF-β signaling, suggesting that continuous cycles of Smad mono- and deubiquitylation are required for proper TGF-β signal transduction. Here we summarize and discuss recent work on Smad mono- and deubiquitylation.
Collapse
Affiliation(s)
- Sirio Dupont
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Masafumi Inui
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stuart J. Newfeld
- School of Life Sciences, Arizona State University, Tempe AZ 85287-4501, USA
| |
Collapse
|
30
|
Pshennikova ES, Voronina AS. Cement gland as the adhesion organ in Xenopus laevis embryos. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360411040096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Caputo V, Cianetti L, Niceta M, Carta C, Ciolfi A, Bocchinfuso G, Carrani E, Dentici M, Biamino E, Belligni E, Garavelli L, Boccone L, Melis D, Andria G, Gelb B, Stella L, Silengo M, Dallapiccola B, Tartaglia M. A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies Myhre syndrome. Am J Hum Genet 2012; 90:161-9. [PMID: 22243968 DOI: 10.1016/j.ajhg.2011.12.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022] Open
Abstract
Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor β and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth.
Collapse
|
32
|
Suwanabol PA, Kent KC, Liu B. TGF-β and restenosis revisited: a Smad link. J Surg Res 2011; 167:287-97. [PMID: 21324395 PMCID: PMC3077463 DOI: 10.1016/j.jss.2010.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 01/17/2023]
Abstract
Despite novel surgical therapies for the treatment of atherosclerosis, restenosis continues to be a significant impediment to the long-term success of vascular interventions. Transforming growth factor-beta (TGF-β), a family of cytokines found to be up-regulated at sites of arterial injury, has long been implicated in restenosis; a role that has largely been attributed to TGF-β-mediated vascular fibrosis. However, emerging data indicate that the role of TGF-β in intimal thickening and arterial remodeling, the critical components of restenosis, is complex and multidirectional. Recent advancements have clarified the basic signaling pathway of TGF-β, making evident the need to redefine the precise role of this family of cytokines and its primary signaling pathway, Smad, in restenosis. Unraveling TGF-β signaling in intimal thickening and arterial remodeling will pave the way for a clearer understanding of restenosis and the development of innovative pharmacological therapies.
Collapse
Affiliation(s)
- Pasithorn A. Suwanabol
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - K. Craig Kent
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bo Liu
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
33
|
A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat Genet 2010; 42:768-71. [DOI: 10.1038/ng.645] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/25/2010] [Indexed: 11/08/2022]
|
34
|
Lindke AL, Middleton FA, Miller MW. Regulating the availability of transforming growth factor ß1 in B104 neuroblastoma cells. Exp Neurol 2010; 225:123-32. [PMID: 20547156 DOI: 10.1016/j.expneurol.2010.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Transforming growth factor (TGF) beta1 is a key player in early brain development, hence, its availability (i.e., synthesis and release) affects neuronogenesis. TGFbeta1 moves proliferating cells out of the cell cycle and promotes their subsequent migration. The present study tested the hypothesis that neural progenitors self-regulate TGFbeta1. B104 neuroblastoma cells which can grow in the absence of serum or growth factors were used in systematic studies of transcription, translation, release, and activation. These studies relied on quantitative enzyme-linked immunosorbent assays and real-time polymerase chain reactions. TGFbeta1 positively upregulated its own intracellular expression and promoted increased release of TGFbeta1 from cells. The induction of TGFbeta1 was independent of a change in transcription, but it depended on cycloheximide-inhibited translation. Signaling mediated by downstream Smad2/3 through the TGFbeta receptors and intracellular protein transport were also required for release of TGFbeta1 from B104 cells. Thus, TGFbeta1 production and release were mediated through a feed-forward mechanism and were pivotally regulated at the level of translation. These activities appear to be key for the role of TGFbeta1 in the proliferation and migration of young neurons.
Collapse
Affiliation(s)
- Amanda L Lindke
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse NY 13210, USA
| | | | | |
Collapse
|
35
|
Genetics of keloid scarring. Arch Dermatol Res 2010; 302:319-39. [PMID: 20130896 DOI: 10.1007/s00403-009-1014-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 12/15/2022]
Abstract
Keloid scarring, also known as keloid disease (KD), is a common, abnormally raised fibroproliferative cutaneous lesion that can occur following even minor skin trauma. The aetiopathogenesis of KD has remained an enigma todate compounded by an ill-defined clinical management. There is strong evidence suggesting a genetic susceptibility in individuals affected by KD, including familial heritability, common occurrence in twins and high prevalence in certain ethnic populations. This review aims to address the genetic aspects of KD that have been described in present literature that include inheritance patterns, linkage studies, case-control association studies, whole genome gene expression microarray studies and gene pathways that were significant in KD. In addition to our clinical and scientific background in KD, we used search engines, Scopus, Scirus and PubMed, which searched for key terms covering various genetic aspects of KD. Additionally, genes reported in seven whole genome gene expression microarray studies were separately compared in detail. Our findings indicate a varied inheritance pattern in KD (predominantly autosomal dominant), linkage loci (chromosomes 2q23 and 7p11), several human leukocyte antigen (HLA) alleles (HLA-DRB1*15, HLA-DQA1*0104, DQ-B1*0501 and DQB1*0503), negative candidate gene case-control association studies and at least 25 dysregulated genes reported in multiple microarray studies. The major pathways reportedly proposed to be involved in KD include apoptosis, mitogen-activated protein kinase, transforming growth factor-beta, interleukin-6 and plasminogen activator inhibitor-1. In summary, involvement of more than one gene is likely to be responsible for susceptibility to KD. A better understanding of the genes involved in KD may potentially lead to the development of more effective diagnostic, therapeutic and prognostic measures.
Collapse
|
36
|
Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM, Huylebroeck D. Transforming Growth Factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev 2009; 20:449-58. [PMID: 19892581 DOI: 10.1016/j.cytogfr.2009.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands of the Transforming Growth Factor type beta (TGFbeta) family exert multiple and sometimes opposite effects on most cell types in vivo depending on cellular context, which mainly includes the stage of the target cell, the local environment of this cell or niche, and the identity and the dosage of the ligand. Significant progress has been made in the molecular dissection of the regulation of the activity of the ligands and their intracellular signal transduction pathways, including via the canonical Smad pathway where Smads interact with many transcription factors. This knowledge together with results from functional studies within the embryology and stem cell research fields is giving us insight in the role of individual ligands and other components of this signaling system and where and how it regulates many properties of embryonic and adult stem/progenitor cells, which is anticipated to contribute to successful cell-based therapy in the future. We review and discuss recent progress on the effects of Nodal/Activin and Bone Morphogenetic Proteins (BMPs) and their canonical signaling in cells with stem cell properties. We focus on embryonic stem cells and their maintenance and pluripotency, and conversion into selected cell types of neuroectoderm, mesoderm and endoderm, on induced pluripotent cells and on neurogenic cells in the adult brain.
Collapse
Affiliation(s)
- Eve Seuntjens
- Laboratory of Molecular Biology (Celgen) of the Center for Human Genetics, University of Leuven, Flanders Institute of Biotechnology (VIB), Campus Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
37
|
Kang JS, Liu C, Derynck R. New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 2009; 19:385-94. [PMID: 19648010 DOI: 10.1016/j.tcb.2009.05.008] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 12/24/2022]
Abstract
Transforming growth factor-beta (TGF-beta) regulates cell proliferation, differentiation and apoptosis, and TGF-beta-related proteins have key roles in development, tissue homeostasis and disease. Upon binding to their cell surface receptors, TGF-beta family proteins signal through Smads to induce changes in gene expression. TGF-beta-induced Smad signaling and additional non-Smad pathways have been studied extensively in an effort to understand the complex and versatile responses to TGF-beta family proteins. Recently, it has become increasingly apparent that the signaling responses are also extensively defined by regulatory mechanisms at the level of the receptors themselves. Here, we discuss recent insights into the effects of post-translational modifications, protein associations and mode of internalization on the functions of the TGF-beta receptors and their signaling responses.
Collapse
Affiliation(s)
- Jong Seok Kang
- Department of Cell and Tissue Biology, University of California - San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
38
|
Tateossian H, Hardisty-Hughes RE, Morse S, Romero MR, Hilton H, Dean C, Brown SD. Regulation of TGF-beta signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant. PATHOGENETICS 2009; 2:5. [PMID: 19580641 PMCID: PMC2714483 DOI: 10.1186/1755-8417-2-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/06/2009] [Indexed: 01/27/2023]
Abstract
Background Jeff is a dominant mouse mutant displaying chronic otitis media. The gene underlying Jeff is Fbxo11, a member of the large F-box family, which are specificity factors for the SCF E3 ubiquitin ligase complex. Jeff homozygotes die shortly after birth displaying a number of developmental abnormalities including cleft palate and eyes open at birth. TGF-β signalling is involved in a number of epithelial developmental processes and we have investigated the impact of the Jeff mutation on the expression of this pathway. Results Phospho-Smad2 (pSmad2) is significantly upregulated in epithelia of Jeff homozygotes. Moreover, there was a significant increase in nuclear localization of pSmad2 in contrast to wild type. Mice heterozygous for both Jeff and Smad2 mutations recapitulate many of the features of the Jeff homozygous phenotype. However, tissue immunoprecipitations failed to detect any interaction between Fbxo11 and Smad2. Fbxo11 is known to neddylate p53, a co-factor of pSmad2, but we did not find any evidence of genetic interactions between Jeff and p53 mutants. Nevertheless, p53 levels are substantially reduced in Jeff mice suggesting that Fbxo11 plays a role in stabilizing p53. Conclusion Overall, our findings support a model whereby Fbxo11, possibly via stabilization of p53, is required to limit the accumulation of pSmad2 in the nucleus of epithelial cells of palatal shelves, eyelids and airways of the lungs. The finding that Fbxo11 impacts upon TGF-β signalling has important implications for our understanding of the underlying disease mechanisms of middle ear inflammatory disease.
Collapse
|
39
|
Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 2009; 137:295-307. [PMID: 19379695 DOI: 10.1016/j.cell.2009.02.025] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 12/03/2008] [Accepted: 02/10/2009] [Indexed: 11/21/2022]
Abstract
Planar cell polarity (PCP) is critical for morphogenesis in metazoans. PCP in vertebrates regulates stereocilia alignment in neurosensory cells of the cochlea and closure of the neural tube through convergence and extension movements (CE). Noncanonical Wnt morphogens regulate PCP and CE in vertebrates, but the molecular mechanisms remain unclear. Smurfs are ubiquitin ligases that regulate signaling, cell polarity and motility through spatiotemporally restricted ubiquitination of diverse substrates. Here, we report an unexpected role for Smurfs in controlling PCP and CE. Mice mutant for Smurf1 and Smurf2 display PCP defects in the cochlea and CE defects that include a failure to close the neural tube. Further, we show that Smurfs engage in a noncanonical Wnt signaling pathway that targets the core PCP protein Prickle1 for ubiquitin-mediated degradation. Our work thus uncovers ubiquitin ligases in a mechanistic link between noncanonical Wnt signaling and PCP/CE.
Collapse
|
40
|
Neoplasia: the second decade. Neoplasia 2009; 10:1314-24. [PMID: 19048110 DOI: 10.1593/neo.81372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022] Open
Abstract
This issue marks the end of the 10-year anniversary of Neoplasia where we have seen exciting growth in both number of submitted and published articles in Neoplasia. Neoplasia was first published in 1999. During the past 10 years, Neoplasia has dynamically adapted to the needs of the cancer research community as technologies have advanced. Neoplasia is currently providing access to articles through PubMed Central to continue to facilitate rapid broad-based dissemination of published findings to the scientific community through an Open Access model. This has in part helped Neoplasia to achieve an improved impact factor this past year, demonstrating that the manuscripts published by Neoplasia are of great interest to the overall cancer research community. This past year, Neoplasia received a record number of articles for review and has had a 21% increase in the number of published articles.
Collapse
|
41
|
Abstract
Transforming growth factor beta (TGFbeta) controls cellular behavior in embryonic and adult tissues. TGFbeta binding to serine/threonine kinase receptors on the plasma membrane activates Smad molecules and additional signaling proteins that together regulate gene expression. In this review, mechanisms and models that aim at explaining the coordination between several components of the signaling network downstream of TGFbeta are presented. We discuss how the activity and duration of TGFbeta receptor/Smad signaling can be regulated by post-translational modifications that affect the stability of key proteins in the pathway. We highlight links between these mechanisms and human diseases, such as tissue fibrosis and cancer.
Collapse
|
42
|
Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S. FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFβ Signaling, Controls Smad4 Monoubiquitination. Cell 2009; 136:123-35. [PMID: 19135894 DOI: 10.1016/j.cell.2008.10.051] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 09/29/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Affiliation(s)
- Sirio Dupont
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padua School of Medicine, viale Colombo 3, 35131 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guo X, Waddell DS, Wang W, Wang Z, Liberati NT, Yong S, Liu X, Wang XF. Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-beta signaling. Oncogene 2008; 27:7235-47. [PMID: 18794808 DOI: 10.1038/onc.2008.337] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-beta (TGF-beta) elicits a variety of cellular activities primarily through a signaling cascade mediated by two key transcription factors, Smad2 and Smad3. Numerous regulatory mechanisms exist to control the activity of Smad3, thereby modulating the strength and specificity of TGF-beta responses. In search for potential regulators of Smad3 through a yeast two-hybrid screen, we identified casein kinase 1 gamma 2 (CKIgamma2) as a novel Smad3-interacting protein. In mammalian cells, CKIgamma2 selectively and constitutively binds Smad3 but not Smad1, -2 or -4. Functionally, CKIgamma2 inhibits Smad3-mediated TGF-beta responses including induction of target genes and cell growth arrest, and this inhibition is dependent on CKIgamma2 kinase activity. Mechanistically, CKIgamma2 does not affect the basal levels of Smad proteins or activity of the receptors. Rather, CKIgamma2 preferentially promotes the ubiquitination and degradation of activated Smad3 through direct phosphorylation of its MH2 domain at Ser418. Importantly, mutation of Ser418 to alanine or aspartic acid causes an increase or decrease of Smad3 activity, respectively, in the presence of TGF-beta. CKIgamma2 is the first kinase known to mark activated Smad3 for destruction. Given its negative function in TGF-beta signaling and its reported overexpression in human cancers, CKIgamma2 may act as an oncoprotein during tumorigenesis.
Collapse
Affiliation(s)
- X Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival. Mod Pathol 2008; 21:866-75. [PMID: 18425078 DOI: 10.1038/modpathol.2008.62] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations in transforming growth factor-beta signaling, due to a decrease in Smad2 and especially Smad4 expression, has primarily been reported in pancreatic and colorectal cancers, although loss of the chromosomal region 18q21.1, containing the loci of Smad2 and Smad4, is among the most frequent molecular alterations in cervical cancer. The aim of our study was to investigate whether decreased Smad2 and Smad4 protein expression in primary cervical cancers is associated with molecular alterations at 18q21.1, mutations in the functional domains of Smad2 and Smad4 or hypermethylation, and to assess the biological relevance of decreased Smad2 and Smad4 expression. Subsequently, Smad2, Smad4 and p21 protein expression was determined by immunohistochemistry in 117 primary cervical carcinomas, assembled in a tissue array. Smad signaling was shown to be associated with p21 mRNA expression. All the tumors expressed Smad2 or Smad4. Weak cytoplasmic Smad2 or weak cytoplasmic Smad4 expression could not be attributed to loss of heterozygosity at 18q21.1. Despite weak/moderate Smad2 expression and absent nuclear Smad4 expression, the coding regions of the functional MH1 and MH2 domains of Smad2 and Smad4 were unchanged, as assessed by sequence analysis. The Smad4 promoter region was unmethylated in tumor samples with weak/moderate cytoplasmic Smad4 expression. Remarkably, both weak cytoplasmic Smad4 expression and absent nuclear Smad4 expression significantly correlated with poor disease-free (P=0.003 and P=0.003, respectively) and overall 5-year survival (P=0.003 and P=0.010, respectively). Our findings support the hypothesis that Smad4 is a target molecule for functional inactivation in cervical cancer.
Collapse
|
45
|
Kang JS, Saunier EF, Akhurst RJ, Derynck R. The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 2008; 10:654-64. [PMID: 18469808 DOI: 10.1038/ncb1728] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/17/2008] [Indexed: 12/17/2022]
Abstract
Post-translational sumoylation, the covalent attachment of a small ubiquitin-like modifier (SUMO), regulates the functions of proteins engaged in diverse processes. Often associated with nuclear and perinuclear proteins, such as transcription factors, it is not known whether SUMO can conjugate to cell-surface receptors for growth factors to regulate their functions. Here we show that the type I transforming growth factor-beta (TGF-beta) receptor, T beta RI, is sumoylated in response to TGF-beta and that its sumoylation requires the kinase activities of both T beta RI and the type II TGF-beta receptor, T beta RII. Sumoylation of T beta RI enhances receptor function by facilitating the recruitment and phosphorylation of Smad3, consequently regulating TGF-beta-induced transcription and growth inhibition. T beta RI sumoylation modulates the dissemination of transformed cells in a mouse model of T beta RI-stimulated metastasis. T beta RI sumoylation therefore controls responsiveness to TGF-beta, with implications for tumour progression. Sumoylation of cell-surface receptors may regulate other growth factor responses.
Collapse
Affiliation(s)
- Jong Seok Kang
- Department of Cell and Tissue Biology, Program in Cell Biology, University of California - San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
46
|
Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling. Genes Dev 2008; 22:106-20. [PMID: 18172167 DOI: 10.1101/gad.1590908] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The broad range of biological responses elicited by transforming growth factor-beta (TGF-beta) in various types of tissues and cells is mainly determined by the expression level and activity of the effector proteins Smad2 and Smad3. It is not fully understood how the baseline properties of Smad3 are regulated, although this molecule is in complex with many other proteins at the steady state. Here we show that nonactivated Smad3, but not Smad2, undergoes proteasome-dependent degradation due to the concerted action of the scaffolding protein Axin and its associated kinase, glycogen synthase kinase 3-beta (GSK3-beta). Smad3 physically interacts with Axin and GSK3-beta only in the absence of TGF-beta. Reduction in the expression or activity of Axin/GSK3-beta leads to increased Smad3 stability and transcriptional activity without affecting TGF-beta receptors or Smad2, whereas overexpression of these proteins promotes Smad3 basal degradation and desensitizes cells to TGF-beta. Mechanistically, Axin facilitates GSK3-beta-mediated phosphorylation of Smad3 at Thr66, which triggers Smad3 ubiquitination and degradation. Thr66 mutants of Smad3 show altered protein stability and hence transcriptional activity. These results indicate that the steady-state stability of Smad3 is an important determinant of cellular sensitivity to TGF-beta, and suggest a new function of the Axin/GSK3-beta complex in modulating critical TGF-beta/Smad3-regulated processes during development and tumor progression.
Collapse
|
47
|
Rodriguez GC, Rimel B, Watkin W, Turbov JM, Barry C, Du H, Maxwell GL, Cline J. Progestin Treatment Induces Apoptosis and Modulates Transforming Growth Factor- in the Uterine Endometrium. Cancer Epidemiol Biomarkers Prev 2008; 17:578-84. [DOI: 10.1158/1055-9965.epi-07-0551] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Abstract
Accumulating evidence suggests that E3 ubiquitin ligases play important roles in cancer development. In this article, we provide a comprehensive summary of the roles of the Nedd4-like family of E3 ubiquitin ligases in human cancer. There are nine members of the Nedd4-like E3 family, all of which share a similar structure, including a C2 domain at the N-terminus, two to four WW domains in the middle of the protein, and a homologous to E6-AP COOH terminus domain at the C-terminus. The assertion that Nedd4-like E3s play a role in cancer is supported by the overexpression of Smurf2 in esophageal squamous cell carcinoma, WWP1 in prostate and breast cancer, Nedd4 in prostate and bladder cancer, and Smurf1 in pancreatic cancer. Because Nedd4-like E3s regulate ubiquitin-mediated trafficking, lysosomal or proteasomal degradation, and nuclear translocation of multiple proteins, they modulate important signaling pathways involved in tumorigenesis like TGFbeta, EGF, IGF, VEGF, SDF-1, and TNFalpha. Additionally, several Nedd4-like E3s directly regulate various cancer-related transcription factors from the Smad, p53, KLF, RUNX, and Jun families. Interestingly, multiple Nedd4-like E3s show ligase independent function. Furthermore, Nedd4-like E3s themselves are frequently regulated by phosphorylation, ubiquitination, translocation, and transcription in cancer cells. Because the regulation and biological output of these E3s is such a complex process, study of the role of these E3s in cancer development poses some challenges. However, understanding the oncogenic potential of these E3s may facilitate the identification and development of biomarkers and drug targets in human cancer.
Collapse
Affiliation(s)
- Ceshi Chen
- The Center for Cell Biology and Cancer Research, Albany Medical College, 47, New Scotland Ave., Albany, NY 12208, USA.
| | | |
Collapse
|
49
|
Neoplasia: An Anniversary of Progress. Neoplasia 2007. [DOI: 10.1593/neo.07968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Mavrakis KJ, Andrew RL, Lee KL, Petropoulou C, Dixon JE, Navaratnam N, Norris DP, Episkopou V. Arkadia enhances Nodal/TGF-beta signaling by coupling phospho-Smad2/3 activity and turnover. PLoS Biol 2007; 5:e67. [PMID: 17341133 PMCID: PMC1808117 DOI: 10.1371/journal.pbio.0050067] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 01/03/2007] [Indexed: 11/19/2022] Open
Abstract
Regulation of transforming growth factor-β (TGF-β) signaling is critical in vertebrate development, as several members of the TGF-β family have been shown to act as morphogens, controlling a variety of cell fate decisions depending on concentration. Little is known about the role of intracellular regulation of the TGF-β pathway in development. E3 ubiquitin ligases target specific protein substrates for proteasome-mediated degradation, and several are implicated in signaling. We have shown that Arkadia, a nuclear RING-domain E3 ubiquitin ligase, is essential for a subset of Nodal functions in the embryo, but the molecular mechanism of its action in embryonic cells had not been addressed. Here, we find that Arkadia facilitates Nodal signaling broadly in the embryo, and that it is indispensable for cell fates that depend on maximum signaling. Loss of Arkadia in embryonic cells causes nuclear accumulation of phospho-Smad2/3 (P-Smad2/3), the effectors of Nodal signaling; however, these must be repressed or hypoactive as the expression of their direct target genes is reduced or lost. Molecular and functional analysis shows that Arkadia interacts with and ubiquitinates P-Smad2/3 causing their degradation, and that this is via the same domains required for enhancing their activity. Consistent with this dual function, introduction of Arkadia in homozygous null (−/−) embryonic stem cells activates the accumulated and hypoactive P-Smad2/3 at the expense of their abundance. Arkadia−/− cells, like Smad2−/− cells, cannot form foregut and prechordal plate in chimeras, confirming this functional interaction in vivo. As Arkadia overexpression never represses, and in some cells enhances signaling, the degradation of P-Smad2/3 by Arkadia cannot occur prior to their activation in the nucleus. Therefore, Arkadia provides a mechanism for signaling termination at the end of the cascade by coupling degradation of P-Smad2/3 with the activation of target gene transcription. This mechanism can account for achieving efficient and maximum Nodal signaling during embryogenesis and for rapid resetting of target gene promoters allowing cells to respond to dynamic changes in extracellular signals. In development, cells respond to secreted signals (called morphogens) by turning on or off sets of target genes. How does gene activity adjust quickly in response to rapidly changing extracellular signals? This should require efficient removal of old/used signaling effectors (signal-activated transcription factors) from the promoters of target genes to allow new ones to assume control. We previously discovered Arkadia, an E3 ubiquitin ligase, and showed that it is an essential factor for normal development. (Ubiquitin ligases trigger the addition of ubiquitin residues to proteins, typically marking them for degradation.) Here, we show that Arkadia is required for high activity of the major signaling pathway, TGF-β/Nodal. Arkadia has a dual role to degrade Smads, the TGF-β signaling effectors, and enhance their transcriptional activity. This coupling of degradation with activation provides a mechanism to ensure that only effectors “in use” are degraded, allowing the new ones to proceed. It is possible that very similar mechanisms operate in other pathways to establish dynamic regulation and efficient signaling, while their failure may be associated with developmental abnormalities and disease, including cancer. Arkadia enhances TGF-β family activity by degrading its inhibitory Smads but also stimulating transcription of phospho-Smads.
Collapse
Affiliation(s)
- Konstantinos J Mavrakis
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Rebecca L Andrew
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Kian Leong Lee
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Chariklia Petropoulou
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - James E Dixon
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Naveenan Navaratnam
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Dominic P Norris
- Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Vasso Episkopou
- Mammalian Neurogenesis, Medical Research Council, Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|