1
|
Yang H, Xiang Y, Wang J, Ke Z, Zhou W, Yin X, Zhang M, Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int J Biol Macromol 2024; 288:138747. [PMID: 39674451 DOI: 10.1016/j.ijbiomac.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an essential stromal cell protein, plays a crucial role in angiogenesis and maintaining endothelial barrier function. This protein is expressed by diverse cell types, including endothelial cells, fibroblasts, and macrophages, with increased expression found in regions of tissues undergoing active remodeling, repair, and proliferation. The role of SPARC in non-neural tissues is of significant interest. In the central nervous system (CNS), SPARC is highly expressed in blood vessels during early development. It becomes down-regulated as the brain matures, a pattern consistent with its role in angiogenesis and blood-brain barrier (BBB) establishment. In this review, we explore the multifaceted roles of SPARC in regulating CNS disorders, particularly its action in angiogenesis, inflammatory responses, neural system development and repair, barrier establishment, maintenance of BBB function, and the pathogenesis of CNS disorders triggered by BBB dysfunction.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yuanyuan Xiang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jiaxuan Wang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
2
|
Meng L, Chen HM, Zhang JS, Wu YR, Xu YZ. Matricellular proteins: From cardiac homeostasis to immune regulation. Biomed Pharmacother 2024; 180:117463. [PMID: 39305814 DOI: 10.1016/j.biopha.2024.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 11/14/2024] Open
Abstract
Tissue repair after myocardial injury is a complex process involving changes in all aspects of the myocardial tissue, including the extracellular matrix (ECM). The ECM is composed of large structural proteins such as collagen and elastin and smaller proteins with major regulatory properties called matricellular proteins. Matricellular cell proteins exert their functions and elicit cellular responses by binding to structural proteins not limited to interactions with cell surface receptors, cytokines, or proteases. At the same time, matricellular proteins act as the "bridge" of information exchange between cells and ECM, maintaining the integrity of the cardiac structure and regulating the immune environment, which is a key factor in determining cardiac homeostasis. In this review, we present an overview of the identified matricellular proteins and summarize the current knowledge regarding their roles in maintaining cardiac homeostasis and regulating the immune system.
Collapse
Affiliation(s)
- Li Meng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Hui-Min Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Jia-Sheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, China; Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China
| | - Yi-Rong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| | - Yi-Zhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Zhejiang 310006, China.
| |
Collapse
|
3
|
Yunianto I, Currie M, Chitcholtan K, Sykes P. Potential drug repurposing of ruxolitinib to inhibit the JAK/STAT pathway for the treatment of patients with epithelial ovarian cancer. J Obstet Gynaecol Res 2023; 49:2563-2574. [PMID: 37565583 DOI: 10.1111/jog.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
AIM This review aimed to describe the potential for therapeutic targeting of the JAK/STAT signaling pathway by repurposing the clinically-approved JAK inhibitor ruxolitinib in the patients with epithelial ovarian cancer (OC) setting. METHODS We reviewed publications that focus on the inhibition of the JAK/STAT pathway in hematological and solid malignancies including OC. RESULTS Preclinical studies showed that ruxolitinib effectively reduces OC cell viability and metastasis and enhances the anti-tumor activity of chemotherapy drugs. There are a number of recent clinical trials exploring the role of JAK/STAT inhibition in solid cancers including OC. Early results have not adequately supported efficacy in solid tumors. However, there are preclinical data and clinical studies supporting the use of ruxolitinib in combination with both chemotherapy and other targeted drugs in OC setting. CONCLUSION Inflammatory conditions and persistent activation of the JAK/STAT pathway are associated with tumourigenesis and chemoresistance, and therapeutic blockade of this pathway shows promising results. For women with OC, clinical investigation exploring the role of ruxolitinib in combination with chemotherapy agents or other targeted therapeutics is warranted.
Collapse
Affiliation(s)
- Irfan Yunianto
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
- Department of Biology Education, Universitas Ahmad Dahlan, Indonesia
| | - Margaret Currie
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
4
|
Jazwinska DE, Kulawiec DG, Zervantonakis IK. Cancer-mesothelial and cancer-macrophage interactions in the ovarian cancer microenvironment. Am J Physiol Cell Physiol 2023; 325:C721-C730. [PMID: 37545408 PMCID: PMC10635648 DOI: 10.1152/ajpcell.00461.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The metastatic ovarian cancer microenvironment is characterized by an intricate interaction network between cancer cells and host cells. This complex heterotypic cancer-host cell crosstalk results in an environment that promotes cancer cell metastasis and treatment resistance, leading to poor patient prognosis and survival. In this review, we focus on two host cell types found in the ovarian cancer microenvironment: mesothelial cells and tumor-associated macrophages. Mesothelial cells make up the protective lining of organs in the abdominal cavity. Cancer cells attach and invade through the mesothelial monolayer to form metastatic lesions. Crosstalk between mesothelial and cancer cells can contribute to metastatic progression and chemotherapy resistance. Tumor-associated macrophages are the most abundant immune cell type in the ovarian cancer microenvironment with heterogeneous subpopulations exhibiting protumor or antitumor functions. Macrophage reprogramming toward a protumor or antitumor state can be influenced by chemotherapy and communication with cancer cells, resulting in cancer cell invasion and treatment resistance. A better understanding of cancer-mesothelial and cancer-macrophage crosstalk will uncover biomarkers of metastatic progression and therapeutic targets to restore chemotherapy sensitivity.
Collapse
Affiliation(s)
- Dorota E Jazwinska
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Diana G Kulawiec
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ioannis K Zervantonakis
- Department of Bioengineering and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Fan Y, Lyu P, Bi R, Cui C, Xu R, Rosen CJ, Yuan Q, Zhou C. Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling. eLife 2023; 12:82537. [PMID: 36722472 PMCID: PMC9925051 DOI: 10.7554/elife.82537] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023] Open
Abstract
Oral inflammatory diseases such as apical periodontitis are common bacterial infectious diseases that may affect the periapical alveolar bone tissues. A protective process occurs simultaneously with the inflammatory tissue destruction, in which mesenchymal stem cells (MSCs) play a primary role. However, a systematic and precise description of the cellular and molecular composition of the microenvironment of bone affected by inflammation is lacking. In this study, we created a single-cell atlas of cell populations that compose alveolar bone in healthy and inflammatory disease states. We investigated changes in expression frequency and patterns related to apical periodontitis, as well as the interactions between MSCs and immunocytes. Our results highlight an enhanced self-supporting network and osteogenic potential within MSCs during apical periodontitis-associated inflammation. MSCs not only differentiated toward osteoblast lineage cells but also expressed higher levels of osteogenic-related markers, including Sparc and Col1a1. This was confirmed by lineage tracing in transgenic mouse models and human samples from oral inflammatory-related alveolar bone lesions. In summary, the current study provides an in-depth description of the microenvironment of MSCs and immunocytes in both healthy and disease states. We also identified key apical periodontitis-associated MSC subclusters and their biomarkers, which could further our understanding of the protective process and the underlying mechanisms of oral inflammatory-related bone disease. Taken together, these results enhance our understanding of heterogeneity and cellular interactions of alveolar bone cells under pathogenic and inflammatory conditions. We provide these data as a tool for investigators not only to better appreciate the repertoire of progenitors that are stress responsive but importantly to help design new therapeutic targets to restore bone lesions caused by apical periodontitis and other inflammatory-related bone diseases.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chen Cui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of StomatologyGuangzhouChina
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | | | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
7
|
Ghoneum A, Gonzalez D, Afify H, Shu J, Hegarty A, Adisa J, Kelly M, Lentz S, Salsbury F, Said N. Compound C Inhibits Ovarian Cancer Progression via PI3K-AKT-mTOR-NFκB Pathway. Cancers (Basel) 2022; 14:5099. [PMID: 36291886 PMCID: PMC9600774 DOI: 10.3390/cancers14205099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Epithelial Ovarian cancer (OvCa) is the leading cause of death from gynecologic malignancies in the United States, with most patients diagnosed at late stages. High-grade serous cancer (HGSC) is the most common and lethal subtype. Despite aggressive surgical debulking and chemotherapy, recurrence of chemo-resistant disease occurs in ~80% of patients. Thus, developing therapeutics that not only targets OvCa cell survival, but also target their interactions within their unique peritoneal tumor microenvironment (TME) is warranted. Herein, we report therapeutic efficacy of compound C (also known as dorsomorphin) with a novel mechanism of action in OvCa. We found that CC not only inhibited OvCa growth and invasiveness, but also blunted their reciprocal crosstalk with macrophages, and mesothelial cells. Mechanistic studies indicated that compound C exerts its effects on OvCa cells through inhibition of PI3K-AKT-NFκB pathways, whereas in macrophages and mesothelial cells, CC inhibited cancer-cell-induced canonical NFκB activation. We further validated the specificity of the PI3K-AKT-NFκB as targets of compound C by overexpression of constitutively active subunits as well as computational modeling. In addition, real-time monitoring of OvCa cellular bioenergetics revealed that compound C inhibits ATP production, mitochondrial respiration, and non-mitochondrial oxygen consumption. Importantly, compound C significantly decreased tumor burden of OvCa xenografts in nude mice and increased their sensitivity to cisplatin-treatment. Moreover, compound C re-sensitized patient-derived resistant cells to cisplatin. Together, our findings highlight compound C as a potent multi-faceted therapeutic in OvCa.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Hesham Afify
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Abigail Hegarty
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Jemima Adisa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Michael Kelly
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| | - Samuel Lentz
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Freddie Salsbury
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Department of Physics, Wake Forest University, Winston Salem, NC 27109, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
8
|
Jiao M, Sun W, Li L, Li C, Zhou J, Li Q, Duan L. Clinical significance of SPOCK2 expression signature for high-grade serous ovarian cancer patients. Front Genet 2022; 13:878123. [PMID: 36246613 PMCID: PMC9554533 DOI: 10.3389/fgene.2022.878123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background: SPOCK2 is a member of the SPOCK family, a 424-amino acid protein that binds to glycosaminoglycans to form proteoglycans. The purpose of this study was to explore expression profile of SPOCK2, and evaluate prognostic potential and its correlation with immune infiltration in high-grade serous ovarian cancer (HGSOC). Methods: Expression of SPOCK2 mRNA and protein between normal and tumor tissues were analyzed using the Cancer Genome Atlas database (TCGA), Gene Expression Omnibus (GEO), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the Human Protein Atlas (HPA) databases. Receiver operating characteristic (ROC) curve was used to evaluate diagnostic performance of SPOCK2. Kaplan-Meier method and Cox regression analysis were conducted to assess the effect of SPOCK2 on survival. Nomogram was used to predict the impact of SPOCK2 on prognosis. LinkedOmics were used to find correlated genes and perform functional enrichment analyses. The relationships between SPOCK2 and tumor infiltrating lymphocytes (TILs) were determined by tumor-immune system interaction database (TISIDB) and GSVA package (V1.34.0). Results: SPOCK2 was highly expressed in HGSOC tissue compared to normal tissue at both mRNA (p < 0.001) and protein (p = 0.03) levels. The area under the curve (AUC) is 0.894 (CI: 0.865–0.923). Kaplan-Meier analysis showed that HGSOC patients with high-level SPOCK2 mRNA expression had a worse overall survival (OS) than those with a low expression (HR = 1.45, p = 0.005). Univariate logistic regression analysis found that age, primary therapy outcome, tumor status, tumor residual, and SPOCK2 expression level were significantly associated with OS (p < 0.05). The nomogram model indicated an effective predictive performance of SPOCK2. Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) term analyses showed that SPOCK2 were mainly involved in regulating extracellular matrix. Immune infiltration analysis showed that SPOCK2 may correlate with abundance of TILs. Conclusion: SPOCK2 has potentials to estimate diagnosis and prognosis for HGSOC and is involved in regulating extracellular matrix and immune cell infiltration.
Collapse
Affiliation(s)
- Mi Jiao
- Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, China
| | - Wenbo Sun
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, China
| | - Lina Li
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, China
| | - Chunyan Li
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, China
| | - Jing Zhou
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, China
| | - Qian Li
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Xi’an Jiaotong University Medical College, Xi’an, Shaanxi, China
| | - Lian Duan
- Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Lian Duan,
| |
Collapse
|
9
|
Yan X, Liu H, Hu J, Han X, Qi J, Ouyang Q, Hu B, He H, Li L, Wang J, Zeng X. Transcriptomic analyses of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with egg production in ducks. BMC Genomics 2022; 23:281. [PMID: 35395713 PMCID: PMC8991983 DOI: 10.1186/s12864-022-08483-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Egg production is one of the most important economic traits in the poultry industry. The hypothalamic-pituitary-gonadal (HPG) axis plays an essential role in regulating reproductive activities. However, the key genes and regulatory pathways within the HPG axis dominating egg production performance remain largely unknown in ducks. RESULTS In this study, we compared the transcriptomic profiles of the HPG-related tissues between ducks with high egg production (HEP) and low egg production (LEP) to reveal candidate genes and regulatory pathways dominating egg production. We identified 543, 759, 670, and 181 differentially expressed genes (DEGs) in the hypothalamus, pituitary, ovary stroma, and F5 follicle membrane, respectively. Gene Ontology (GO) analysis revealed that DEGs from four HPG axis-related tissues were enriched in the "cellular component" category. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the neuroactive ligand-receptor interaction pathway was significantly enriched based on DEGs commonly identified in all four HPG axis-related tissues. Gene expression profiles and Protein-Protein Interaction (PPI) network were performed to show the regulatory relationships of the DEGs identified. Five DEGs encoding secreted proteins in the hypothalamus and pituitary have interaction with DEGs encoding targeted proteins in the ovary stroma and F5 follicle membrane, implying that they were these DEGs might play similar roles in the regulation of egg production. CONCLUSIONS Our results revealed that neuroactive ligand-receptor interaction pathway and five key genes(VEGFC, SPARC, BMP2, THBS1, and ADAMTS15) were identified as the key signaling pathways and candidate genes within the HPG axis responsible for different egg production performance between HEP and LEP. This is the first study comparing the transcriptomic profiles of all HPG axis-related tissues in HEP and LEP using RNA-seq in ducks to the best of our knowledge. These data are helpful to enrich our understanding of the classical HPG axis regulating the egg production performance and identify candidate genes that can be used for genetic selection in ducks.
Collapse
Affiliation(s)
- Xiping Yan
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xingfa Han
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xianyin Zeng
- A Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
10
|
Tian M, Tang Y, Huang T, Liu Y, Pan Y. Amelioration of human peritoneal mesothelial cell co-culture-evoked malignant potential of ovarian cancer cells by acacetin involves LPA release-activated RAGE-PI3K/AKT signaling. Cell Mol Biol Lett 2021; 26:51. [PMID: 34886812 PMCID: PMC8903696 DOI: 10.1186/s11658-021-00296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Ovarian cancer is a devastating gynecological malignancy and frequently presents as an advanced carcinoma with disseminated peritoneum metastasis. Acacetin exerts anti-cancerous effects in several carcinomas. Here, we sought to investigate acacetin function in ovarian cancer malignancy triggered by peritoneal mesothelial cells. Methods Peritoneal mesothelial cells were treated with acacetin, and then the conditioned medium was collected to treat ovarian cancer cells. Then, cell proliferation was analyzed by MTT assay. Transwell analysis was conducted to evaluate cell invasion. Protein expression was determined by western blotting. ELISA and qRT-PCR were applied to analyze inflammatory cytokine levels. The underlying mechanism was also explored. Results Acacetin suppressed cell proliferation and invasion, but enhanced cell apoptosis. Furthermore, mesothelial cell-evoked malignant characteristics were inhibited when mesothelial cells were pre-treated with acacetin via restraining cell proliferation and invasion, concomitant with decreases in proliferation-related PCNA, MMP-2 and MMP-9 levels. Simultaneously, acacetin reduced mesothelial cell-induced transcripts and production of pro-inflammatory cytokine IL-6 and IL-8 in ovarian cancer cells. Mechanically, acacetin decreased lysophosphatidic acid (LPA) release from mesothelial cells, and subsequent activation of receptor for advanced glycation end-products (RAGE)-PI3K/AKT signaling in ovarian cancer cells. Notably, exogenous LPA restored the above pathway, and offset the efficacy of acacetin against mesothelial cell-evoked malignancy in ovarian cancer cells, including cell proliferation, invasion and inflammatory cytokine production. Conclusions Acacetin may not only engender direct inhibition of ovarian cancer cell malignancy, but also antagonize mesothelial cell-evoked malignancy by blocking LPA release-activated RAGE-PI3K/AKT signaling. Thus, these findings provide supporting evidence for a promising therapeutic agent against ovarian cancer. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Meng Tian
- Critical Care Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yingjie Tang
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, People's Republic of China
| | - Ting Huang
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, People's Republic of China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yingzheng Pan
- Department of Gynecological Endocrinology, Chongqing Health Center for Women and Children, No 120 Longshan Road, Yubei District, Chongqing, 401147, People's Republic of China.
| |
Collapse
|
11
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
12
|
Yao L, Zhou Y, Li J, Wickens L, Conforti F, Rattu A, Ibrahim FM, Alzetani A, Marshall BG, Fletcher SV, Hancock D, Wallis T, Downward J, Ewing RM, Richeldi L, Skipp P, Davies DE, Jones MG, Wang Y. Bidirectional epithelial-mesenchymal crosstalk provides self-sustaining profibrotic signals in pulmonary fibrosis. J Biol Chem 2021; 297:101096. [PMID: 34418430 PMCID: PMC8435701 DOI: 10.1016/j.jbc.2021.101096] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrotic lung disease with a median survival of 2 to 4 years. Injury to and/or dysfunction of the alveolar epithelium is strongly implicated in IPF disease initiation, but the factors that determine whether fibrosis progresses rather than normal tissue repair occurs remain poorly understood. We previously demonstrated that zinc finger E-box-binding homeobox 1-mediated epithelial-mesenchymal transition in human alveolar epithelial type II (ATII) cells augments transforming growth factor-β-induced profibrogenic responses in underlying lung fibroblasts via paracrine signaling. Here, we investigated bidirectional epithelial-mesenchymal crosstalk and its potential to drive fibrosis progression. RNA-Seq of lung fibroblasts exposed to conditioned media from ATII cells undergoing RAS-induced epithelial-mesenchymal transition identified many differentially expressed genes including those involved in cell migration and extracellular matrix regulation. We confirmed that paracrine signaling between RAS-activated ATII cells and fibroblasts augmented fibroblast recruitment and demonstrated that this involved a zinc finger E-box-binding homeobox 1-tissue plasminogen activator axis. In a reciprocal fashion, paracrine signaling from transforming growth factor-β-activated lung fibroblasts or IPF fibroblasts induced RAS activation in ATII cells, at least partially through the secreted protein acidic and rich in cysteine, which may signal via the epithelial growth factor receptor via epithelial growth factor-like repeats. Together, these data identify that aberrant bidirectional epithelial-mesenchymal crosstalk in IPF drives a chronic feedback loop that maintains a wound-healing phenotype and provides self-sustaining profibrotic signals.
Collapse
Affiliation(s)
- Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Juanjuan Li
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Leanne Wickens
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Anna Rattu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Fathima Maneesha Ibrahim
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - David Hancock
- Oncogene Biology, The Francis Crick Institute, London, United Kingdom
| | - Tim Wallis
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; University Hospital Southampton, Southampton, United Kingdom
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, London, United Kingdom
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom; Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paul Skipp
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Mark G Jones
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
13
|
Rickard BP, Conrad C, Sorrin AJ, Ruhi MK, Reader JC, Huang SA, Franco W, Scarcelli G, Polacheck WJ, Roque DM, del Carmen MG, Huang HC, Demirci U, Rizvi I. Malignant Ascites in Ovarian Cancer: Cellular, Acellular, and Biophysical Determinants of Molecular Characteristics and Therapy Response. Cancers (Basel) 2021; 13:4318. [PMID: 34503128 PMCID: PMC8430600 DOI: 10.3390/cancers13174318] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ascites refers to the abnormal accumulation of fluid in the peritoneum resulting from an underlying pathology, such as metastatic cancer. Among all cancers, advanced-stage epithelial ovarian cancer is most frequently associated with the production of malignant ascites and is the leading cause of death from gynecologic malignancies. Despite decades of evidence showing that the accumulation of peritoneal fluid portends the poorest outcomes for cancer patients, the role of malignant ascites in promoting metastasis and therapy resistance remains poorly understood. This review summarizes the current understanding of malignant ascites, with a focus on ovarian cancer. The first section provides an overview of heterogeneity in ovarian cancer and the pathophysiology of malignant ascites. Next, analytical methods used to characterize the cellular and acellular components of malignant ascites, as well the role of these components in modulating cell biology, are discussed. The review then provides a perspective on the pressures and forces that tumors are subjected to in the presence of malignant ascites and the impact of physical stress on therapy resistance. Treatment options for malignant ascites, including surgical, pharmacological and photochemical interventions are then discussed to highlight challenges and opportunities at the interface of drug discovery, device development and physical sciences in oncology.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Christina Conrad
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dana M. Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.C.R.); (D.M.R.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Marcela G. del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (C.C.); (A.J.S.); (G.S.); (H.-C.H.)
- Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, and North Carolina State University, Raleigh, NC 27599, USA; (M.K.R.); (S.A.H.); (W.J.P.)
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Chen S, Zou Q, Chen Y, Kuang X, Wu W, Guo M, Cai Y, Li Q. Regulation of SPARC family proteins in disorders of the central nervous system. Brain Res Bull 2020; 163:178-189. [DOI: 10.1016/j.brainresbull.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
|
15
|
Wu S, Sun Z, Peng Y, Han Y, Li J, Zhu S, Yin Y, Li G. Peptide-functionalized metal-organic framework nanocomposite for ultrasensitive detection of secreted protein acidic and rich in cysteine with practical application. Biosens Bioelectron 2020; 169:112613. [PMID: 32956904 DOI: 10.1016/j.bios.2020.112613] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 01/17/2023]
Abstract
In this work, we have prepared peptide-functionalized metal-organic frameworks (MOFs) as signal-amplifying tags for the detection of secreted protein acidic and rich in cysteine (SPARC). Furthermore, enzyme-MOF nanocomposites are fabricated via a coprecipitation strategy between horse radish peroxidase (HRP) and ZIF-90, where ZIF-90 is used as a protective support for HRP immobilization. Meanwhile, the peptide sequence has been designed as SPARC-binding peptide, which imparts biorecognition functionality to HRP@ZIF-90 for performing a colorimetric sensor. Therefore, during the test, HRP molecules can be quickly released from nanocomposites by acidic condition to catalyze chromogenic reaction, enabling the ultrasensitive detection of SPARC with a low detection limit of 30 fg/mL. Moreover, the content of SPARC in colon cancer tissues with different degrees of differentiation can be determined with this sensor, demonstrating that the expression of SPARC is closely related to the occurrence, invasion and metastasis of human colon cancer. These results may show the potential applications of this biosensor in SPARC fundamental research as well as clinical diagnosis in the future.
Collapse
Affiliation(s)
- Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Peng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yiwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Jinlong Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Southeast University, Nanjing, 210003, PR China
| | - Sha Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
16
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted protein acidic and rich in cysteine and inflammation: Another homeostatic property? Cytokine 2020; 133:155179. [PMID: 32619797 DOI: 10.1016/j.cyto.2020.155179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, Québec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Québec G1V 0A6, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, Québec G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, Québec G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
17
|
Secreted protein acidic and rich in cysteine and cancer: A homeostatic hormone? Cytokine 2020; 127:154996. [PMID: 31955132 DOI: 10.1016/j.cyto.2020.154996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
|
18
|
Regulation of the bi-directional cross-talk between ovarian cancer cells and adipocytes by SPARC. Oncogene 2019; 38:4366-4383. [PMID: 30765860 PMCID: PMC6542715 DOI: 10.1038/s41388-019-0728-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 01/01/2023]
Abstract
Ovarian cancer (OvCa) exhibits a specific predilection for metastasis to the omentum. Our earlier studies highlighted the tumour-suppressor effect of secreted protein acidic and rich in cysteine (SPARC) in OvCa through multi-faceted roles inhibiting cancer cell interactions within the peritoneal milieu. The goal of this study is to investigate the role of SPARC in OvCa interactions with omental adipocytes and its role in OvCa colonization in the omentum. We employed multi-pronged approach using primary omental adipocytes from Sparc knockout mice, genetically engineered human omental adipocytes in 3D co-cultures with OvCa cells, as well as treatment with recombinant SPARC protein. We show that SPARC suppresses multistep cascade in OvCa omental metastasis. SPARC inhibited in vivo and adipocyte-induced homing, proliferation, and invasion of OvCa cells. SPARC suppressed metabolic programming of both adipocytes and OvCa cells and exerted an inhibitory effect of adipocyte differentiation and their phenotypic switch to cancer-associated phenotype. Mechanistic studies revealed that this effect is mediated through inhibition of cEBPβ-NFkB-AP-1 transcription machinery. These findings define a novel and functionally important role of SPARC in OvCa and not only bridge the knowledge gap but highlight the need to consider SPARC protein expression in therapeutic development.
Collapse
|
19
|
SPARC Inhibits Metabolic Plasticity in Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10100385. [PMID: 30332737 PMCID: PMC6209984 DOI: 10.3390/cancers10100385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 01/22/2023] Open
Abstract
The tropism of ovarian cancer (OvCa) to the peritoneal cavity is implicated in widespread dissemination, suboptimal surgery, and poor prognosis. This tropism is influenced by stromal factors that are not only critical for the oncogenic and metastatic cascades, but also in the modulation of cancer cell metabolic plasticity to fulfill their high energy demands. In this respect, we investigated the role of Secreted Protein Acidic and Rich in Cysteine (SPARC) in metabolic plasticity of OvCa. We used a syngeneic model of OvCa in Sparc-deficient and proficient mice to gain comprehensive insight into the paracrine effect of stromal-SPARC in metabolic programming of OvCa in the peritoneal milieu. Metabolomic and transcriptomic profiling of micro-dissected syngeneic peritoneal tumors revealed that the absence of stromal-Sparc led to significant upregulation of the enzymes involved in glycolysis, TCA cycle, and mitochondrial electron transport chain (ETC), and their metabolic intermediates. Absence of stromal-Sparc increased reactive oxygen species and perturbed redox homeostasis. Recombinant SPARC exerted a dose-dependent inhibitory effect on glycolysis, mitochondrial respiration, ATP production and ROS generation. Comparative analysis with human tumors revealed that SPARC-regulated ETC-signature inversely correlated with SPARC transcripts. Targeting mitochondrial ETC by phenformin treatment of tumor-bearing Sparc-deficient and proficient mice mitigated the effect of SPARC-deficiency and significantly reduced tumor burden, ROS, and oxidative tissue damage in syngeneic tumors. In summary, our findings provide novel insights into the role of SPARC in regulating metabolic plasticity and bioenergetics in OvCa, and shines light on its potential therapeutic efficacy.
Collapse
|
20
|
Ghoneum A, Afify H, Salih Z, Kelly M, Said N. Role of tumor microenvironment in the pathobiology of ovarian cancer: Insights and therapeutic opportunities. Cancer Med 2018; 7:5047-5056. [PMID: 30133163 PMCID: PMC6198242 DOI: 10.1002/cam4.1741] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/15/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is the fifth most common cancer affecting women and at present, stands as the most lethal gynecologic malignancy. The poor disease outcome is due to the nonspecific symptoms and the lack of effective treatment at advanced stages. Thus, it is of utmost importance to understand ovarian carcinoma through several lenses and to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several determinants of this unique tumor microenvironment, their influence on disease outcome and ongoing clinical trials targeting these determinants.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Hesham Afify
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Ziyan Salih
- Department of Pathology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Michael Kelly
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina.,Department of Pathology, Wake Forest University School of Medicine, Winston Salem, North Carolina.,Department of Urology, Wake Forest University School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
21
|
Mukwaya A, Lennikov A, Xeroudaki M, Mirabelli P, Lachota M, Jensen L, Peebo B, Lagali N. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 2018; 21:395-413. [PMID: 29445990 PMCID: PMC5878196 DOI: 10.1007/s10456-018-9604-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Inflammation in the normally immune-privileged cornea can initiate a pathologic angiogenic response causing vision-threatening corneal neovascularization. Inflammatory pathways, however, are numerous, complex and are activated in a time-dependent manner. Effective resolution of inflammation and associated angiogenesis in the cornea requires knowledge of these pathways and their time dependence, which has, to date, remained largely unexplored. Here, using a model of endogenous resolution of inflammation-induced corneal angiogenesis, we investigate the time dependence of inflammatory genes in effecting capillary regression and the return of corneal transparency. Endogenous capillary regression was characterized by a progressive thinning and remodeling of angiogenic capillaries and inflammatory cell retreat in vivo in the rat cornea. By whole-genome longitudinal microarray analysis, early suppression of VEGF ligand-receptor signaling and inflammatory pathways preceded an unexpected later-phase preferential activation of LXR/RXR, PPARα/RXRα and STAT3 canonical pathways, with a concurrent attenuation of LPS/IL-1 inhibition of RXR function and Wnt/β-catenin signaling pathways. Potent downstream inflammatory cytokines such as Cxcl5, IL-1β, IL-6 and Ccl2 were concomitantly downregulated during the remodeling phase. Upstream regulators of the inflammatory pathways included Socs3, Sparc and ApoE. A complex and coordinated time-dependent interplay between pro- and anti-inflammatory signaling pathways highlights a potential anti-inflammatory role of LXR/RXR, PPARα/RXRα and STAT3 signaling pathways in resolving inflammatory corneal angiogenesis.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Maria Xeroudaki
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Pierfrancesco Mirabelli
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Mieszko Lachota
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linkoping University, 58183, Linköping, Sweden.
| |
Collapse
|
22
|
Ghoneum A, Afify H, Salih Z, Kelly M, Said N. Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 2018; 9:22832-22849. [PMID: 29854318 PMCID: PMC5978268 DOI: 10.18632/oncotarget.25126] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the fifth most common cancer affecting the female population and at present, stands as the most lethal gynecologic malignancy. Poor prognosis and low five-year survival rate are attributed to nonspecific symptoms and below par diagnostic criteria at early phases along with a lack of effective treatment at advanced stages. It is thus of utmost importance to understand ovarian carcinoma through several lenses including its molecular pathogenesis, epidemiology, histological subtypes, hereditary factors, diagnostic approaches and methods of treatment. Above all, it is crucial to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several important aspects of ovarian cancer pathobiology as a means to provide the necessary background to approach ovarian malignancies in the future.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Hesham Afify
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ziyan Salih
- Department of Cancer Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Michael Kelly
- Department of Cancer Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Department of Cancer Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Department of Cancer Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
23
|
Said N. Roles of SPARC in urothelial carcinogenesis, progression and metastasis. Oncotarget 2018; 7:67574-67585. [PMID: 27564266 PMCID: PMC5341897 DOI: 10.18632/oncotarget.11590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular glycoprotein that is implicated in myriad physiological and pathological conditions characterized by extensive remodeling and plasticity. The functions and disease association of SPARC in cancer is being increasingly appreciated as it plays multi-faceted contextual roles depending on the cancer type, cell of origin and the unique cancer milieu at both primary and metastatic sites. Herein we will review our current knowledge of the role of SPARC in the multistep cascades of urinary bladder carcinogenesis, progression and metastasis from preclinical models and clinical data and shine the light on its prognostic and therapeutic potentials.
Collapse
Affiliation(s)
- Neveen Said
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC, USA
| |
Collapse
|
24
|
Wong SLI, Sukkar MB. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. Br J Pharmacol 2016; 174:3-14. [PMID: 27759879 DOI: 10.1111/bph.13653] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022] Open
Abstract
The SPARC (secreted protein acidic and rich in cysteine) protein is matricellular molecule regulating interactions between cells and their surrounding extracellular matrix (ECM). This protein thus governs fundamental cellular functions such as cell adhesion, proliferation and differentiation. SPARC also regulates the expression and activity of numerous growth factors and matrix metalloproteinases essential for ECM degradation and turnover. Studies in SPARC-null mice have revealed a critical role for SPARC in tissue development, injury and repair and in the regulation of the immune response. In the lung, SPARC drives pathological responses in non-small cell lung cancer and idiopathic pulmonary fibrosis by promoting microvascular remodelling and excessive deposition of ECM proteins. Remarkably, although chronic airway conditions such as asthma and chronic obstructive pulmonary disease (COPD) involve significant remodelling in both the airway and vascular compartments, the role of SPARC in these conditions has thus far been overlooked. In this review, we discuss the role of SPARC in lung cancer and pulmonary fibrosis, as well as potential mechanisms by which it may contribute to the disease process in asthma and COPD.
Collapse
Affiliation(s)
- Sharon L I Wong
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Maria B Sukkar
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
25
|
Alkabie S, Basivireddy J, Zhou L, Roskams J, Rieckmann P, Quandt JA. SPARC expression by cerebral microvascular endothelial cells in vitro and its influence on blood-brain barrier properties. J Neuroinflammation 2016; 13:225. [PMID: 27581191 PMCID: PMC5007716 DOI: 10.1186/s12974-016-0657-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/12/2016] [Indexed: 11/16/2022] Open
Abstract
Background SPARC (secreted protein acidic and rich in cysteine) is a nonstructural, cell-matrix modulating protein involved in angiogenesis and endothelial barrier function, yet its potential role in cerebrovascular development, inflammation, and repair in the central nervous system (CNS) remains undetermined. Methods This study examines SPARC expression in cultured human cerebral microvascular endothelial cells (hCMEC/D3)—an in vitro model of the blood-brain barrier (BBB)—as they transition between proliferative and barrier phenotypes and encounter pro-inflammatory stimuli. SPARC protein levels were quantified by Western blotting and immunocytochemistry and messenger RNA (mRNA) by RT-PCR. Results Constitutive SPARC expression by proliferating hCMEC/D3s is reduced as cells mature and establish a confluent monolayer. SPARC expression positively correlated with the proliferation marker Ki-67 suggesting a role for SPARC in cerebrovascular development. The pro-inflammatory molecules tumor necrosis factor-α (TNF-α) and endotoxin lipopolysaccharide (LPS) increased SPARC expression in cerebral endothelia. Interferon gamma (IFN-γ) abrogated SPARC induction observed with TNF-α alone. Barrier function assays show recombinant human (rh)-SPARC increased paracellular permeability and decreased transendothelial electrical resistance (TEER). This was paralleled by reduced zonula occludens-1 (ZO-1) and occludin expression in hCMEC/D3s exposed to rh-SPARC (1–10 μg/ml) compared with cells in media containing a physiological dose of SPARC. Conclusions Together, these findings define a role for SPARC in influencing cerebral microvascular properties and function during development and inflammation at the BBB such that it may mediate processes of CNS inflammation and repair. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0657-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samir Alkabie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayasree Basivireddy
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lixin Zhou
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jane Roskams
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Peter Rieckmann
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, BC, Canada.,Sozialstiftung Bamberg, Klinikum am Bruderwald, Neurologische Klinik, Buger Str. 80, Bamberg, 96049, Germany
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Sharma S, Xing F, Liu Y, Wu K, Said N, Pochampally R, Shiozawa Y, Lin HK, Balaji KC, Watabe K. Secreted Protein Acidic and Rich in Cysteine (SPARC) Mediates Metastatic Dormancy of Prostate Cancer in Bone. J Biol Chem 2016; 291:19351-63. [PMID: 27422817 DOI: 10.1074/jbc.m116.737379] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is known to frequently recur in bone; however, how dormant cells switch its phenotype leading to recurrent tumor remains poorly understood. We have isolated two syngeneic cell lines (indolent and aggressive) through in vivo selection by implanting PC3mm stem-like cells into tibial bones. We found that indolent cells retained the dormant phenotype, whereas aggressive cells grew rapidly in bone in vivo, and the growth rates of both cells in culture were similar, suggesting a role of the tumor microenvironment in the regulation of dormancy and recurrence. Indolent cells were found to secrete a high level of secreted protein acidic and rich in cysteine (SPARC), which significantly stimulated the expression of BMP7 in bone marrow stromal cells. The secreted BMP7 then kept cancer cells in a dormant state by inducing senescence, reducing "stemness," and activating dormancy-associated p38 MAPK signaling and p21 expression in cancer cells. Importantly, we found that SPARC was epigenetically silenced in aggressive cells by promoter methylation, but 5-azacytidine treatment reactivated the expression. Furthermore, high SPARC promoter methylation negatively correlated with disease-free survival of prostate cancer patients. We also found that the COX2 inhibitor NS398 down-regulated DNMTs and increased expression of SPARC, which led to tumor growth suppression in bone in vivo These findings suggest that SPARC plays a key role in maintaining the dormancy of prostate cancer cells in the bone microenvironment.
Collapse
Affiliation(s)
| | - Fei Xing
- From the Departments of Cancer Biology
| | - Yin Liu
- From the Departments of Cancer Biology
| | - Kerui Wu
- From the Departments of Cancer Biology
| | | | - Radhika Pochampally
- the Department of Biochemistry and Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | | | | | - K C Balaji
- Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 and
| | | |
Collapse
|
27
|
Ovarian cancer microenvironment: implications for cancer dissemination and chemoresistance acquisition. Cancer Metastasis Rev 2015; 33:17-39. [PMID: 24357056 DOI: 10.1007/s10555-013-9456-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian adenocarcinoma is characterized by a late detection, dissemination of cancer cells into the whole peritoneum, and the frequent acquisition of chemoresistance. If these particularities can be explained in part by intrinsic properties of ovarian cancer cells, an increased number of studies show the importance of the tumor microenvironment in tumor progression. Ovarian cancer cells can regulate the composition of their stroma in promoting the formation of ascitic fluid, rich in cytokines and bioactive lipids, and in stimulating the differentiation of stromal cells into a pro-tumoral phenotype. In return, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, tumor-associated macrophages, or other peritoneal cells, such as adipocytes and mesothelial cells can regulate tumor growth, angiogenesis, dissemination, and chemoresistance. This review focuses on the current knowledge about the roles of stromal cells and the associated secreted factors on tumor progression. We also summarize the different studies showing that targeting the microenvironment represents a great potential for improving the prognosis of patients with ovarian adenocarcinoma.
Collapse
|
28
|
Thomas SL, Schultz CR, Mouzon E, Golembieski WA, El Naili R, Radakrishnan A, Lemke N, Poisson LM, Gutiérrez JA, Cottingham S, Rempel SA. Loss of Sparc in p53-null Astrocytes Promotes Macrophage Activation and Phagocytosis Resulting in Decreased Tumor Size and Tumor Cell Survival. Brain Pathol 2015; 25:391-400. [PMID: 24862407 PMCID: PMC4520390 DOI: 10.1111/bpa.12161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/19/2014] [Indexed: 12/26/2022] Open
Abstract
Both the induction of SPARC expression and the loss of the p53 tumor suppressor gene are changes that occur early in glioma development. Both SPARC and p53 regulate glioma cell survival by inverse effects on apoptotic signaling. Therefore, during glioma formation, the upregulation of SPARC may cooperate with the loss of p53 to enhance cell survival. This study determined whether the loss of Sparc in astrocytes that are null for p53 would result in reduced cell survival and tumor formation and increased tumor immunogenicity in an in vivo xenograft brain tumor model. In vitro, the loss of Sparc in p53‐null astrocytes resulted in an increase in cell proliferation, but a loss of tumorigenicity. At 7 days after intracranial implantation, Sparc‐null tumors had decreased tumor cell survival, proliferation and reduced tumor size. The loss of Sparc promoted microglia/macrophage activation and phagocytosis of tumor cells. Our results indicate that the loss of p53 by deletion/mutation in the early stages of glioma formation may cooperate with the induction of SPARC to potentiate cancer cell survival and escape from immune surveillance.
Collapse
Affiliation(s)
- Stacey L Thomas
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI.,Department of Clinical Neurosciences, Laboratory of Molecular Neuro-Oncology, Division of Neurosurgery, Spectrum Health System, Grand Rapids, MI
| | - Chad R Schultz
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI.,Department of Clinical Neurosciences, Laboratory of Molecular Neuro-Oncology, Division of Neurosurgery, Spectrum Health System, Grand Rapids, MI
| | - Ezekiell Mouzon
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI
| | - William A Golembieski
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI.,Department of Clinical Neurosciences, Laboratory of Molecular Neuro-Oncology, Division of Neurosurgery, Spectrum Health System, Grand Rapids, MI
| | - Reima El Naili
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI
| | - Archanna Radakrishnan
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI
| | - Nancy Lemke
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI
| | - Laila M Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI
| | | | - Sandra Cottingham
- Department of Neuropathology and Clinical Neurosciences, Spectrum Health System, Grand Rapids, MI
| | - Sandra A Rempel
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI.,Department of Clinical Neurosciences, Laboratory of Molecular Neuro-Oncology, Division of Neurosurgery, Spectrum Health System, Grand Rapids, MI
| |
Collapse
|
29
|
Chudecka-Głaz AM, Cymbaluk-Płoska AA, Menkiszak JL, Pius-Sadowska E, Machaliński BB, Sompolska-Rzechuła A, Rzepka-Górska IA. Assessment of selected cytokines, proteins, and growth factors in the peritoneal fluid of patients with ovarian cancer and benign gynecological conditions. Onco Targets Ther 2015; 8:471-85. [PMID: 25750541 PMCID: PMC4348053 DOI: 10.2147/ott.s73438] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives The ovarian tumor microenvironment, ie, the peritoneal fluid, is an intriguing research subject. The goal of this study was to assess the behavior of selected cytokines and growth factors within the peritoneal fluid in pathologies associated with ascites and to assess the relationship between the levels of these substances and select prognostic factors of ovarian cancer. Methods A total of 74 patients were enrolled in the study, including 36 patients with ovarian cancer and 38 patients with benign gynecological conditions. Peritoneal fluid collected during surgical procedures was used to assess the levels of interleukin (IL)-6, IL-8, stem cell factor (SCF), dickkopf-1, growth differentiation factor-15 (GDF-15), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), osteoprotegerin (OPG), osteopontin, osteonectin, and human epididymis protein 4. The median levels of these factors were compared between the two groups, and the levels of selected factors were assessed in the ovarian cancer group with regard to the clinical stage of cancer, tumor differentiation, presence of peritoneal spread and positive peritoneal fluid cytology results. The diagnostic value of the analyzed proteins within the peritoneal fluid was also assessed. Results Differences were observed between the patients with ovarian cancer and the patients with benign gynecological conditions associated with ascites with regard to the levels of IL-6, IL-8, GDF-15, SCF, osteopontin, osteonectin, and OPG. There were no differences in dickkopf-1, TRAIL, and human epididymis protein 4 levels between the two study groups. Cancer stage affected only the mean SCF and OPG levels, with lower SCF values and higher OPG values in advanced cancers compared to less-advanced cancers. Tumor differentiation was associated with significantly lower SCF values in the group of poorly differentiated tumors. A significant reduction in SCF values and a significant increase in OPG and IL-6 values were also observed within cancer cell-positive peritoneal fluid. Peritoneal spread was associated with higher levels of TRAIL, osteonectin, and IL-6 in ovarian cancer patients. Conclusion On the basis of the conducted studies, it appears that of the studied factors, GDF-15, SCF, and OPG deserve special attention in the context of future research on the tumor microenvironment. With regard to diagnostics, attention should be given primarily to GDF-15, IL-6, and osteonectin.
Collapse
Affiliation(s)
- Anita Monika Chudecka-Głaz
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Aneta Alicja Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Janusz Leszek Menkiszak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Izabella Anna Rzepka-Górska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
30
|
Neuzillet C, Tijeras-Raballand A, Cros J, Faivre S, Hammel P, Raymond E. Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev 2014; 32:585-602. [PMID: 23690170 DOI: 10.1007/s10555-013-9439-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as the poorest prognostic tumor of the digestive tract, with a 5-year survival rate of less than 5%. Therapeutic options for unresectable PDAC are extremely limited and there is a pressing need for expanded therapeutic approaches to improve current options available with gemcitabine-based regimens. With PDAC displaying one of the most prominent desmoplastic stromal reactions of all carcinomas, recent research has focused on the microenvironment surrounding PDAC cells. Secreted protein acid and rich in cysteine (SPARC), which is overexpressed in PDAC, may display tumor suppressor functions in several cancers (e.g., in colorectal, ovarian, prostate cancers, and acute myelogenous leukemia) but also appears to be overexpressed in other tumor types (e.g., breast cancer, melanoma, and glioblastoma). The apparent contradictory functions of SPARC may yield inhibition of angiogenesis via inhibition of vascular endothelial growth factor, while promoting epithelial-to-mesenchymal transition and invasion through matrix metalloprotease expression. This feature is of particular interest in PDAC where SPARC overexpression in the stroma stands along with inhibition of angiogenesis and promotion of cancer cell invasion and metastasis. Several therapeutic strategies to deplete stromal tissue have been developed. In this review, we focused on key preclinical and clinical data describing the role of SPARC in PDAC biology, the properties, and mechanisms of delivery of drugs that interact with SPARC and discuss the proof-of-concept clinical trials using nab-paclitaxel.
Collapse
Affiliation(s)
- Cindy Neuzillet
- Department of Medical Oncology (INSERM U728-PRES Paris 7 Diderot), Beaujon University Hospital, Assistance Publique-Hôpitaux de Paris, 100 boulevard du Général Leclerc, 92110, Clichy-La-Garenne, France
| | | | | | | | | | | |
Collapse
|
31
|
Suh DH, Kim HS, Kim B, Song YS. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication. Biochem Pharmacol 2014; 92:43-54. [PMID: 25168677 DOI: 10.1016/j.bcp.2014.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Our group reported a significant association between hexokinase II overexpression and chemoresistance in ovarian cancer, suggesting that aerobic glycolysis in the so-called Warburg effect might contribute to cancer progression. However, a growing body of evidence indicates contradictory findings with regard to the Warburg effect, such as high mitochondrial activity in highly invasive tumors and low ATP contribution of glycolysis in ovarian cancer. As a solution for the dilemma of the Warburg effect, the "reverse Warburg effect" was proposed in which aerobic glycolysis might occur in the stromal compartment of the tumor rather than in the cancer cells, indicating that the glycolytic tumor stroma feed the cancer cells through a type of symbiotic relationship. The reverse Warburg effect acting on the relationship between cancer cells and cancer-associated fibroblasts has evolved into dynamic interplay between cancer cells and multiple tumor stromal compartments, including cancer-associated fibroblasts, the extracellular matrix, endothelial cells, mesenchymal stem cells, adipocytes, and tumor-associated macrophages. Peritoneal cavities including ascites and the omentum also form a unique environment that is highly receptive for carcinomatosis in the advanced stages of ovarian cancer. The complicated but ingeniously orchestrated stroma-mediated cancer metabolism in ovarian cancer provides great heterogeneity in tumors with chemoresistance, which makes the disease thus far difficult to cure by single stromal-targeting agents. This review will discuss the experimental and clinical evidence of the cross-talk between cancer cells and various components of tumor stroma in terms of heterogeneous chemoresistance with focal points for therapeutic intervention in ovarian cancer.
Collapse
Affiliation(s)
- Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
32
|
Ma Y, Sun Z, de Matos R, Zhang J, Odunsi K, Lin B. Towards an animal model of ovarian cancer: cataloging chicken blood proteins using combinatorial peptide ligand libraries coupled with shotgun proteomic analysis for translational research. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:280-97. [PMID: 24660652 DOI: 10.1089/omi.2013.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epithelial ovarian cancer is the most deadly gynecological cancer around the world, with high morbidity in industrialized countries. Early diagnosis is key in reducing its morbidity rate. Yet, robust biomarkers, diagnostics, and animal models are still limited for ovarian cancer. This calls for broader omics and systems science oriented diagnostics strategies. In this vein, the domestic chicken has been used as an ovarian cancer animal model, owing to its high rate of developing spontaneous epithelial ovarian tumors. Chicken blood has thus been considered a surrogate reservoir from which cancer biomarkers can be identified. However, the presence of highly abundant proteins in chicken blood has compromised the applicability of proteomics tools to study chicken blood owing to a lack of immunodepletion methods. Here, we demonstrate that a combinatorial peptide ligand library (CPLL) can efficiently remove highly abundant proteins from chicken blood samples, consequently doubling the number of identified proteins. Using an integrated CPLL-1DGE-LC-MSMS workflow, we identified a catalog of 264 unique proteins. Functional analyses further suggested that most proteins were coagulation and complement factors, blood transport and binding proteins, immune- and defense-related proteins, proteases, protease inhibitors, cellular enzymes, or cell structure and adhesion proteins. Semiquantitative spectral counting analysis identified 10 potential biomarkers from the present chicken ovarian cancer model. Additionally, many human homologs of chicken blood proteins we have identified have been independently suggested as diagnostic biomarkers for ovarian cancer, further triangulating our novel observations reported here. In conclusion, the CPLL-assisted proteomic workflow using the chicken ovarian cancer model provides a feasible platform for translational research to identify ovarian cancer biomarkers and understand ovarian cancer biology. To the best of our knowledge, we report here the most comprehensive survey of the chicken blood proteome to date.
Collapse
Affiliation(s)
- Yingying Ma
- 1 System Biology Division, Zhejiang-California International Nanosystem Institute (ZCNI), Zhejiang University , Hangzhou, China
| | | | | | | | | | | |
Collapse
|
33
|
Lis R, Touboul C, Halabi NM, Madduri AS, Querleu D, Mezey J, Malek JA, Suhre K, Rafii A. Mesenchymal cell interaction with ovarian cancer cells induces a background dependent pro-metastatic transcriptomic profile. J Transl Med 2014; 12:59. [PMID: 24597747 PMCID: PMC4132214 DOI: 10.1186/1479-5876-12-59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 02/06/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cross talk between the stroma and cancer cells plays a major role in phenotypic modulation. During peritoneal carcinomatosis ovarian cancer cells interact with mesenchymal stem cells (MSC) resulting in increased metastatic ability. Understanding the transcriptomic changes underlying the phenotypic modulation will allow identification of key genes to target. However in the context of personalized medicine we must consider inter and intra tumoral heterogeneity. In this study we used a pathway-based approach to illustrate the role of cell line background in transcriptomic modification during a cross talk with MSC. METHODS We used two ovarian cancer cell lines as a surrogate for different ovarian cancer subtypes: OVCAR3 for an epithelial and SKOV3 for a mesenchymal subtype. We co-cultured them with MSCs. Genome wide gene expression was determined after cell sorting. Ingenuity pathway analysis was used to decipher the cell specific transcriptomic changes related to different pro-metastatic traits (Adherence, migration, invasion, proliferation and chemoresistance). RESULTS We demonstrate that co-culture of ovarian cancer cells in direct cellular contact with MSCs induces broad transcriptomic changes related to enhance metastatic ability. Genes related to cellular adhesion, invasion, migration, proliferation and chemoresistance were enriched under these experimental conditions. Network analysis of differentially expressed genes clearly shows a cell type specific pattern. CONCLUSION The contact with the mesenchymal niche increase metastatic initiation and expansion through cancer cells' transcriptome modification dependent of the cellular subtype. Personalized medicine strategy might benefit from network analysis revealing the subtype specific nodes to target to disrupt acquired pro-metastatic profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arash Rafii
- Department of Genetic Medicine and Obstetrics and Gynecology, Stem cell and microenvironment laboratory, Weill Cornell Medical College in Qatar (WCMC-Q), Education City, Qatar Foundation, Qatar-Foundation PO: 24144, Doha, Qatar.
| |
Collapse
|
34
|
Lecis D, De Cesare M, Perego P, Conti A, Corna E, Drago C, Seneci P, Walczak H, Colombo MP, Delia D, Sangaletti S. Smac mimetics induce inflammation and necrotic tumour cell death by modulating macrophage activity. Cell Death Dis 2013; 4:e920. [PMID: 24232096 PMCID: PMC3847325 DOI: 10.1038/cddis.2013.449] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 12/30/2022]
Abstract
Smac mimetics (SMs) comprise a class of small molecules that target members of the inhibitor of apoptosis family of pro-survival proteins, whose expression in cancer cells hinders the action of conventional chemotherapeutics. Herein, we describe the activity of SM83, a newly synthesised dimeric SM, in two cancer ascites models: athymic nude mice injected intraperitoneally with IGROV-1 human ovarian carcinoma cells and immunocompetent BALB/c mice injected with murine Meth A sarcoma cells. SM83 rapidly killed ascitic IGROV-1 and Meth A cells in vivo (prolonging mouse survival), but was ineffective against the same cells in vitro. IGROV-1 cells in nude mice were killed within the ascites by a non-apoptotic, tumour necrosis factor (TNF)-dependent mechanism. SM83 administration triggered a rapid inflammatory event characterised by host secretion of TNF, interleukin-1β and interferon-γ. This inflammatory response was associated with the reversion of the phenotype of tumour-associated macrophages from a pro-tumoural M2- to a pro-inflammatory M1-like state. SM83 treatment was also associated with a massive recruitment of neutrophils that, however, was not essential for the antitumoural activity of this compound. In BALB/c mice bearing Meth A ascites, SM83 treatment was in some cases curative, and these mice became resistant to a second injection of cancer cells, suggesting that they had developed an adaptive immune response. Altogether, these results indicate that, in vivo, SM83 modulates the immune system within the tumour microenvironment and, through its pro-inflammatory action, leads cancer cells to die by necrosis with the release of high-mobility group box-1. In conclusion, our work provides evidence that SMs could be more therapeutically active than expected by stimulating the immune system.
Collapse
Affiliation(s)
- D Lecis
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Piltonen TT, Chen J, Erikson DW, Spitzer TLB, Barragan F, Rabban JT, Huddleston H, Irwin JC, Giudice LC. Mesenchymal stem/progenitors and other endometrial cell types from women with polycystic ovary syndrome (PCOS) display inflammatory and oncogenic potential. J Clin Endocrinol Metab 2013; 98:3765-75. [PMID: 23824412 PMCID: PMC3763978 DOI: 10.1210/jc.2013-1923] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Endometrium in polycystic ovary syndrome (PCOS) presents altered gene expression indicating progesterone resistance and predisposing to reduced endometrial receptivity and endometrial cancer. OBJECTIVE We hypothesized that an altered endocrine/metabolic environment in PCOS may result in an endometrial "disease phenotype" affecting the gene expression of different endometrial cell populations, including stem cells and their differentiated progeny. DESIGN AND SETTING This was a prospective study conducted at an academic medical center. PATIENTS AND MAIN OUTCOME MEASURES Proliferative-phase endometrium was obtained from 6 overweight/obese PCOS (National Institutes of Health criteria) and 6 overweight/obese controls. Microarray analysis was performed on fluorescence-activated cell sorting-isolated endometrial epithelial cells (eEPs), endothelial cells, stromal fibroblasts (eSFs), and mesenchymal stem cells (eMSCs). Gene expression data were validated using microfluidic quantitative RT-PCR and immunohistochemistry. RESULTS The comparison between eEP(PCOS) and eEP(Ctrl) showed dysregulation of inflammatory genes and genes with oncogenic potential (CCL2, IL-6, ORM1, TNAIFP6, SFRP4, SPARC). eSF(PCOS) and eSF(Ctrl) showed up-regulation of inflammatory genes (C4A/B, CCL2, ICAM1, TNFAIP3). Similarly, in eMSC(PCOS) vs eMSC(Ctrl), the most up-regulated genes were related to inflammation and cancer (IL-8, ICAM1, SPRR3, LCN2). Immunohistochemistry scoring showed increased expression of CCL2 in eEP(PCOS) and eSF(PCOS) compared with eEP(Ctrl) and eSF(Ctrl) and IL-6 in eEP(PCOS) compared with eEP(Ctrl). CONCLUSIONS Isolated endometrial cell populations in women with PCOS showed altered gene expression revealing inflammation and prooncogenic changes, independent of body mass index, especially in eEP(PCOS) and eMSC(PCOS), compared with controls. The study reveals an endometrial disease phenotype in women with PCOS with potential negative effects on endometrial function and long-term health.
Collapse
Affiliation(s)
- T T Piltonen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, California 94143-0132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Willier S, Butt E, Grunewald TGP. Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol Cell 2013; 105:317-33. [PMID: 23611148 DOI: 10.1111/boc.201300011] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 04/16/2013] [Indexed: 12/27/2022]
Abstract
Lysophosphatidic acid (LPA) is a ubiquitously present signalling molecule involved in diverse cellular processes such as cell migration, proliferation and differentiation. LPA acts as an autocrine and/or paracrine signalling molecule via different G-protein-coupled LPA receptors (LPARs) that trigger a broad range of intracellular signalling cascades, especially the RHOA pathway. Mounting evidence suggests a crucial role of the LPA/LPAR-axis in cancer cell metastasis and promising studies are underway to investigate the therapeutic potential of LPAR-antagonists. This review summarises current knowledge on how LPA promotes cytoskeletal remodelling to enhance the migratory and invasive properties of cells, which may ultimately contribute to cancer metastasis. Furthermore, we provide comprehensive transcriptome analyses of published microarrays of more than 350 normal tissues and more than 1700 malignant tissues to define the expression signatures of LPARs and the LPA-generating enzymes autotaxin (ATX) and lipase member 1 (LIPI). These analyses demonstrate that ATX is highly expressed in a variety of carcinomas and sarcomas, whereas LIPI is almost exclusively overexpressed in highly aggressive Ewing's sarcomas, which underscores the potential contribution of LPA in metastatic disease. In addition, these analyses show that different cancer entities display distinct expression signatures of LPARs that distinguish them from one another. Finally, we discuss current approaches to specifically target the LPA/LPAR circuits in experimental cancer therapy.
Collapse
Affiliation(s)
- Semjon Willier
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
37
|
Ebrahimi A, Honegger J, Schluesener H, Schittenhelm J. Osteonectin Expression in Surrounding Stroma of Craniopharyngiomas. Int J Surg Pathol 2013; 21:591-8. [DOI: 10.1177/1066896913486695] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Craniopharyngioma is an epithelial tumor of the sellar region with a high survival rate but a high rate of recurrence, especially in children. Hypothalamic involvement, tumor recurrence, and multiple treatments result in clinical deterioration and impaired quality of life. Using immunohistochemistry, we investigated the expression pattern of osteonectin, a marker of tumor invasion and aggressive behavior, in 43 cases of craniopharyngioma. We observed a positive correlation of osteonectin expression in connective-type stromal tissue surrounding the epithelial tumor cells of craniopharyngioma with the extent of central nervous system infiltration and recurrence rate ( P < .001). Given the previous success of chemotherapeutic agents that target the tumor microenvironment, our findings on osteonectin expression in stroma of craniopharyngiomas might, hopefully, be a guide to find newer prognostic markers capable of estimating the risk of progression or recurrence. They may also aid in the development of therapeutics that target tumor microenvironment to improve patient outcome.
Collapse
Affiliation(s)
- Azadeh Ebrahimi
- Division of Immunopathology of the Nervous System
- Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Juergen Honegger
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | | | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
38
|
Said N, Frierson HF, Sanchez-Carbayo M, Brekken RA, Theodorescu D. Loss of SPARC in bladder cancer enhances carcinogenesis and progression. J Clin Invest 2013; 123:751-66. [PMID: 23321672 DOI: 10.1172/jci64782] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/08/2012] [Indexed: 12/12/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) has been implicated in multiple aspects of human cancer. However, its role in bladder carcinogenesis and metastasis are unclear,with some studies suggesting it may be a promoter and others arguing the opposite. Using a chemical carcinogenesis model in Sparc-deficient mice and their wild-type littermates, we found that loss of SPARC accelerated the development of urothelial preneoplasia (atypia and dysplasia), neoplasia, and metastasis and was associated with decreased survival. SPARC reduced carcinogen-induced inflammation and accumulation of reactive oxygen species as well as urothelial cell proliferation. Loss of SPARC was associated with an inflammatory phenotype of tumor-associated macrophages and fibroblasts, with concomitant increased activation of urothelial and stromal NF-κB and AP1 in vivo and in vitro. Syngeneic spontaneous and experimental metastasis models revealed that tumor- and stroma-derived SPARC reduced tumor growth and metastasis through inhibition of cancer-associated inflammation and lung colonization. In human bladder tumor tissues, the frequency and intensity of SPARC expression were inversely correlated with disease-specific survival. These results indicate that SPARC is produced by benign and malignant compartments of bladder carcinomas where it functions to suppress bladder carcinogenesis, progression, and metastasis.
Collapse
Affiliation(s)
- Neveen Said
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
39
|
Differential roles of uPAR in peritoneal ovarian carcinomatosis. Neoplasia 2012; 14:259-70. [PMID: 22577342 DOI: 10.1593/neo.12442] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/19/2012] [Accepted: 03/29/2012] [Indexed: 01/10/2023] Open
Abstract
Epithelial ovarian cancer is the fourth leading cause of death from gynecologic malignancies in the United States. Most cases are diagnosed at late stages, with the solid tumor masses growing as peritoneal implants, or floating within the ascitic fluid (peritoneal ovarian carcinomatosis). Despite aggressive surgical "debulking," recurrence of recalcitrant disease is frequent with poor patient survival. Efforts to improve survival rates are hindered by lack of biomarkers that can detect and effectively treat ovarian cancer in its early stages. Urokinase plasminogen activator receptor (uPAR) is a multifunctional receptor involved in a myriad of tumor cell processes. However, the role of host uPAR in ovarian cancer is still elusive. To define the potential proinflammatory role of uPAR in ovarian cancer, first, using a syngeneic murine model in uPAR(-/-) mice, we found that ablation of uPAR restrained tumor take and peritoneal implants and prolonged the survival of uPAR(-/-) mice compared with their uPAR(+/+) counterparts. Ascitic fluid accumulation was significantly decreased in uPAR(-/-) mice with decreased macrophage infiltration. Second, in vitro mechanistic studies revealed that host uPAR is involved in the multiple steps of peritoneal metastatic cascade. Third, we evaluated the prognostic utility of tumor and stromal uPAR in human ovarian cancer tissue microarray. In summary, our studies indicated that uPAR plays a significant role in ovarian cancer cell-stromal crosstalk and contributes to increased vascular permeability and inflammatory ovarian cancer microenvironment. This provides a rationale for targeting the uPAR with either specific neutralizing antibodies or targeting its downstream inflammatory effectors in patients with ovarian cancer.
Collapse
|
40
|
Said N, Sanchez-Carbayo M, Smith SC, Theodorescu D. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J Clin Invest 2012; 122:1503-18. [PMID: 22406535 DOI: 10.1172/jci61392] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/18/2012] [Indexed: 12/19/2022] Open
Abstract
Half of patients with muscle-invasive bladder cancer develop metastatic disease, and this is responsible for most of the deaths from this cancer. Low expression of RhoGTP dissociation inhibitor 2 (RhoGDI2; also known as ARHGDIB and Ly-GDI) is associated with metastatic disease in patients with muscle-invasive bladder cancer. Moreover, a reduction in metastasis is observed upon reexpression of RhoGDI2 in xenograft models of metastatic cancer. Here, we show that RhoGDI2 suppresses lung metastasis in mouse models by reducing the expression of isoforms V1 and V3 of the proteoglycan versican (VCAN; also known as chondroitin sulfate proteoglycan 2 [CSPG2]). In addition, we found that high versican levels portended poor prognosis in patients with bladder cancer. The functional importance of tumor expression of versican in promoting metastasis was established in in vitro and in vivo studies in mice that implicated a role for the chemokine CCL2 (also known as MCP1) and macrophages. Further analysis indicated that RhoGDI2 suppressed metastasis by altering inflammation in the tumor microenvironment. In summary, we demonstrate what we believe to be a new mechanism of metastasis suppression that works by reducing host responses that promote metastatic colonization of the lung. Therapeutic targeting of these interactions may provide a novel adjuvant strategy for delaying the appearance of clinical metastasis in patients.
Collapse
Affiliation(s)
- Neveen Said
- Department of Urology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
41
|
Cacciatore M, Guarnotta C, Calvaruso M, Sangaletti S, Florena AM, Franco V, Colombo MP, Tripodo C. Microenvironment-centred dynamics in aggressive B-cell lymphomas. Adv Hematol 2012; 2012:138079. [PMID: 22400028 PMCID: PMC3287037 DOI: 10.1155/2012/138079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/27/2011] [Indexed: 12/13/2022] Open
Abstract
Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas.
Collapse
Affiliation(s)
- Matilde Cacciatore
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Carla Guarnotta
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Marco Calvaruso
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Sabina Sangaletti
- Dipartimento di Oncologia Sperimentale, Unità di Immunologia Molecolare, IRCCS Fondazione Istituto Nazionale Tumori, 20133 Milano, Italy
| | - Ada Maria Florena
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Vito Franco
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Mario Paolo Colombo
- Dipartimento di Oncologia Sperimentale, Unità di Immunologia Molecolare, IRCCS Fondazione Istituto Nazionale Tumori, 20133 Milano, Italy
| | - Claudio Tripodo
- Dipartimento di Scienze per la Promozione della Salute, Sezione di Anatomia Patologica, Università degli Studi di Palermo, 90127 Palermo, Italy
| |
Collapse
|
42
|
Greenaway JB, Koehler A, McCulloch CA, Petrik J, Brown TJ, Ringuette MJ. The impact of the ovarian microenvironment on the anti-tumor effect of SPARC on ovarian cancer. Biochem Cell Biol 2011; 90:96-107. [PMID: 22003835 DOI: 10.1139/o11-047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A lack of host-derived SPARC promotes disease progression in an intraperitoneal (IP) ID8 mouse model of epithelial ovarian cancer (EOC). Since orthotopic injection (OT) of ID8 cells better recapitulates high-grade serous cancer, we examined the impact of host-derived SPARC following OT injection. Sparc(-/-) and wild-type (WT) mice were injected with ID8 cells either OT or IP and tumors were analyzed at the moribund stage. Sparc(-/-) mice had reduced survival and fewer well-defined abdominal lesions compared with WT controls after IP injection, whereas no differences were observed in survival or abdominal lesions between Sparc(-/-) and WT mice after OT injection. No differences in mass or collagen content were observed in ovarian tumors between OT-injected Sparc(-/-) and WT mice. The abdominal wall of the IP-injected Sparc(-/-) mice exhibited immature and less abundant collagen fibrils compared with WT mice both in injected and non-injected controls. In contrast to human EOC, SPARC was expressed by the tumor cells but was absent in reactive stroma of WT mice. Exposure to the ovarian microenvironment through OT injections alters the metastatic behaviour of ID8 cells, which is not affected by the absence of host-derived SPARC.
Collapse
Affiliation(s)
- James B Greenaway
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3H7, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Sangaletti S, Tripodo C, Cappetti B, Casalini P, Chiodoni C, Piconese S, Santangelo A, Parenza M, Arioli I, Miotti S, Colombo MP. SPARC oppositely regulates inflammation and fibrosis in bleomycin-induced lung damage. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3000-10. [PMID: 22001347 DOI: 10.1016/j.ajpath.2011.08.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 10/16/2022]
Abstract
Fibrosis results from inflammatory tissue damage and impaired regeneration. In the context of bleomycin-induced pulmonary fibrosis, we demonstrated that the matricellular protein termed secreted protein acidic and rich in cysteine (SPARC) distinctly regulates inflammation and collagen deposition, depending on its cellular origin. Reciprocal Sparc(-/-) and wild-type (WT) bone marrow chimeras revealed that SPARC expression in host fibroblasts is required and sufficient to induce collagen fibrosis in a proper inflammatory environment. Accordingly, Sparc(-/-) >WT chimeras showed exacerbated inflammation and fibrosis due to the inability of Sparc(-/-) macrophages to down-regulate tumor necrosis factor production because of impaired responses to tumor growth factor-β. Hence, the use of bone marrow cells expressing a dominant-negative form of tumor growth factor-β receptor type II under the monocyte-specific CD68 promoter, as a decoy, phenocopied Sparc(-/-) donor chimeras. Our results point to an unexpected dual role of SPARC in oppositely influencing the outcome of fibrosis.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chew A, Salama P, Robbshaw A, Klopcic B, Zeps N, Platell C, Lawrance IC. SPARC, FOXP3, CD8 and CD45 correlation with disease recurrence and long-term disease-free survival in colorectal cancer. PLoS One 2011; 6:e22047. [PMID: 21818290 PMCID: PMC3144212 DOI: 10.1371/journal.pone.0022047] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/15/2011] [Indexed: 02/06/2023] Open
Abstract
Background SPARC is a matricellular protein involved in tissue remodelling, cell migration and angiogenesis, while forkhead box P3 (FOXP3) protein functions as a transcription factor involved in immune cell regulation. Both SPARC and FOXP3 can play an anti-tumorigenic role in cancer progression. The aim was to determine if SPARC, FOXP3, CD8 and CD45RO expression levels are associated with colorectal cancer (CRC) stage, disease outcome and long-term cancer-specific survival (CSS) in stage II and III CRC. Methods and Findings SPARC expression was initially assessed in 120 paired normal and stage I-IV CRCs. Subsequently, approximately 1000 paired patient samples of stage II or III CRCs in tissue microarrays were stained for SPARC, FOXP3, CD8 or CD45RO. Proportional hazards modelling assessed correlations between these markers and clinicopathological data, including disease outcome and cancer specific survival (CSS). Both SPARC and FOXP3 expression were significantly greater in CRC than normal colon (p<0.0001). High SPARC expression correlated with good disease outcome (≥60 mths without disease recurrence, p = 0.0039) and better long-term CSS in stage II CRC (<0.0001). In stage III CRC, high SPARC expression correlated with better long-term CSS (p<0.0001) and less adjuvant chemotherapy use (p = 0.01). High FOXP3 correlated with a good disease outcome, better long-term CSS and less adjuvant chemotherapy use in stage II (p<0.0037, <0.0001 and p = 0.04 respectively), but not in stage III CRC. High CD8 and CD45RO expression correlated with better disease outcome in stage II CRC, and better CSS, but the differences were not as marked as for SPARC and FOXP3. Conclusions These data suggest that high SPARC and FOXP3 are associated with better disease outcome in stage II CRC and may be prognostic indicators of CSS. Further assessment of whether these markers predict patients at high risk of recurrence with stage II CRC and functional studies of these effects are underway
Collapse
Affiliation(s)
- Angela Chew
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
| | - Paul Salama
- School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Anneli Robbshaw
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Borut Klopcic
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
| | - Nikolajs Zeps
- School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
- Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- St John of God Pathology, Subiaco, Western Australia, Australia
| | - Cameron Platell
- School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
- St John of God Colorectal Service, Subiaco, Western Australia, Australia
| | - Ian C. Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
- * E-mail:
| |
Collapse
|
45
|
Interactions between the extracellular matrix and inflammation during viral myocarditis. Immunobiology 2011; 217:503-10. [PMID: 21907443 DOI: 10.1016/j.imbio.2011.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/24/2011] [Accepted: 07/05/2011] [Indexed: 01/17/2023]
Abstract
Viral myocarditis is a life-threatening disease characterized by severe cardiac inflammation that can result in heart failure or sudden cardiac death in previously healthy adults. In a subset of patients, it may result in the development of dilated cardiomyopathy due to the chronic inflammatory process. Despite its clinical need, specific treatments for myocarditis are currently not available. The extracellular matrix (ECM) under normal conditions, functions to maintain the mechanical and structural integrity of the heart but can adapt under pathological circumstances to preserve cardiac function. Recent studies have revealed a crucial role of the ECM in the reparative process after cardiac insult, not only as a key component in cardiac remodeling but also as a regulator of the inflammatory process. Increasing our understanding of the impact the ECM has in the disease pathogenesis and progression of viral myocarditis, might lead to much needed therapeutic interventions. In this review we will describe the pathology of viral myocarditis and illustrate the interplay between inflammation and the ECM in general terms, and during viral myocarditis.
Collapse
|
46
|
Ovarian tumor-induced T cell suppression is alleviated by vascular leukocyte depletion. Transl Oncol 2011; 2:291-9. [PMID: 19956391 DOI: 10.1593/tlo.09190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 07/16/2009] [Accepted: 07/27/2009] [Indexed: 11/18/2022] Open
Abstract
The ovarian cancer microenvironment recruits an array of immune cells to the site of tumor growth. Within the peritoneal ascites of both humans and mice, the predominant population of tumor-infiltrating leukocytes is a CD11c(+)CD11b(+) population variably referred to as vascular leukocytes (VLCs), tumor-associated macrophages, and immature dendritic cells. We have previously shown that these cells are critical for tumor growth because their selective elimination from the peritoneal tumor microenvironment inhibited tumor progression. However, the underlying mechanism by which this therapy was efficacious is poorly understood. Here, we use the murine ID8 ovarian tumor model to demonstrate that the tumor microenvironment induces in vivo immunosuppression of T cells and that the SR-A(+) VLCs mediate this suppression. Importantly, the elimination of SR-A(+) VLCs from the peritoneum of tumor-bearing mice relieves the T cell suppression. Moreover, the profound changes that VLC elimination has on the immune system are T cell-dependent because the protective antitumor effect of VLC elimination does not occur when CD8 T cells are concomitantly depleted. These results were confirmed and extended with the use of a genetic model for VLC depletion, which demonstrated that short-term therapeutic depletion of VLCs alleviates immunosuppression and allows for efficacious vaccination against model tumor antigens in tumor-bearing mice. These studies provide a mechanistic explanation for how leukocytes contribute to ovarian tumor progression and, correspondingly, how leukocyte depletion inhibits tumor growth.
Collapse
|
47
|
Dinosaurs and ancient civilizations: reflections on the treatment of cancer. Neoplasia 2011; 12:957-68. [PMID: 21170260 DOI: 10.1593/neo.101588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022] Open
Abstract
Research efforts in the area of palaeopathology have been seen as an avenue to improve our understanding of the pathogenesis of cancer. Answers to questions of whether dinosaurs had cancer, or if cancer plagued ancient civilizations, have captured the imagination as well as the popular media. Evidence for dinosaurian cancer may indicate that cancer may have been with us from the dawn of time. Ancient recorded history suggests that past civilizations attempted to fight cancer with a variety of interventions. When contemplating the issue why a generalized cure for cancer has not been found, it might prove useful to reflect on the relatively limited time that this issue has been an agenda item of governmental attention as well as continued introduction of an every evolving myriad of manmade carcinogens relative to the total time cancer has been present on planet Earth. This article reflects on the history of cancer and the progress made following the initiation of the "era of cancer chemotherapy."
Collapse
|
48
|
Said N, Smith S, Sanchez-Carbayo M, Theodorescu D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J Clin Invest 2010; 121:132-47. [PMID: 21183790 DOI: 10.1172/jci42912] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 10/27/2010] [Indexed: 12/14/2022] Open
Abstract
Many patients with advanced bladder cancer develop lethal metastases to the lung. The vasoconstricting protein endothelin-1 (ET-1) has been implicated in this process, although the mechanism(s) by which it promotes metastasis remains unclear. Here, we have evaluated whether tumor ET-1 expression can serve as a biomarker for lung metastasis and whether it is required for metastatic disease. Evaluation of ET-1 mRNA and protein expression in four patient cohorts revealed that levels of ET-1 are higher in patients with muscle-invasive bladder cancers, which are associated with higher incidence of metastasis, and that high ET-1 levels are associated with decreased disease-specific survival. Consistent with its proinflammatory activity, we found that tumor-derived ET-1 acts through endothelin-1 receptor A (ETAR) to enhance migration and invasion of both tumor cells and macrophages and induces expression of inflammatory cytokines and proteases. Using human and mouse cancer cells depleted of ET-1 and pharmacologic blockade of ET receptors in lung metastasis models, we found that tumor ET-1 expression and ETAR activity are necessary for metastatic lung colonization and that this process is preceded by and dependent on macrophage infiltration of the lung. In contrast, tumor ET-1 expression and ETAR activity appeared less important in established primary or metastatic tumor growth. These findings strongly suggest that ETAR inhibitors might be more effective as adjuvant therapeutic agents than as initial treatment for advanced primary or metastatic disease.
Collapse
Affiliation(s)
- Neveen Said
- Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
49
|
Fenouille N, Puissant A, Dufies M, Robert G, Jacquel A, Ohanna M, Deckert M, Pasquet JM, Mahon FX, Cassuto JP, Raynaud S, Tartare-Deckert S, Auberger P. Persistent Activation of the Fyn/ERK Kinase Signaling Axis Mediates Imatinib Resistance in Chronic Myelogenous Leukemia Cells through Upregulation of Intracellular SPARC. Cancer Res 2010; 70:9659-70. [DOI: 10.1158/0008-5472.can-10-2034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Abstract
The family of matricellular proteins comprises molecules with disparate biology. The main characteristic of matricellular proteins is to be expressed during tissue renewal and repair in order to "normalize" the tissue. Tumors are wound that do not heal, and tumor growth and metastasis can be viewed as a consequence of aberrant homeostasis, during which matricellular proteins are often upregulated. In the tumor microenvironment, they can be produced by both tumor cells and surrounding stromal cells, such as fibroblasts and macrophages. In this context, matricellular proteins can exert several functions that actively contribute to tumor progression. They may (a) regulate cellular adhesion and migration and extracellular matrix deposition, (b) control tumor infiltration by macrophages or other leukocytes, (c) affect tumor angiogenesis, (d) regulate TGFbeta and other growth factor receptor signals, (e) directly stimulate integrin receptors to transduce pro-survival or pro-migratory signals, and (f) regulate the wnt/beta-catenin pathways. Most of these functions contribute to settle a chronic low inflammatory state, whose involvement in tissue transformation and tumor progression is now established.
Collapse
|