1
|
Chen Y, Peng S, Liang J, Wei K. SIRT1 in acute lung injury: unraveling its pleiotropic functions and therapeutic development prospects. Mol Cell Biochem 2025; 480:1449-1464. [PMID: 39269678 DOI: 10.1007/s11010-024-05111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, often associated with severe complications and even death. In ALI, macrophages, alveolar epithelial cells and vascular endothelial cells in the lung are damaged to varying degrees and their function is impaired. Research in recent years has focused on the use of SIRT1 for the treatment of ALI. In this paper, we reviewed the role of SIRT1 in ALI in terms of its cellular and molecular mechanism, targeting of SIRT1 by non-coding RNAs and drug components, as well as pointing out the value of SIRT1 for clinical diagnosis and prognosis. Based on the current literature, SIRT1 exhibits diverse functionalities and possesses significant therapeutic potential. Targeting SIRT1 may provide new therapeutic ideas for the treatment of ALI.
Collapse
Affiliation(s)
- Yina Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shuangyan Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
2
|
Cheng C, Wang Y, Huo J, Zhang Y, Li R. SIRT6 knockdown alleviates keratinocyte hyperproliferation and inflammation in psoriasis via modulating acetylation of FOXO1. Int Immunopharmacol 2025; 146:113932. [PMID: 39733643 DOI: 10.1016/j.intimp.2024.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
The Sirtuins family (SIRT) has been implicated in numerous diseases, including psoriasis.However, the precise role of SIRT6 in psoriasis remains unclear. The analysis of publicly available RNA-seq data from GEO profiles showed that SIRT6 expression levels was significantly elevated in the lesional skins from patients with psoriasis, as compared to the non-lesional skins or the skins from normal healthy donors. It was also confirmed that SIRT6 and Ki67 expression was consistently upregulated inpsoriatic lesional skin,mouse models of psoriasis established by imiquimod treatment, and HaCat cells treated with M5. When SIRT6 was knocked down or inhibited in M5-treated HaCat cells, there was a significant suppression ofM5-induced increases in inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. The upregulation of Ki67 expression and cell proliferation induced by M5 were also reduced. SIRT6 inhibitor also significantly reduced the epidermal thickness and Ki67 expression levels in mouse models of psoriasis. Mechanistically, SIRT6 knockdown or inhibition enhanced the nuclear translocation of forkhead box O 1 (FOXO1) by increasing its acetylation level. M5 treatment reduced the nuclear FOXO1 levels via enhancing the nuclear efflux of Foxo1. Knockdown or inhibition of SIRT6 resulted in an increase in nuclear FOXO1 levels, not through enhancing its nuclear influx, but possibly by impeding the nuclear efflux of Foxo1. In conclusion, the knockdown of the SIRT6 promoted the nuclear translocation of FOXO1 by upregulating its acetylation level, thereby inhibiting M5-induced hyperproliferation and inflammation of keratinocyte. Given the crucial role of SIRT6 in psoriasis, it may represent a promising target for the development of small-molecule inhibitors with therapeutic potential for psoriasis.
Collapse
Affiliation(s)
- Chuantao Cheng
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuan Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Jia Huo
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yanfei Zhang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ruilian Li
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
3
|
Cheng P, Wang X, Wang S, Ren S, Liang Z, Guo K, Qu M, Meng X, Dou Y, Yin X, Sun Y. Class IIa histone deacetylase (HDAC) inhibitor TMP269 suppresses lumpy skin disease virus replication by regulating host lysophosphatidic acid metabolism. J Virol 2025:e0182724. [PMID: 39840984 DOI: 10.1128/jvi.01827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Lumpy skin disease virus (LSDV) infection poses a significant threat to global cattle farming. Currently, effective therapeutic agents are lacking. TMP269, a small molecule inhibitor of class IIa histone deacetylase inhibitor, plays a vital role in cancer therapy. In this study, we demonstrated that TMP269 treatment inhibits the early-stage replication of LSDV in a dose-dependent manner. RNA sequencing data revealed that metabolism-related signaling pathways were significantly enriched after LSDV infection. Furthermore, untargeted metabolomics analysis revealed that lysophosphatidic acid (LPA), a key metabolite of the glycerophospholipid pathway, was upregulated following LSDV infection and downregulated after TMP269 treatment. In addition, exogenous LPA promotes LSDV replication by activating the mitogen-activated protein kinase (MEK)/extracellular-signal-regulated kinase (ERK) signaling pathway and suppressing the host's innate immune response. Furthermore, treatment with the LPA receptor inhibitor Ki16425 suppressed LSDV replication and promoted the host's innate immune response. These findings suggest that LSDV infection can induce LPA expression and aid viral activation of the MEK/ERK signaling pathway and escape of the host's innate immune response, whereas TMP269 treatment can inhibit LPA production and limit its promotion of LSDV replication. These data identified the antiviral mechanism of TMP269 and a novel mechanism by which LSDV inhibits host innate immune responses, providing insights into the development of new preventive or therapeutic strategies targeting altered metabolic pathways.IMPORTANCELumpy skin disease virus (LSDV) poses a significant threat to global cattle farming. Owing to insufficient research on LSDV infection, pathogenesis, and immune escape mechanisms, prevention and control methods against LSDV infection are lacking. Here, we found that TMP269, a class IIa histone deacetylase inhibitor, significantly inhibited LSDV replication. We further demonstrated that TMP269 altered LSDV infection-induced host glycerophospholipid metabolism. In addition, TMP269 decreased the accumulation of lysophosphatidic acid (LPA), a key metabolite in glycerophospholipid metabolism, induced by LSDV infection, and exogenous LPA-promoted LSDV replication by activating the mitogen-activated protein kinase (MEK)/extracellular-signal-regulated kinase (ERK) signaling pathway and suppressing the host innate immune response. Our findings identified the antiviral mechanism of TMP269 and a novel mechanism by which LSDV manipulates host signaling pathways to promote its replication, offering insights into the development of novel antiviral agents against LSDV infection.
Collapse
Affiliation(s)
- Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Shasha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Shanhui Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Zhengji Liang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Ke Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Xuelian Meng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Yongxi Dou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Zhao J, Wu S, Wang D, Edwards H, Thibodeau J, Kim S, Stemmer P, Wang G, Jin J, Savasan S, Taub JW, Ge Y. Panobinostat sensitizes AraC-resistant AML cells to the combination of azacitidine and venetoclax. Biochem Pharmacol 2024; 228:116065. [PMID: 38373594 DOI: 10.1016/j.bcp.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The majority of acute myeloid leukemia (AML) patients respond to intensive induction therapy, consisting of cytarabine (AraC) and an anthracycline, though more than half experience relapse. Relapsed/refractory (R/R) AML patients are difficult to treat, and their clinical outcomes remain dismal. Venetoclax (VEN) in combination with azacitidine (AZA) has provided a promising treatment option for R/R AML, though the overall survival (OS) could be improved (OS ranges from 4.3 to 9.1 months). Overexpression of c-Myc is associated with chemoresistance in AML. Histone deacetylase (HDAC) inhibitors have been shown to suppress c-Myc and enhance the antileukemic activity of VEN, as well as AZA, though combination of all three has not been fully explored. In this study, we investigated the HDAC inhibitor, panobinostat, in combination with VEN + AZA against AraC-resistant AML cells. Panobinostat treatment downregulated c-Myc and Bcl-xL and upregulated Bim, which enhanced the antileukemic activity of VEN + AZA against AraC-resistant AML cells. In addition, panobinostat alone and in combination with VEN + AZA suppressed oxidative phosphorylation and/or glycolysis in AraC-resistant AML cells. These findings support further development of panobinostat in combination with VEN + AZA for the treatment of AraC-resistant AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Panobinostat/pharmacology
- Panobinostat/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Azacitidine/pharmacology
- Azacitidine/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Cytarabine/pharmacology
- Cytarabine/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Cell Line, Tumor
- Drug Synergism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/administration & dosage
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/administration & dosage
Collapse
Affiliation(s)
- Jianlei Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130012, PR China
| | - Deying Wang
- The Tumor Center of the First Hospital of Jilin University, Changchun 130021, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jenna Thibodeau
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Paul Stemmer
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Detroit, MI 48201, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Jingji Jin
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Süreyya Savasan
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48202, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48202, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
5
|
Jiang C, Jiang Z, Zhang X. Circular RNA circMRPS35 represses malignant progression in osteosarcoma cells via targeting miR-105-5p/FOXO1. Aging (Albany NY) 2024; 16:11568-11576. [PMID: 39103205 PMCID: PMC11346788 DOI: 10.18632/aging.206022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/25/2024] [Indexed: 08/07/2024]
Abstract
Osteosarcoma is a highly metastatic, aggressive bone cancer that occurs in children and young adults worldwide. Circular RNAs (circRNAs) are crucial molecules for osteosarcoma progression. In this study, we aimed to investigate the impact of circMRPS35 overexpression and its interaction with FOXO1 via evaluating apoptosis, cell cycle, and bioinformatic analyses on the malignant development of osteosarcoma in MG63 and MNNG/HOS cells. We found that circMRPS35 overexpression reduced osteosarcoma cell viability and inhibited tumor growth in vivo. It increased the apoptosis rate and induced cell cycle arrest in osteosarcoma cells. We identified a potential interaction between circMRPS35 and FOXO1 with miR-105-5p using bioinformatics analysis. Overexpression of circMRPS35 decreased miR-105-5p expression, whereas miR-105-5p mimic treatment increased its expression. This mimic also suppressed the luciferase activity of circMRPS35 and FOXO1 and reduced FOXO1 expression. Overexpression of circMRPS35 elevated FOXO1 protein levels, but this effect was reversed by co-treatment with the miR-105-5p mimic. We demonstrated that inhibiting miR-105-5p decreased viability and induced apoptosis. Overexpression of FOXO1 or treatment with a miR-105-5p inhibitor could counteract the effects of circMRPS35 on viability and apoptosis in osteosarcoma cells. Therefore, we concluded that circMRPS35 suppressed the malignant progression of osteosarcoma via targeting the miR-105-5p/FOXO1 axis.
Collapse
Affiliation(s)
- Chunshan Jiang
- Department of Immunology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Zhe Jiang
- Department of Spine Surgery, Jilin Central Hospital, Jilin 132011, P.R. China
| | - Xuewu Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
6
|
Hu Y, Yi L, Yang Y, Wu Z, Kong M, Kang Z, Yang Z. Acetylation of FOXO1 activates Bim expression involved in CVB3 induced cardiomyocyte apoptosis. Apoptosis 2024; 29:1271-1287. [PMID: 38127284 PMCID: PMC11263423 DOI: 10.1007/s10495-023-01924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Viral myocarditis (VMC) is the major reason for sudden cardiac death among both children and young adults. Of these, coxsackievirus B3 (CVB3) is the most common causative agent of myocarditis. Recently, the role of signaling pathways in the pathogenesis of VMC has been evaluated in several studies, which has provided a new perspective on identifying potential therapeutic targets for this hitherto incurable disease. In the present study, in vivo and in vitro experiments showed that CVB3 infection leads to increased Bim expression and triggers apoptosis. In addition, by knocking down Bim using RNAi, we further confirmed the biological function of Bim in apoptosis induced by CVB3 infection. We additionally found that Bim and forkhead box O1 class (FOXO1) inhibition significantly increased the viability of CVB3-infected cells while blocking viral replication and viral release. Moreover, CVB3-induced Bim expression was directly dependent on FOXO1 acetylation, which is catalyzed by the co-regulation of CBP and SirTs. Furthermore, the acetylation of FOXO1 was an important step in Bim activation and apoptosis induced by CVB3 infection. The findings of this study suggest that CVB3 infection induces apoptosis through the FOXO1 acetylation-Bim pathway, thus providing new insights for developing potential therapeutic targets for enteroviral myocarditis.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Lu Yi
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yeyi Yang
- Department of Medicine, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhixiang Wu
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Min Kong
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhijuan Kang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zuocheng Yang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
7
|
Gupta A, Haldhar R, Agarwal V, Rajput DS, Chun KS, Han SB, Raj V, Lee S. Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach. Biomol Ther (Seoul) 2024; 32:390-398. [PMID: 38586882 PMCID: PMC11063485 DOI: 10.4062/biomolther.2023.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/14/2023] [Accepted: 10/21/2023] [Indexed: 04/09/2024] Open
Abstract
FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID- 3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.
Collapse
Affiliation(s)
- Anugya Gupta
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Rajesh Haldhar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Dharmendra Singh Rajput
- Faculty of Medical and Paramedical Sciences, Madhyanchal Professional University, Bhopal 462044, Madhya Pradesh, India
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sang Beom Han
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
8
|
Yan J, Zhou L, Liu M, Zhu H, Zhang X, Cai E, Xu X, Chen T, Cheng H, Liu J, Wang S, Dai L, Chang X, Tang F. Single-cell analysis reveals insights into epithelial abnormalities in ovarian endometriosis. Cell Rep 2024; 43:113716. [PMID: 38412094 DOI: 10.1016/j.celrep.2024.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 02/29/2024] Open
Abstract
Ovarian endometriosis is characterized by the growth of endometrial tissue within the ovary, causing infertility and chronic pain. However, its pathophysiology remains unclear. Utilizing high-precision single-cell RNA sequencing, we profile the normal, eutopic, and ectopic endometrium from 34 individuals across proliferative and secretory phases. We observe an increased proportion of ciliated cells in both eutopic and ectopic endometrium, characterized by a diminished expression of estrogen sulfotransferase, which likely confers apoptosis resistance. After translocating to ectopic lesions, endometrial epithelium upregulates nicotinamide N-methyltransferase expression that inhibits apoptosis by promoting deacetylation and subsequent nuclear exclusion of transcription factor forkhead box protein O1, thereby leading to the downregulation of the apoptotic gene BIM. Moreover, epithelial cells in ectopic lesions elevate HLA class II complex expression, which stimulates CD4+ T cells and consequently contributes to chronic inflammation. Altogether, our study provides a comprehensive atlas of ovarian endometriosis and highlights potential therapeutic targets for modulating apoptosis and inflammation.
Collapse
Affiliation(s)
- Jia Yan
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Ling Zhou
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Mengya Liu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Honglan Zhu
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Xin Zhang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China
| | - E Cai
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Xueqiang Xu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Tinghan Chen
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Jun'e Liu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China
| | - Shang Wang
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China
| | - Lin Dai
- Department of Pathology, People's Hospital, Peking University, Beijing 100044, China
| | - Xiaohong Chang
- Department of Obstetrics and Gynecology, People's Hospital, Peking University, Beijing 100044, China.
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing 100000, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100000, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing 100000, China.
| |
Collapse
|
9
|
Ebrahimnezhad M, Natami M, Bakhtiari GH, Tabnak P, Ebrahimnezhad N, Yousefi B, Majidinia M. FOXO1, a tiny protein with intricate interactions: Promising therapeutic candidate in lung cancer. Biomed Pharmacother 2023; 169:115900. [PMID: 37981461 DOI: 10.1016/j.biopha.2023.115900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Nowadays, lung cancer is the most common cause of cancer-related deaths in both men and women globally. Despite the development of extremely efficient targeted agents, lung cancer progression and drug resistance remain serious clinical issues. Increasing knowledge of the molecular mechanisms underlying progression and drug resistance will enable the development of novel therapeutic methods. It has been revealed that transcription factors (TF) dysregulation, which results in considerable expression modifications of genes, is a generally prevalent phenomenon regarding human malignancies. The forkhead box O1 (FOXO1), a member of the forkhead transcription factor family with crucial roles in cell fate decisions, is suggested to play a pivotal role as a tumor suppressor in a variety of malignancies, especially in lung cancer. FOXO1 is involved in diverse cellular processes and also has clinical significance consisting of cell cycle arrest, apoptosis, DNA repair, oxidative stress, cancer prevention, treatment, and chemo/radioresistance. Based on the critical role of FOXO1, this transcription factor appears to be an appropriate target for future drug discovery in lung cancers. This review focused on the signaling pathways, and molecular mechanisms involved in FOXO1 regulation in lung cancer. We also discuss pharmacological compounds that are currently being administered for lung cancer treatment by affecting FOXO1 and also point out the essential role of FOXO1 in drug resistance. Future preclinical research should assess combination drug strategies to stimulate FOXO1 and its upstream regulators as potential strategies to treat resistant or advanced lung cancers.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Natami
- Department of Urology,Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhad
- Department of Microbiology, Faculty of Basic Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Yoshioka T, Goda M, Kanda M, Itobayashi S, Sugimoto Y, Izawa‐Ishizawa Y, Yagi K, Aizawa F, Miyata K, Niimura T, Hamano H, Sakurada T, Zamami Y, Ishizawa K. Valproic acid treatment attenuates cisplatin-induced kidney injury by suppressing proximal tubular cell damage. Clin Transl Sci 2023; 16:2369-2381. [PMID: 37700528 PMCID: PMC10651653 DOI: 10.1111/cts.13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Cisplatin treatment is effective against several types of carcinomas. However, it frequently leads to kidney injury, which warrants effective prevention methods. Sodium valproic acid is a prophylactic drug candidate with a high potential for clinical application against cisplatin-induced kidney injury. Therefore, in this study, we aimed to elucidate the mechanism underlying the prophylactic effect of valproic acid on cisplatin-induced kidney injury in a mouse model and HK2 and PODO cells with cisplatin-induced toxicity. In the mouse model of cisplatin-induced kidney injury, various renal function parameters and tubular damage scores were worsened by cisplatin, but they were significantly improved upon combination with valproic acid. No difference was observed in cisplatin accumulation between the cisplatin-treated and valproic acid-treated groups in whole blood and the kidneys. The mRNA expression levels of proximal tubular damage markers, apoptosis markers, and inflammatory cytokines significantly increased in the cisplatin group 72 h after cisplatin administration but significantly decreased upon combination with valproic acid. In HK2 cells, a human proximal tubular cell line, the cisplatin-induced decrease in cell viability was significantly suppressed by co-treatment with valproic acid. Valproic acid may inhibit cisplatin-induced kidney injury by suppressing apoptosis, inflammatory responses, and glomerular damage throughout the kidneys by suppressing proximal tubular cell damage. However, prospective controlled trials need to evaluate these findings before their practical application.
Collapse
Affiliation(s)
- Toshihiko Yoshioka
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Masaya Kanda
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Sayuri Itobayashi
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yugo Sugimoto
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yuki Izawa‐Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of General MedicineTaoka HospitalTokushimaJapan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Koji Miyata
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Hirofumi Hamano
- Department of PharmacyOkayama University HospitalOkayamaJapan
| | - Takumi Sakurada
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Yoshito Zamami
- Department of PharmacyOkayama University HospitalOkayamaJapan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| |
Collapse
|
11
|
Silva RDFE, Bassi G, Câmara NOS, Moretti NS. Sirtuins: Key pieces in the host response to pathogens' puzzle. Mol Immunol 2023; 160:150-160. [PMID: 37437515 DOI: 10.1016/j.molimm.2023.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/30/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Global warming is changing the distribution of different pathogens around the globe, and humans are more susceptible to new or re-emerging infections. The human response to microbes is complex and involves different mechanisms of the immune system. Regulation of gene expression of immunity genes and of metabolism of immune cells are essential in this process. Both mechanisms could be regulated by protein lysine acetylation that will control chromatin structure affecting gene expression or key enzyme activity involved in cellular processes. Protein acetylation is crucial for the immunity and involves two families of enzymes: lysine acetyltransferases (KATs), which will promote protein acetylation, and lysine deacetylases (KDACs) that will reduce this modification. Lysine deacetylases are divided into Zinc-dependent or HDACs and NAD+ -dependent, or Sirtuins. These enzymes are in the nucleus, cytosol, and mitochondria of mammalian cells affecting different cellular pathways, such as metabolism, gene expression, DNA repair, cell proliferation, and apoptosis, opening the opportunity to explore these proteins as drug targets in different diseases, including cancer and neurodegenerative illness. Although widely explored in chronic diseases, very little is known about the role of Sirtuins during host response against microbes' infection. In this review we aim to explore the most recent literature evidencing a role for these enzymes during host responses to viruses, bacterial and protozoan infections, pointing out how these proteins can be manipulated by these pathogens to progress in the infection. Moreover, we will uncover the potential of host KDACs as therapeutic targets to prevent infections by activating effector immune functions.
Collapse
Affiliation(s)
| | - Gabriela Bassi
- Laboratory of Molecular Biology of Pathogens, Federal University of São Paulo, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil; Laboratory of Transplantation Immunobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Nilmar Silvio Moretti
- Laboratory of Molecular Biology of Pathogens, Federal University of São Paulo, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
KAT8 acetylation-controlled lipolysis affects the invasive and migratory potential of colorectal cancer cells. Cell Death Dis 2023; 14:164. [PMID: 36849520 PMCID: PMC9970984 DOI: 10.1038/s41419-023-05582-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 03/01/2023]
Abstract
Epigenetic mechanisms involved in gene expression play an essential role in various cellular processes, including lipid metabolism. Lysine acetyltransferase 8 (KAT8), a histone acetyltransferase, has been reported to mediate de novo lipogenesis by acetylating fatty acid synthase. However, the effect of KAT8 on lipolysis is unclear. Here, we report a novel mechanism of KAT8 on lipolysis involving in its acetylation by general control non-repressed protein 5 (GCN5) and its deacetylation by Sirtuin 6 (SIRT6). KAT8 acetylation at K168/175 residues attenuates the binding activity of KAT8 and inhibits the recruitment of RNA pol II to the promoter region of the lipolysis-related genes adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), subsequently down-regulating lipolysis to affect the invasive and migratory potential of colorectal cancer cells. Our findings uncover a novel mechanism that KAT8 acetylation-controlled lipolysis affects invasive and migratory potential in colorectal cancer cells.
Collapse
|
13
|
Xiao Y, Peng Y, Zhang C, Liu W, Wang K, Li J. hucMSC-derived exosomes protect ovarian reserve and restore ovarian function in cisplatin treated mice. J Biomed Res 2022; 37:382-393. [PMID: 37198178 PMCID: PMC10541778 DOI: 10.7555/jbr.36.20220166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Anti-cancer therapy often causes premature ovarian insufficiency and infertility as the ovarian follicle reserve is extremely sensitive to chemotherapy drugs, such as cisplatin. Various fertility preservation methods have been explored for women, especially prepubertal girls undergoing radiotherapy and chemotherapy due to cancer. In recent years, mesenchymal stem cell-derived exosomes (MSC-exos) have been reported to play an important role in tissue repair and the treatment of various diseases. In the current study, we observed that human umbilical cord-derived MSC-exos (hucMSC-exos) after short-term culture improved follicular survival and development while receiving cisplatin treatment. Moreover, intravenous injection of hucMSC-exos improved ovarian function and ameliorated inflammatory environment within the ovary. The underlying mechanism of hucMSC-exos on fertility preservation was associated with the down-regulation of p53-related apoptosis and their anti-inflammatory function. Based on these findings, we propose that hucMSC-exos may be a potential approach to improve fertility in women diagnosed with cancer.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
14
|
Jerome MS, Kuthethur R, Kabekkodu SP, Chakrabarty S. Regulation of mitochondrial function by forkhead transcription factors. Biochimie 2022; 198:96-108. [PMID: 35367579 DOI: 10.1016/j.biochi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
|
15
|
Liu Z, Xuan B, Tang S, Qian Z. Histone Deacetylase Inhibitor SAHA Induces Expression of Fatty Acid-Binding Protein 4 and Inhibits Replication of Human Cytomegalovirus. Virol Sin 2021; 36:1352-1362. [PMID: 34156645 DOI: 10.1007/s12250-021-00382-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase inhibitor that shows marked efficacy against many types of cancers and is approved to treat severe metastatic cutaneous T-cell lymphomas. In addition to its anticancer activity, SAHA has significant effects on the growth of many viruses. The effect of SAHA on replication of human cytomegalovirus (HCMV) has not, however, been investigated. Here, we showed that the replication of HCMV was significantly suppressed by treatment with SAHA at concentrations that did not show appreciable cytotoxicity. SAHA reduced transcription and protein levels of HCMV immediate early genes, showing that SAHA acts at an early stage in the viral life-cycle. RNA-sequencing data mining showed that numerous pathways and molecules were affected by SAHA. Interferon-mediated immunity was one of the most relevant pathways in the RNA-sequencing data, and we confirmed that SAHA inhibits HCMV-induced IFN-mediated immune responses using quantitative Real-time PCR (qRT-PCR). Fatty acid-binding protein 4 (FABP4), which plays a role in lipid metabolism, was identified by RNA-sequencing. We found that FABP4 expression was reduced by HCMV infection but increased by treatment with SAHA. We then showed that knockdown of FABP4 partially rescued the effect of SAHA on HCMV replication. Our data suggest that FABP4 contributes to the inhibitory effect of SAHA on HCMV replication.
Collapse
Affiliation(s)
- Zhongshun Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoqin Xuan
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shubing Tang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhikang Qian
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
16
|
Li GH, Qu Q, Qi TT, Teng XQ, Zhu HH, Wang JJ, Lu Q, Qu J. Super-enhancers: a new frontier for epigenetic modifiers in cancer chemoresistance. J Exp Clin Cancer Res 2021; 40:174. [PMID: 34011395 PMCID: PMC8132395 DOI: 10.1186/s13046-021-01974-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Although new developments of surgery, chemotherapy, radiotherapy, and immunotherapy treatments for cancer have improved patient survival, the emergence of chemoresistance in cancer has significant impacts on treatment effects. The development of chemoresistance involves several polygenic, progressive mechanisms at the molecular and cellular levels, as well as both genetic and epigenetic heterogeneities. Chemotherapeutics induce epigenetic reprogramming in cancer cells, converting a transient transcriptional state into a stably resistant one. Super-enhancers (SEs) are central to the maintenance of identity of cancer cells and promote SE-driven-oncogenic transcriptions to which cancer cells become highly addicted. This dependence on SE-driven transcription to maintain chemoresistance offers an Achilles' heel for chemoresistance. Indeed, the inhibition of SE components dampens oncogenic transcription and inhibits tumor growth to ultimately achieve combined sensitization and reverse the effects of drug resistance. No reviews have been published on SE-related mechanisms in the cancer chemoresistance. In this review, we investigated the structure, function, and regulation of chemoresistance-related SEs and their contributions to the chemotherapy via regulation of the formation of cancer stem cells, cellular plasticity, the microenvironment, genes associated with chemoresistance, noncoding RNAs, and tumor immunity. The discovery of these mechanisms may aid in the development of new drugs to improve the sensitivity and specificity of cancer cells to chemotherapy drugs.
Collapse
Affiliation(s)
- Guo-Hua Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Hai-Hong Zhu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiao-Jiao Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
17
|
Burrows N, Bashford-Rogers RJM, Bhute VJ, Peñalver A, Ferdinand JR, Stewart BJ, Smith JEG, Deobagkar-Lele M, Giudice G, Connor TM, Inaba A, Bergamaschi L, Smith S, Tran MGB, Petsalaki E, Lyons PA, Espeli M, Huntly BJP, Smith KGC, Cornall RJ, Clatworthy MR, Maxwell PH. Dynamic regulation of hypoxia-inducible factor-1α activity is essential for normal B cell development. Nat Immunol 2020; 21:1408-1420. [PMID: 32868930 PMCID: PMC7613233 DOI: 10.1038/s41590-020-0772-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/29/2020] [Indexed: 02/02/2023]
Abstract
B lymphocyte development and selection are central to adaptive immunity and self-tolerance. These processes require B cell receptor (BCR) signaling and occur in bone marrow, an environment with variable hypoxia, but whether hypoxia-inducible factor (HIF) is involved is unknown. We show that HIF activity is high in human and murine bone marrow pro-B and pre-B cells and decreases at the immature B cell stage. This stage-specific HIF suppression is required for normal B cell development because genetic activation of HIF-1α in murine B cells led to reduced repertoire diversity, decreased BCR editing and developmental arrest of immature B cells, resulting in reduced peripheral B cell numbers. HIF-1α activation lowered surface BCR, CD19 and B cell-activating factor receptor and increased expression of proapoptotic BIM. BIM deletion rescued the developmental block. Administration of a HIF activator in clinical use markedly reduced bone marrow and transitional B cells, which has therapeutic implications. Together, our work demonstrates that dynamic regulation of HIF-1α is essential for normal B cell development.
Collapse
Affiliation(s)
- Natalie Burrows
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| | - Rachael J M Bashford-Rogers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, Oxford, UK
| | - Vijesh J Bhute
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ana Peñalver
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Joscelin E G Smith
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Girolamo Giudice
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Thomas M Connor
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Akimichi Inaba
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Bergamaschi
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sam Smith
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Maxine G B Tran
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Paul A Lyons
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Marion Espeli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Richard J Cornall
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, Oxford, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
18
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
19
|
Lees A, McIntyre AJ, Crawford NT, Falcone F, McCann C, Holohan C, Quinn GP, Roberts JZ, Sessler T, Gallagher PF, Gregg GMA, McAllister K, McLaughlin KM, Allen WL, Egan LJ, Ryan AE, Labonte-Wilson MJ, Dunne PD, Wappett M, Coyle VM, Johnston PG, Kerr EM, Longley DB, McDade SS. The pseudo-caspase FLIP(L) regulates cell fate following p53 activation. Proc Natl Acad Sci U S A 2020; 117:17808-17819. [PMID: 32661168 PMCID: PMC7395556 DOI: 10.1073/pnas.2001520117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
p53 is the most frequently mutated, well-studied tumor-suppressor gene, yet the molecular basis of the switch from p53-induced cell-cycle arrest to apoptosis remains poorly understood. Using a combination of transcriptomics and functional genomics, we unexpectedly identified a nodal role for the caspase-8 paralog and only human pseudo-caspase, FLIP(L), in regulating this switch. Moreover, we identify FLIP(L) as a direct p53 transcriptional target gene that is rapidly up-regulated in response to Nutlin-3A, an MDM2 inhibitor that potently activates p53. Genetically or pharmacologically inhibiting expression of FLIP(L) using siRNA or entinostat (a clinically relevant class-I HDAC inhibitor) efficiently promoted apoptosis in colorectal cancer cells in response to Nutlin-3A, which otherwise predominantly induced cell-cycle arrest. Enhanced apoptosis was also observed when entinostat was combined with clinically relevant, p53-activating chemotherapy in vitro, and this translated into enhanced in vivo efficacy. Mechanistically, FLIP(L) inhibited p53-induced apoptosis by blocking activation of caspase-8 by the TRAIL-R2/DR5 death receptor; notably, this activation was not dependent on receptor engagement by its ligand, TRAIL. In the absence of caspase-8, another of its paralogs, caspase-10 (also transcriptionally up-regulated by p53), induced apoptosis in Nutlin-3A-treated, FLIP(L)-depleted cells, albeit to a lesser extent than in caspase-8-proficient cells. FLIP(L) depletion also modulated transcription of canonical p53 target genes, suppressing p53-induced expression of the cell-cycle regulator p21 and enhancing p53-induced up-regulation of proapoptotic PUMA. Thus, even in the absence of caspase-8/10, FLIP(L) silencing promoted p53-induced apoptosis by enhancing PUMA expression. Thus, we report unexpected, therapeutically relevant roles for FLIP(L) in determining cell fate following p53 activation.
Collapse
Affiliation(s)
- Andrea Lees
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Alexander J McIntyre
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Nyree T Crawford
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Fiammetta Falcone
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Christopher McCann
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Caitriona Holohan
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Gerard P Quinn
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Jamie Z Roberts
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Tamas Sessler
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Peter F Gallagher
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Gemma M A Gregg
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Katherine McAllister
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Kirsty M McLaughlin
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Wendy L Allen
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Laurence J Egan
- Discipline of Pharmacology & Therapeutics, Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology & Therapeutics, Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
- Regenerative Medicine Institute, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Melissa J Labonte-Wilson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Mark Wappett
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Vicky M Coyle
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Patrick G Johnston
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Daniel B Longley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom;
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7BL, United Kingdom;
| |
Collapse
|
20
|
Gheghiani L, Shang S, Fu Z. Targeting the PLK1-FOXO1 pathway as a novel therapeutic approach for treating advanced prostate cancer. Sci Rep 2020; 10:12327. [PMID: 32704044 PMCID: PMC7378169 DOI: 10.1038/s41598-020-69338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/10/2020] [Indexed: 02/04/2023] Open
Abstract
The forkhead box protein O1 (FOXO1) is considered to be a key tumor suppressor due to its involvement in a broad range of cancer-related functions, including cellular differentiation, apoptosis, cell cycle arrest, and DNA damage. Given that inactivation of FOXO1 has been reported in many types of human cancer, we sought to investigate whether restoration of the pro-apoptotic activity of FOXO1 may be used as a new promising strategy for cancer treatment. Our previous study revealed that Polo-like kinase 1 (PLK1), a serine/threonine kinase that is essential for cell cycle progression, is a novel and major regulator of FOXO1 in the late phases of the cell cycle. Here, we provided evidence that PLK1-dependent phosphorylation of FOXO1 induces its nuclear exclusion and negatively regulates FOXO1's transcriptional activity in prostate cancer (PCa). Blocking the PLK1-dependant phosphorylation of FOXO1 restored the pro-apoptotic function of FOXO1 in PCa. Combining PLK1 inhibition with nocodazole (to induce mitotic arrest) had synergistic antitumor effects in vitro, with minimal effect on normal prostate epithelial cells. These findings shed light on a novel approach to reactivate apoptotic pathways in advanced PCa and support targeting PLK1-FOXO1 pathways as a novel approach for treating advanced PCa.
Collapse
Affiliation(s)
- Lilia Gheghiani
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Shengzhe Shang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
21
|
miR-155 indicates the fate of CD4 + T cells. Immunol Lett 2020; 224:40-49. [PMID: 32485191 DOI: 10.1016/j.imlet.2020.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of short noncoding RNAs that regulate the translation of target messenger RNA (mRNA) and consequently participate in a variety of biological processes at the posttranscriptional level. miR-155, encoded within a region known as the B cell integration cluster (BIC), plays multifunctional roles in shaping lymphocytes ranging from biological development to adaptive immunity. It has been revealed that miR-155 plays a key role in fine-tuning the regulation of lymphocyte subsets, including dendritic cells (DCs), macrophages, B cells, and CD8+ and CD4+ T cells. Antigen-specific CD4+ T lymphocytes are critical for host defense against pathogens and prevention of damage resulting from excessive inflammation. Over the past years, various studies have shown that miR-155 plays a critical role in CD4+ T cells function. Therefore, we summarize multiple target genes of miR-155 that regulate aspects of CD4+ T cells immunity, particularly CD4+ T cells differentiation, in this review. In addition, we also focus on the role of miR-155 in the regulation of immunological diseases, suggesting it as a potential disease biomarker and therapeutic target.
Collapse
|
22
|
Ranjit M, Hirano M, Aoki K, Okuno Y, Ohka F, Yamamichi A, Kato A, Maeda S, Motomura K, Matsuo K, Enomoto A, Ino Y, Todo T, Takahashi M, Wakabayashi T, Kato T, Natsume A. Aberrant Active cis-Regulatory Elements Associated with Downregulation of RET Finger Protein Overcome Chemoresistance in Glioblastoma. Cell Rep 2020; 26:2274-2281.e5. [PMID: 30811978 DOI: 10.1016/j.celrep.2019.01.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/06/2019] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
RET finger protein (RFP) forms a complex with histone deacetylase 1, resulting in aberrant deacetylation of H3K27ac and dysregulation of cis-regulatory elements. We evaluated the modulatory effects of RFP knockdown on cis-regulatory elements, gene expression, and chemosensitivity to temozolomide both in glioblastoma cells and in an intracranial glioblastoma model. The combination of RFP knockdown and temozolomide treatment markedly suppressed the glioblastoma cell growth due to oxidative stress and aberrant cell cycle and increased survival time in mice with glioblastoma. ChIP-seq and RNA-seq revealed that RFP knockdown increased or decreased activity of numerous cis-regulatory elements that lie adjacent to genes that control functions such as apoptosis, mitosis, DNA replication, and cell cycle: FOXO1, TBP2, and PARPBP. This study suggests that RFP contributes to chemoresistance via aberrant deacetylation of histone H3 at K27, whereas dysregulation of RFP-associated cis-regulatory elements in glioma and RFP knockdown combined with temozolomide is an effective treatment strategy for lethal glioma.
Collapse
Affiliation(s)
- Melissa Ranjit
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Masaki Hirano
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Akane Yamamichi
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Akira Kato
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; Department of Epidemiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | | | - Takuya Kato
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan.
| |
Collapse
|
23
|
Inoue-Yamauchi A, Oda H. EMT-inducing transcription factor ZEB1-associated resistance to the BCL-2/BCL-X L inhibitor is overcome by BIM upregulation in ovarian clear cell carcinoma cells. Biochem Biophys Res Commun 2020; 526:612-617. [PMID: 32247610 DOI: 10.1016/j.bbrc.2020.03.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022]
Abstract
Ovarian clear cell carcinoma (OCCC) is an aggressive subtype of epithelial ovarian cancer, which generally exhibits chemoresistance. Effective therapy for OCCC is currently unavailable, requiring the development of new therapeutic strategies. ABT-263 (navitoclax), an inhibitor of the anti-apoptotic BCL-2/BCL-XL, has a potent ability of inducing death in cancer cells; however, the therapeutic effect of ABT-263 in OCCC remains unclear. Epithelial cells undergo epithelial-mesenchymal transition (EMT) to acquire a mesenchymal phenotype, which is known to contribute to the development of resistance against therapeutic agents. In this study, we revealed that the sensitivity of OCCC cells to ABT-263 was associated with the epithelial/mesenchymal status of the cells. While the OCCC cells with an epithelial phenotype were ABT-263-sensitive, those with a mesenchymal phenotype were ABT-263-resistant, which was accompanied by an insufficient expression of the pro-apoptotic BH3 protein BIM. Mechanistically, the EMT-inducing transcription factor, ZEB1 down-regulated BIM transcription by binding to BIM promoter, resulting in resistance to ABT-263. It is noteworthy that ZEB1-associated ABT-263 resistance was overcome by an HDAC inhibitor, FK228 (romidepsin), through the up-regulation of BIM. In summary, our study provides evidence for a mechanism for ABT-263 resistance in OCCC cells as well as a potential therapeutic strategy to overcome it.
Collapse
Affiliation(s)
- Akane Inoue-Yamauchi
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Division of Experimental Pathology, Department of Pathology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hideaki Oda
- Division of Experimental Pathology, Department of Pathology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
24
|
Mitz CA, Viloria-Petit AM. Contrasting effects of transforming growth factor β1 on programmed cell death of bovine mammary epithelial cell lines MAC-T and BME-UV1. J Dairy Sci 2020; 103:5532-5549. [PMID: 32229120 DOI: 10.3168/jds.2019-17460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/17/2020] [Indexed: 11/19/2022]
Abstract
A previous study in the bovine mammary epithelial cell line BME-UV1 demonstrated that suppression of the phosphatidylinositol-4,5-biphosphate 3 kinase (PI3K)/AKT (somatotropic) signaling pathway was required for transforming growth factor β1 (TGFβ1)-induced programmed cell death (PCD). To investigate whether this is a universal mechanism for TGFβ1 to induce PCD in bovine mammary epithelium, we compared TGFβ1 modulation of PI3K/AKT and its role in PCD in 2 bovine mammary epithelial cell lines: MAC-T and BME-UV1. In MAC-T cells, TGFβ1 promoted cell survival, and this paralleled a reduction in PI3K/AKT activity, rather than an increase. In BME-UV1 cells, TGFβ1 induced PCD, and this was accompanied by a time-dependent effect on PI3K/AKT activity, including an initial significant increase in the phosphorylation of AKT at 3 h, followed by a reduction between 12 and 24 h, and then an increase at 48 h. Inhibition of AKT activity enhanced TGFβ1-induced PCD in BME-UV1 cells but had no effect on MAC-T cells, suggesting that TGFβ1 mediates PCD in BME-UV1 cells through suppression of AKT activity. Inhibition of TGFβ receptor type I (TβRI) kinase activity completely abrogated TGFβ1-induced PCD in BME-UV1 cells but had no effect on TGFβ1-induced suppression of PCD in MAC-T cells, demonstrating that TGFβ1-induced PCD in BME-UV1 cells is dependent on TβRI/SMAD signaling. These and previous observations suggest that the different effects of TGFβ1 on PCD in these cell lines might involve noncanonical signaling pathways other than PI3K/AKT, and may reflect their different lineages. Future studies should address this finding, taking into consideration the effect that different culture conditions might have on cell phenotype.
Collapse
Affiliation(s)
- C A Mitz
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - A M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
25
|
Wu Z, Niu T, Xiao W. Uev1A promotes breast cancer cell survival and chemoresistance through the AKT-FOXO1-BIM pathway. Cancer Cell Int 2019; 19:331. [PMID: 31827405 PMCID: PMC6902549 DOI: 10.1186/s12935-019-1050-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Ubiquitin-conjugating enzyme variant UEV1A is required for Ubc13-catalyzed K63-linked poly-ubiquitination that regulates several signaling pathways including NF-κB, MAPK and PI3K/AKT. Previous reports implicate UEV1A as a potential proto-oncogene and have shown that UEV1A promotes breast cancer metastasis through constitutive NF-кB activation. Ubc13-Uev1A along with TARF6 can also ubiquitinate AKT but its downstream events are unclear. Methods In this study, we experimentally manipulated UEV1 expression in two typical breast cancer cell lines MDA-MB-231 and MCF7 under serum starvation conditions and monitored AKT activation and its downstream protein levels, as well as cellular sensitivity to chemotherapeutic agents. Results We found that overexpression of UEV1A is sufficient to activate the AKT signaling pathway that in turn inhibits FOXO1 and BIM expression to promote cell survival under serum starvation conditions and enhances cellular resistance to chemotherapy. Consistently, experimental depletion of Uev1 in breast cancer cells inhibits AKT signaling and promotes FOXO1 and BIM expression to reduce cell survival under serum starvation stress and enhance chemosensitivity. Conclusions Uev1A promotes cell survival under serum starvation stress through the AKT-FOXO1-BIM axis in breast cancer cells, which unveals a potential therapeutic target in the treatment of breast cancers.
Collapse
Affiliation(s)
- Zhaojia Wu
- 1Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Tong Niu
- 1Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada.,2College of Life Sciences, Capital Normal University, Beijing, 100048 China
| | - Wei Xiao
- 1Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| |
Collapse
|
26
|
Sánchez-Álvarez M, Strippoli R, Donadelli M, Bazhin AV, Cordani M. Sestrins as a Therapeutic Bridge between ROS and Autophagy in Cancer. Cancers (Basel) 2019; 11:cancers11101415. [PMID: 31546746 PMCID: PMC6827145 DOI: 10.3390/cancers11101415] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
The regulation of Reactive Oxygen Species (ROS) levels and the contribution therein from networks regulating cell metabolism, such as autophagy and the mTOR-dependent nutrient-sensing pathway, constitute major targets for selective therapeutic intervention against several types of tumors, due to their extensive rewiring in cancer cells as compared to healthy cells. Here, we discuss the sestrin family of proteins—homeostatic transducers of oxidative stress, and drivers of antioxidant and metabolic adaptation—as emerging targets for pharmacological intervention. These adaptive regulators lie at the intersection of those two priority nodes of interest in antitumor intervention—ROS control and the regulation of cell metabolism and autophagy—therefore, they hold the potential not only for the development of completely novel compounds, but also for leveraging on synergistic strategies with current options for tumor therapy and classification/stadiation to achieve personalized medicine.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). Madrid 28029, Spain.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome 00161, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona 37134, Italy.
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians University, Munich 81377, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich 80366, Germany.
| | - Marco Cordani
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain..
| |
Collapse
|
27
|
Fang H, Du G, Wu Q, Liu R, Chen C, Feng J. HDAC inhibitors induce proline dehydrogenase (POX) transcription and anti-apoptotic autophagy in triple negative breast cancer. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1064-1070. [PMID: 31559416 DOI: 10.1093/abbs/gmz097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor clinical outcomes and without effective targeted therapies. Numerous studies have suggested that HDAC inhibitors (TSA/SAHA) may be effective in TNBCs. Proline oxidase, also known as proline dehydrogenase (POX/PRODH), is a key enzyme in the proline metabolism pathway and plays a vital role in tumorigenesis. In this study, we found that HDAC inhibitors (TSA/SAHA) significantly increased POX expression and autophagy through activating AMPK. Depletion of POX decreased autophagy and increased apoptosis induced by HDAC inhibitors in TNBC cells. These results suggest that POX contributes to cell survival under chemotherapeutic stresses and might serve as a potential target for treatment of TNBC.
Collapse
Affiliation(s)
- Huan Fang
- Medical College, Anhui University of Science and Technology, Huainan, China
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Qiuju Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming , China
| | - Jing Feng
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| |
Collapse
|
28
|
Zhang C, Tan Z, Xie Y, Zhao Y, Huang TY, Lu Z, Luo H, Can D, Xu H, Zhang YW, Zhang X. Appoptosin Mediates Lesions Induced by Oxidative Stress Through the JNK-FoxO1 Pathway. Front Aging Neurosci 2019; 11:243. [PMID: 31551758 PMCID: PMC6737070 DOI: 10.3389/fnagi.2019.00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is a common feature of neurodegenerative diseases and plays an important role in disease progression. Appoptosin is a pro-apoptotic protein that contributes to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. However, whether appoptosin mediates oxidative stress-induced neurotoxicity has yet to be determined. Here, we observe that appoptosin protein levels are induced by hydrogen peroxide (H2O2) exposure through the inhibition of proteasomal appoptosin degradation. Furthermore, we demonstrate that overexpression of appoptosin induces apoptosis through the JNK-FoxO1 pathway. Importantly, knockdown of appoptosin can ameliorate H2O2-induced JNK activation and apoptosis in primary neurons. Thus, we propose that appoptosin functions as an upstream regulator of the JNK-FoxO1 pathway, contributing to cell death in response to oxidative stress during neurodegeneration.
Collapse
Affiliation(s)
- Cuilin Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zhenqiu Tan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yongzhuang Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Zhaoping Lu
- Fujian Provincial Maternity and Children's Hospital of Fujian Medical University, Fuzhou, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Pharmaceutical Sciences, School of Medicine, Institute of Neuroscience, Xiamen University, Xiamen, China
| |
Collapse
|
29
|
Li Y, Li Z, Zhu WG. Molecular Mechanisms of Epigenetic Regulators as Activatable Targets in Cancer Theranostics. Curr Med Chem 2019; 26:1328-1350. [PMID: 28933282 DOI: 10.2174/0929867324666170921101947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Epigenetics is defined as somatically inheritable changes that are not accompanied by alterations in DNA sequence. Epigenetics encompasses DNA methylation, covalent histone modifications, non-coding RNA as well as nucleosome remodeling. Notably, abnormal epigenetic changes play a critical role in cancer development including malignant transformation, metastasis, prognosis, drug resistance and tumor recurrence, which can provide effective targets for cancer prognosis, diagnosis and therapy. Understanding these changes provide effective means for cancer diagnosis and druggable targets for better clinical applications. Histone modifications and related enzymes have been found to correlate well with cancer incidence and prognosis in recent years. Dysregulated expression or mutation of histone modification enzymes and histone modification status abnormalities have been considered to play essential roles in tumorigenesis and clinical outcomes of cancer treatment. Some of the histone modification inhibitors have been extensively employed in clinical practice and many others are still under laboratory research or pre-clinical assessment. Here we summarize the important roles of epigenetics, especially histone modifications in cancer diagnostics and therapeutics, and also discuss the developmental implications of activatable epigenetic targets in cancer theranostics.
Collapse
Affiliation(s)
- Yinglu Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
30
|
Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view. Prog Neurobiol 2019; 181:101645. [PMID: 31229499 DOI: 10.1016/j.pneurobio.2019.101645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs), which are among the most important aging-related diseases, are typically characterized by neuronal damage and a progressive impairment in neurological function during aging. Few effective therapeutic targets for NDDs have been revealed; thus, an understanding of the pathogenesis of NDDs is important. Forkhead box O (FoxO) transcription factors have been implicated in the mechanisms regulating aging and longevity. The functions of FoxOs are regulated by diverse post-translational modifications (e.g., phosphorylation, acetylation, ubiquitination, methylation and glycosylation). FoxOs exert both detrimental and protective effects on NDDs. Therefore, an understanding of the precise function of FoxOs in NDDs will be helpful for developing appropriate treatment strategies. In this review, we first introduce the post-translational modifications of FoxOs. Next, the regulation of FoxO expression and post-translational modifications in the central nervous system (CNS) is described. Afterwards, we analyze and address the important roles of FoxOs in NDDs. Finally, novel potential directions of future FoxO research in NDDs are discussed. This review recapitulates essential facts and questions about the promise of FoxOs in treating NDDs, and it will likely be important for the design of further basic studies and to realize the potential for FoxOs as therapeutic targets in NDDs.
Collapse
|
31
|
Natsume A, Hirano M, Ranjit M, Aoki K, Wakabayashi T. Aberrant Transcriptional Regulation of Super-enhancers by RET Finger Protein-histone Deacetylase 1 Complex in Glioblastoma: Chemoresistance to Temozolomide. Neurol Med Chir (Tokyo) 2019; 59:293-298. [PMID: 31178471 PMCID: PMC6694022 DOI: 10.2176/nmc.ra.2019-0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM), the most common primary brain tumor, is the most aggressive human cancers, with a median survival rate of only 14.6 months. Temozolomide (TMZ) is the frontline chemotherapeutic drug in GBM. Drug resistance is the predominant obstacle in TMZ therapy. Drug resistance occurs via multiple pathways such as DNA mismatch repair and base excision repair systems, by which glioma cells acquire chemoresistance to some extent (5% and 95%, respectively). Histone3 Lysin27 residue-acetylation (H3K27ac) status regulates cis-regulatory elements, which increases the likelihood of gene transcription. Histone deacetylase (HDAC) complex deacetylate lysine residues on core histones, leading to a decrease in gene transcription. In cis-regulatory element regions, complexes with HDAC repress histones by H3K27ac deacetylation. The cis-regulating and three-dimensional transcriptional mechanism is called "super-enhancer". RET finger protein (RFP) is a protein that is expressed in many kinds of cancer. RFP forms a protein complex with HDAC1. The disruption of the RFP-HDAC1 complex has resulted in increased drug sensitivity in other cancers. We conclude that the downregulation of RFP or the disruption of the RFP/HDAC1 complex leads to an increase in TMZ efficacy in glioblastoma by changing histone modifications which lead to changes in cell division, cell cycle and apoptosis.
Collapse
Affiliation(s)
- Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Masaki Hirano
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Melissa Ranjit
- Department of Neurosurgery, Nagoya University School of Medicine
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University School of Medicine
| | | |
Collapse
|
32
|
Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1241-1252. [DOI: 10.1016/j.bbadis.2019.01.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/29/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022]
|
33
|
Ling J, Dong X, Wang L, Xue Y, Jia X, Song W, Li Q. MiR-27a-regulated FOXO1 promotes pancreatic ductal adenocarcinoma cell progression by enhancing Wnt/β-catenin signaling activity. Am J Transl Res 2019; 11:3069-3080. [PMID: 31217876 PMCID: PMC6556653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
FOXO1, also known as FKHR, is a member of the Forkhead transcription factor family. Our previous study revealed that FOXO1 expression is significantly downregulated in pancreatic ductal adenocarcinoma (PDAC). However, our knowledge on the clinical significance of FOXO1 and its biological roles and associated mechanisms in PDAC tumorigenesis remains limited. In this study, we confirmed that FOXO1 is commonly downregulated in PDAC tissues, at both the mRNA and protein levels, compared to adjacent tissues. Furthermore, FOXO1 inhibited cell proliferation and tumor formation both in vitro and in vivo, and promoted pancreatic cancer cell invasion. Downregulation of FOXO1 resulted in enhanced Wnt/β-catenin signaling activity, thereby promoting cell proliferation and epithelial-mesenchymal transition. The highly expressed miR-27a could potentially be used to target the 3'-UTR of FOXO1 in PDAC tissues to inhibit or at least slow down the invasion and proliferation of cancerous cells. Taken together, our findings suggest that the miR-27a/FOXO1/β-catenin axis may serve as a promising therapeutic target in PDAC progression.
Collapse
Affiliation(s)
- Jing Ling
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Xiao Dong
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Lei Wang
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Ying Xue
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Xuebing Jia
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
| | - Weifeng Song
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai 200080, China
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200080, China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai 200080, China
| |
Collapse
|
34
|
Roy S, Saha S, Gupta P, Ukil A, Das PK. Crosstalk of PD-1 signaling with the SIRT1/FOXO-1 axis during the progression of visceral leishmaniasis. J Cell Sci 2019; 132:jcs.226274. [PMID: 30910830 DOI: 10.1242/jcs.226274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Previously, we documented the role of the programmed death-1 (PD-1, also known as PDCD1) pathway in macrophage apoptosis and the downregulation of this signaling during infection by the intra-macrophage parasite Leishmania donovani However, we also found that, during the late phase of infection, PD-1 expression was significantly increased without activating host cell apoptosis; here we show that inhibition of PD-1 led to markedly decreased parasite survival, along with increased production of TNFα, IL-12, reactive oxygen species (ROS) and nitric oxide (NO). Increased PD-1 led to inactivation of AKT proteins resulting in nuclear sequestration of FOXO-1. Transfecting infected cells with constitutively active FOXO-1 (CA-FOXO) led to increased cell death, thereby suggesting that nuclear FOXO-1 might be inactivated. Infection significantly induced the expression of SIRT1, which inactivated FOXO-1 through deacetylation, and its knockdown led to increased apoptosis. SIRT1 knockdown also significantly decreased parasite survival along with increased production of TNFα, ROS and NO. Administration of the SIRT1 inhibitor sirtinol (10 mg/kg body weight) in infected mice decreased spleen parasite burden and a synergistic effect was found with PD-1 inhibitor. Collectively, our study shows that Leishmania utilizes the SIRT1/FOXO-1 axis for differentially regulating PD-1 signaling and, although they are interconnected, both pathways independently contribute to intracellular parasite survival.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shalini Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shriya Saha
- Department of Biochemistry, Calcutta University, Kolkata 700019, India
| | - Purnima Gupta
- Department of Biochemistry, Calcutta University, Kolkata 700019, India
| | - Anindita Ukil
- Department of Biochemistry, Calcutta University, Kolkata 700019, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
35
|
Chen J, Lu Y, Tian M, Huang Q. Molecular mechanisms of FOXO1 in adipocyte differentiation. J Mol Endocrinol 2019; 62:R239-R253. [PMID: 30780132 DOI: 10.1530/jme-18-0178] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Forkhead box-O1 (FOXO1) is a downstream target of AKT and plays crucial roles in cell cycle control, apoptosis, metabolism and adipocyte differentiation. It is thought that FOXO1 affects adipocyte differentiation by regulating lipogenesis and cell cycle. With the deepening in the understanding of this field, it is currently believed that FOXO1 translocation between nuclei and cytoplasm is involved in the regulation of FOXO1 activity, thus affecting adipocyte differentiation. Translocation of FOXO1 depends on its post-translational modifications and interactions with 14-3-3. Based on these modifications and interactions, FOXO1 could regulate lipogenesis through PPARγ and the adipocyte cell cycle through p21 and p27. In this review, we aim to provide a comprehensive FOXO1 regulation network in adipocyte differentiation by linking together distinct functions mentioned above to explain their effects on adipocyte differentiation and to emphasize the regulatory role of FOXO1. In addition, we also focus on the novel findings such as the use of miRNAs in FOXO1 regulation and highlight the improvable issues, such as RNA modifications, for future research in the field.
Collapse
Affiliation(s)
- Junye Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Nanchang Joint Programme, Queen Mary, University of London, London, UK
| | - Yi Lu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Mengyuan Tian
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Nanchang Joint Programme, Queen Mary, University of London, London, UK
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
36
|
Li X, Su Y, Madlambayan G, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Ma J, Knight T, Wang G, Wang Y, Yang J, Taub JW, Lin H, Ge Y. Antileukemic activity and mechanism of action of the novel PI3K and histone deacetylase dual inhibitor CUDC-907 in acute myeloid leukemia. Haematologica 2019; 104:2225-2240. [PMID: 30819918 PMCID: PMC6821619 DOI: 10.3324/haematol.2018.201343] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Induction therapy for patients with acute myeloid leukemia (AML) has remained largely unchanged for over 40 years, while overall survival rates remain unacceptably low, highlighting the need for new therapies. The PI3K/Akt pathway is constitutively active in the majority of patients with AML. Given that histone deacetylase inhibitors have been shown to synergize with PI3K inhibitors in preclinical AML models, we investigated the novel dual-acting PI3K and histone deacetylase inhibitor CUDC-907 in AML cells both in vitro and in vivo. We demonstrated that CUDC-907 induces apoptosis in AML cell lines and primary AML samples and shows in vivo efficacy in an AML cell line-derived xenograft mouse model. CUDC-907-induced apoptosis was partially dependent on Mcl-1, Bim, and c-Myc. CUDC-907 induced DNA damage in AML cells while sparing normal hematopoietic cells. Downregulation of CHK1, Wee1, and RRM1, and induction of DNA damage also contributed to CUDC-907-induced apoptosis of AML cells. In addition, CUDC-907 treatment decreased leukemia progenitor cells in primary AML samples ex vivo, while also sparing normal hematopoietic progenitor cells. These findings support the clinical development of CUDC-907 for the treatment of AML.
Collapse
Affiliation(s)
- Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Gerard Madlambayan
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Tristan Knight
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
37
|
Abstract
OBJECTIVES Menin, a chromatin binding protein, interacts with various epigenetic regulators to regulate gene transcription, whereas forkhead box protein O1 (FOXO1) is a transcription factor that can be regulated by multiple signaling pathways. Both menin and FOXO1 are crucial regulators of β-cell function and metabolism; however, whether or how they interplay to regulate β cells is not clear. METHODS To examine whether menin affects expression of FOXO1, we ectopically expressed menin complementary DNA and small hairpin RNA targeting menin via a retroviral vector in INS-1 cells. Western blotting was used to analyze protein levels. RESULTS Our current work shows that menin increases the expression of FOXO1. Menin stabilizes FOXO1 protein level in INS-1 cells, as shown by increased half-life of FOXO1 by menin expression. Moreover, menin represses ubiquitination of FOXO1 protein and AKT phosphorylation, We found that menin stabilizes FOXO1 by repressing FOXO1 degradation mediated by S-phase kinase-associated protein 2 (Skp2), an E3 ubiquitin ligase, promoting caspase 3 activation and apoptosis. CONCLUSIONS Because FOXO1 upregulates the menin gene transcription, our findings unravel a crucial menin and FOXO1 interplay, with menin and FOXO1 upregulating their expression reciprocally, forming a positive feedback loop to sustain menin and FOXO1 expression.
Collapse
|
38
|
Gao T, Li M, Mu G, Hou T, Zhu WG, Yang Y. PKCζ Phosphorylates SIRT6 to Mediate Fatty Acid β-Oxidation in Colon Cancer Cells. Neoplasia 2018; 21:61-73. [PMID: 30504065 PMCID: PMC6277223 DOI: 10.1016/j.neo.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Protein kinase C (PKC) has critical roles in regulating lipid anabolism and catabolism. PKCζ, a member of atypical PKC family, has been reported to mediate glucose metabolism. However, whether and how PKCζ regulates tumor cells fatty acid β-oxidation are unknown. Here, we report that the phosphorylation of SIRT6 is significantly increased after palmitic acid (PA) treatment in colon cancer cells. PKCζ can physically interact with SIRT6 in vitro and in vivo, and this interaction enhances following PA treatment. Further experiments show that PKCζ is the phosphorylase of SIRT6 and phosphorylates SIRT6 at threonine 294 residue to promote SIRT6 enrichment on chromatin. In the functional study, we find that the expression of ACSL1, CPT1, CACT, and HADHB, the genes related to fatty acid β-oxidation, increases after PA stimulation. We further confirm that PKCζ mediates the binding of SIRT6 specifically to the promoters of fatty acid β-oxidation–related genes and elicits the expression of these genes through SIRT6 phosphorylation. Our findings demonstrate the mechanism of PKCζ as a new phosphorylase of SIRT6 on maintaining tumor fatty acid β-oxidation and define the new role of PKCζ in lipid homeostasis.
Collapse
Affiliation(s)
- Tian Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Meiting Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Guanqun Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Tianyun Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 516080, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
39
|
p53 cooperates with SIRT6 to regulate cardiolipin de novo biosynthesis. Cell Death Dis 2018; 9:941. [PMID: 30237540 PMCID: PMC6148051 DOI: 10.1038/s41419-018-0984-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/28/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023]
Abstract
The tumor suppressor p53 has critical roles in regulating lipid metabolism, but whether and how p53 regulates cardiolipin (CL) de novo biosynthesis is unknown. Here, we report that p53 physically interacts with histone deacetylase SIRT6 in vitro and in vivo, and this interaction increases following palmitic acid (PA) treatment. In response to PA, p53 and SIRT6 localize to chromatin in a p53-dependent manner. Chromatin p53 and SIRT6 bind the promoters of CDP-diacylglycerol synthase 1 and 2 (CDS1 and CDS2), two enzymes required to catalyze CL de novo biosynthesis. Here, SIRT6 serves as a co-activator of p53 and effectively recruits RNA polymerase II to the CDS1 and CDS2 promoters to enhance CL de novo biosynthesis. Our findings reveal a novel, cooperative model executed by p53 and SIRT6 to maintain lipid homeostasis.
Collapse
|
40
|
Zhang J, Wang J, Zhou Z, Park JE, Wang L, Wu S, Sun X, Lu L, Wang T, Lin Q, Sze SK, Huang D, Shen HM. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy 2018; 14:1043-1059. [PMID: 30059277 DOI: 10.1080/15548627.2018.1447290] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TFEB (transcription factor EB) is a master regulator of lysosomal biogenesis, function and autophagy. The transcriptional activity of TFEB is mainly controlled by its phosphorylation status mediated by the MTOR (mechanistic target of rapamycin [serine/threonine kinase]) complex 1 (MTORC1). At present, little is known whether other forms of posttranslational modifications (PTMs) such as acetylation also affects is transcriptional activity. In this study, we first observed that a well-established histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) activated lysosomal function in human cancer cells, a process independent of the MTORC1 pathway. Second, SAHA treatment activated TFEB transcriptional activity, as evidenced by increased TFEB luciferase activity and expression of its target genes. Third and more importantly, we observed the enhanced TFEB acetylation in SAHA-treated cells, with identification of 4 acetylation sites. Mutation of these 4 sites markedly diminished TFEB transcriptional activity and lysosomal function induced by SAHA. Finally, we found that TFEB acetylation was functionally implicated in SAHA-mediated autophagy and cell death in cancer cells. Taken together, our results demonstrate that TFEB acetylation is a novel form of PTMs in TFEB that plays an important role in determining its transcriptional activity, lysosomal function and autophagy in cancer cells. ABBREVIATIONS ACAT1: acetyl-coenzyme A acetyltransferase 1; AHA: L-azidohomoalanine; AO: acidic orange; ATG: autophagy related; CLEAR: Coordinated Lysosomal Expression and Regulation; CQ: chloroquine; CTSB: cathepsin B; HATs: histone acetyltransferases; HDACIs: HDACs inhibitors; HDACs: histone deacetylases; IP: immunoprecipitation; MEFs: mouse embryonic fibroblasts; MS: mass spectrometry; MTOR: mechanistic target of rapamycin (serine/threonine kinase); MTORC1: mechanistic target of rapamycin (serine/threonine kinase) complex 1; PTMs: posttranslational modifications; SAHA: suberoylanilidehydroxamic acid; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Jianbin Zhang
- a Department of Oncology , Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China.,b Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Jigang Wang
- b Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zhihong Zhou
- b Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Jung-Eun Park
- c Division of Chemical Biology and BioTechnology , School of Biological Sciences, Nanyang Technological University , Singapore
| | - Liming Wang
- d Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University, Hung Hom , Kowloon , Hong Kong , China
| | - Shuai Wu
- d Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University, Hung Hom , Kowloon , Hong Kong , China
| | - Xin Sun
- a Department of Oncology , Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Liqin Lu
- a Department of Oncology , Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Tianru Wang
- e Life Sciences Program, Faculty of Arts and Sciences , University of Toronto , Toronto , Canada
| | - Qingsong Lin
- f Department of Biological Sciences , National University of Singapore , Singapore
| | - Siu Kwan Sze
- c Division of Chemical Biology and BioTechnology , School of Biological Sciences, Nanyang Technological University , Singapore
| | - Dongsheng Huang
- a Department of Oncology , Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individual Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Han-Ming Shen
- b Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore.,g NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore
| |
Collapse
|
41
|
Kumar BNP, Puvvada N, Rajput S, Sarkar S, Mahto MK, Yallapu MM, Pathak A, Emdad L, Das SK, Reis RL, Kundu SC, Fisher PB, Mandal M. Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica-Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer. Mol Pharm 2018; 15:2698-2713. [PMID: 29787277 DOI: 10.1021/acs.molpharmaceut.8b00218] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tamoxifen administration enhanced overall disease-free survival and diminished mortality rates in cancer patients. However, patients with breast cancer often fail to respond for tamoxifen therapy due to the development of a drug-resistant phenotype. Functional analysis and molecular studies suggest that protein mutation and dysregulation of survival signaling molecules such as epidermal growth factor receptor, vascular endothelial growth factor receptor 2, and Akt contribute to tamoxifen resistance. Various strategies, including combinatorial therapies, show chemosensitize tamoxifen-resistant cancers. Based on chemotoxicity issues, researchers are actively investigating alternative therapeutic strategies. In the current study, we fabricate a mesoporous silica gold cluster nanodrug delivery system that displays exceptional tumor-targeting capability, thus promoting accretion of drug indices at the tumor site. We employ dual drugs, ZD6474, and epigallocatechin gallate (EGCG) that inhibit EGFR2, VEGFR2, and Akt signaling pathways since changes in these signaling pathways confer tamoxifen resistance in MCF 7 and T-47D cells. Mesoporous silica gold cluster nanodrug delivery of ZD6474 and EGCG sensitize tamoxifen-resistant cells to apoptosis. Western and immune-histochemical analyses confirmed the apoptotic inducing properties of the nanoformulation. Overall, results with these silica gold nanoclusters suggest that they may be a potent nanoformulation against chemoresistant cancers.
Collapse
Affiliation(s)
- B N Prashanth Kumar
- Department of Pharmaceutical Sciences and Center for Cancer Research , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | - Nagaprasad Puvvada
- Chemical Biology , CSIR-Indian Institute of Chemical Technology , Uppal Road , Hyderabad 500007 , India
| | - Shashi Rajput
- Tumor Initiation and Maintenance , Sanford-Burnham Medical Research Institute , La Jolla , California 92037 , United States
| | - Siddik Sarkar
- Department of Human and Molecular Genetics , VCU Institute of Molecular Genetics, VCU Massey Cancer, Virginia Commonwealth University, School of Medicine , Richmond , Virginia 23298 , United States
| | | | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research , University of Tennessee Health Science Center , Memphis , Tennessee 38163 , United States
| | | | - Luni Emdad
- Department of Human and Molecular Genetics , VCU Institute of Molecular Genetics, VCU Massey Cancer, Virginia Commonwealth University, School of Medicine , Richmond , Virginia 23298 , United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics , VCU Institute of Molecular Genetics, VCU Massey Cancer, Virginia Commonwealth University, School of Medicine , Richmond , Virginia 23298 , United States
| | - Rui L Reis
- 3Bs Research Group , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Avepark - 4805-017 , Barco, Guimaraes, Portugal
| | - S C Kundu
- 3Bs Research Group , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , Avepark - 4805-017 , Barco, Guimaraes, Portugal
| | - Paul B Fisher
- Department of Human and Molecular Genetics , VCU Institute of Molecular Genetics, VCU Massey Cancer, Virginia Commonwealth University, School of Medicine , Richmond , Virginia 23298 , United States
| | | |
Collapse
|
42
|
Bourgeois B, Madl T. Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett 2018; 592:2083-2097. [PMID: 29683489 PMCID: PMC6033032 DOI: 10.1002/1873-3468.13057] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Forkhead box O (FOXO) and p53 proteins are transcription factors that regulate diverse signalling pathways to control cell cycle, apoptosis and metabolism. In the last decade both FOXO and p53 have been identified as key players in aging, and their misregulation is linked to numerous diseases including cancers. However, many of the underlying molecular mechanisms remain mysterious, including regulation of ageing by FOXOs and p53. Several activities appear to be shared between FOXOs and p53, including their central role in the regulation of cellular senescence. In this review, we will focus on the recent advances on the link between FOXOs and p53, with a particular focus on the FOXO4‐p53 axis and the role of FOXO4/p53 in cellular senescence. Moreover, we discuss potential strategies for targeting the FOXO4‐p53 interaction to modulate cellular senescence as a drug target in treatment of aging‐related diseases and morbidity.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
43
|
Zhang X, Li J, Cheng Y, Yi J, Liu X, Cheng W. Downregulation of CUEDC2 prevents doxorubicin‑induced cardiotoxicity in H9c2 cells. Mol Med Rep 2018; 18:855-863. [PMID: 29845245 PMCID: PMC6059716 DOI: 10.3892/mmr.2018.9072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/16/2018] [Indexed: 01/13/2023] Open
Abstract
Treatment with doxorubicin (DOX), which is an effective anticancer agent, is limited by cardiotoxicity. CUE domain-containing 2 (CUEDC2) serves a role in numerous cellular processes. The present study aimed to elucidate the potential function of CUEDC2 in DOX-induced cardiotoxicity. Cell Counting kit-8 assay demonstrated that DOX induced cytotoxicity of H9c2 cells in a dose-dependent manner. Flow cytometry demonstrated that downregulation of CUEDC2 reduced the levels of DOX-induced reactive oxygen species. Furthermore, compared with in the DOX-treated group, the activity of superoxide dismutase was increased in the DOX + small interfering RNA (si)CUEDC2 group; whereas, the malondialdehyde content was reduced in the DOX + siCUEDC2 group. In addition, flow cytometric analysis indicated that mitochondrial membrane potential was maintained following the depletion of CUEDC2. Furthermore, CUEDC2 downregulation significantly inhibited DOX-induced apoptosis. The expression levels of proapoptotic genes, including B-cell lymphoma 2 (Bcl-2)-associated X protein, cleaved caspase-3 and cytochrome c were inhibited by the depletion of CUEDC2. Conversely, the expression levels of the anti-apoptotic gene Bcl-2 were elevated in the CUEDC2 knockdown group. Downregulation of CUEDC2 also increased phosphorylation of protein kinase B and forkhead box O3a, and decreased the expression of Bcl-2-like protein 11 according to western blot analysis. Taken together, the present study demonstrated that CUEDC2 downregulation prevented DOX-induced cardiotoxicity in H9c2 cells. Therefore, CUEDC2 may be a promising target for the prevention of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xianpu Zhang
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jiaojiao Li
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Yongbo Cheng
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jianguang Yi
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Xin Liu
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Wei Cheng
- Department of Cardio‑Thoracic Surgery, Southwest Hospital, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
44
|
Cao W, Li M, Wu T, Feng F, Feng T, Xu Y, Sun C. αMSH prevents ROS-induced apoptosis by inhibiting Foxo1/mTORC2 in mice adipose tissue. Oncotarget 2018; 8:40872-40884. [PMID: 28388573 PMCID: PMC5522219 DOI: 10.18632/oncotarget.16606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
Alpha-melanocyte stimulating hormone (αMSH) is an important adenohypophysis polypeptide hormone that regulates body metabolic status. To date, it is well known that the disorder of hypothalamic αMSH secretion is related to many metabolic diseases, such as obesity and type II diabetes. However, the underlying mechanisms are poorly understood. In our study, we focused on the reactive oxygen species (ROS)-induced adipocyte apoptosis and tried to unveil the role of αMSH in this process and the signal pathway which αMSH acts through. Kunming white mice were used and induced to oxidative stress status by hydrogen peroxide (H2O2) injection and a significant reduction of αMSH were found in mice serum, while elevated ROS level and mRNA level of pro-apoptotic genes were observed in mice adipose tissue. What is more, when detect the function of αMSH in ROS-induced apoptosis, similar inhibitory trend was found with the oxidative stress inhibitor N-acetyl-L-cysteine (NAC) in ROS-induced adipocyte apoptosis and this trend is αMSH receptor melanocortin 5 receptor (MC5R) depended, while an opposite trend was found between αMSH and Foxo1, which is a known positive regulator of adipocyte apoptosis. Further, we found that the repress effect of αMSH in adipocytes apoptosis is acting through Foxo1/mTORC2 pathway. These findings indicate that, αMSH has a strong inhibitory effect on ROS-induced adipocyte apoptosis and underlying mechanism is interacting with key factors in mTOR signal pathway. Our study demonstrated a great role of αMSH in adipocyte apoptosis and brings a new therapeutic mean to the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Weina Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meihang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongying Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
45
|
Chen Z, Wang J, Yang W, Chen J, Meng Y, Geng B, Cui Q, Yang J. FAM3A mediates PPARγ's protection in liver ischemia-reperfusion injury by activating Akt survival pathway and repressing inflammation and oxidative stress. Oncotarget 2018; 8:49882-49896. [PMID: 28562339 PMCID: PMC5564815 DOI: 10.18632/oncotarget.17805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
FAM3A is a novel mitochondrial protein, and its biological function remains largely unknown. This study determined the role and mechanism of FAM3A in liver ischemia-reperfusion injury (IRI). In mouse liver after IRI, FAM3A expression was increased. FAM3A-deficient mice exhibited exaggerated liver damage with increased serum levels of AST, ALT, MPO, MDA and oxidative stress when compared with WT mice after liver IRI. FAM3A-deficient mouse livers had a decrease in ATP content, Akt activity and anti-apoptotic protein expression with an increase in apoptotic protein expression, inflammation and oxidative stress when compared WT mouse livers after IRI. Rosiglitazone pretreatment protected against liver IRI in wild type mice but not in FAM3A-deficient mice. In cultured hepatocytes, FAM3A overexpression protected against, whereas FAM3A deficiency exaggerated oxidative stress-induced cell death. FAM3A upregulation or FAM3A overexpression inhibited hypoxia/reoxygenation-induced activation of apoptotic gene and hepatocyte death in P2 receptor-dependent manner. FAM3A deficiency blunted rosiglitazone's beneficial effects on Akt activation and cell survival in cultured hepatocytes. Collectively, FAM3A protects against liver IRI by activating Akt survival pathways, repressing inflammation and attenuating oxidative stress. Moreover, the protective effects of PPARγ agonist(s) on liver IRI are dependent on FAM3A-ATP-Akt pathway.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
46
|
Gao L, Sun X, Zhang Q, Chen X, Zhao T, Lu L, Zhang J, Hong Y. Histone deacetylase inhibitor trichostatin A and autophagy inhibitor chloroquine synergistically exert anti-tumor activity in H-ras transformed breast epithelial cells. Mol Med Rep 2018; 17:4345-4350. [PMID: 29344672 PMCID: PMC5802205 DOI: 10.3892/mmr.2018.8446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/12/2018] [Indexed: 01/15/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) cause oncogene‑transformed mammalian cell death. Our previous study indicated that HDACIs activate forkhead box O1 (FOXO1) and induce autophagy in liver and colon cancer cells. However, whether FOXO1 is involved in HDACI‑mediated oncogene‑transformed mammalian cell death remains unclear. In the present study, H‑ras transformed MCF10A cells were used to investigate the role of FOXO1 in this pathway. Results showed that trichostatin A (TSA), a HDACI, activated apoptosis in MCF10A‑ras cells, but not in MCF10A cells. Furthermore, TSA activated FOXO1 via P21 upregulation, whereas the knockdown of FOXO1 reduced TSA‑induced cell death. In addition, TSA induced autophagy in MCF10A and MCF10A‑ras cells by blocking the mammailian target of rapamycin signaling pathway. Furthermore, autophagy inhibition lead to higher MCF10A‑ras cell death by TSA, thus indicating that autophagy is essential in cell survival. Taken together, the present study demonstrated that TSA causes oncogene‑transformed cell apoptosis via activation of FOXO1 and HDACI‑mediated autophagy induction, which served as important cell survival mechanisms. Notably, the present findings imply that a combination of HDACIs and autophagy inhibitors produce a synergistic anticancer effect.
Collapse
Affiliation(s)
- Liang Gao
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xin Sun
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310002, P.R. China
| | - Xiaochen Chen
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Tongwei Zhao
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Liqing Lu
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Jianbin Zhang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yupeng Hong
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
47
|
Li J, Chen T, Xiao M, Li N, Wang S, Su H, Guo X, Liu H, Yan F, Yang Y, Zhang Y, Bu P. Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget 2018; 7:86648-86659. [PMID: 27880725 PMCID: PMC5349942 DOI: 10.18632/oncotarget.13429] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Sirt3, a mitochondrial NAD+-dependent histone deacetylase, is the only member proven to promote longevity in mammalian Sirtuin family. The processed short form of Sirt3 has been demonstrated to target many mediators of energy metabolism and mitochondrial stress adaptive program. Autophagy serves as a dynamic recycling mechanism and provides energy or metabolic substrates. Among the mechanisms triggered by cardiac stress, opinions vary as to whether autophagy is a protective or detrimental response. Here, by inducing the Sirt3-knockout mice to myocardial hypertrophy with chronic angiotensin II infusion for four weeks, we determined the role of Sirt3 in myocardial hypertrophy and autophagy. In this study, the Sirt3-knockout mice developed deteriorated cardiac function and impaired autophagy compared to wild-type mice. What's more, the overexpression of Sirt3 by lentivirus transfection attenuated cardiomyocytes hypertrophy by promoting autophagy. We further demonstrated that Sirt3 could bind to FoxO1 and activate its deacetylation. Sequentially, deacetylated FoxO1 translocates to the nucleus where it facilitates downstream E3 ubiquitin ligases such as Muscle RING Finger 1 (MuRF1) and muscle atrophy F-box (MAFbx, Atrogin1). Altogether, these results revealed that Sirt3 activation is essential to improve autophagy flux by reducing the acetylation modification on FoxO1, which in turn alleviates myocardial hypertrophy.
Collapse
Affiliation(s)
- Jingyuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tongshuai Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Xiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shujian Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongyan Su
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaobin Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fangying Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
48
|
Blocking downstream signaling pathways in the context of HDAC inhibition promotes apoptosis preferentially in cells harboring mutant Ras. Oncotarget 2018; 7:69804-69815. [PMID: 27634878 PMCID: PMC5340114 DOI: 10.18632/oncotarget.12001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
We previously demonstrated activation of the mitogen-activated protein kinase (MAPK) pathway in a series of romidepsin-selected T-cell lymphoma cell lines as a mechanism of resistance to the histone deacetylase inhibitor (HDI), romidepsin. As Ras mutation leads to activation of both the MAPK and the phosphoinositide 3-kinase (PI3K) pathway, we examined whether combining romidepsin with small molecule pathway inhibitors would lead to increased apoptosis in cancers harboring Ras mutations. We treated 18 Ras mutant or wild-type cell lines with romidepsin in the presence of a MEK inhibitor (PD-0325901) and/or an AKT inhibitor (MK-2206) and examined apoptosis by flow cytometry. A short-term treatment schedule of romidepsin (25 ng/ml for 6 h) was used to more closely model clinical administration. Romidepsin in combination with a MEK and an AKT inhibitor induced apoptosis preferentially in cells harboring mutant versus wild-type Ras (69.1% vs. 21.1%, p < 0.0001). Similar results were found in a subset of cell lines when belinostat was combined with the MEK and AKT inhibitors and when romidepsin was combined with the dual extracellular signaling-related kinase (ERK)/PI3K inhibitor, D-87503, which inhibited both the MAPK and PI3K pathways at 5–10 μM. The observed apoptosis was caspase-dependent and required Bak and Bax expression. Cells with wild-type or mutant Ras treated with romidepsin alone or in combination with the MEK inhibitor displayed increased expression of proapoptotic Bim. We thus conclude that cancers bearing Ras mutations, such as pancreatic cancer, can be targeted by the combination of an HDI and a dual inhibitor of the MAPK and PI3K pathways.
Collapse
|
49
|
The regulation of FOXO1 and its role in disease progression. Life Sci 2017; 193:124-131. [PMID: 29158051 DOI: 10.1016/j.lfs.2017.11.030] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/14/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022]
Abstract
Cell proliferation, apoptosis, autophagy, oxidative stress and metabolic dysregulation are the basis of many diseases. Forkhead box transcription factor O1 (FOXO1) changes in response to cellular stimulation and maintains tissue homeostasis during the above-mentioned physiological and pathological processes. Substantial evidences indicate that FOXO1's function depends on the modulation of downstream targets such as apoptosis- and autophagy-associated genes, anti-oxidative stress enzymes, cell cycle arrest genes, and metabolic and immune regulators. In addition, oxidative stress, high glucose and other stimulations induce the regulation of FOXO1 activity via PI3k-Akt, JNK, CBP, Sirtuins, ubiquitin E3 ligases, etc., which mediate multiple signalling pathways. Subsequent post-transcriptional modifications, including phosphorylation, ubiquitination, acetylation, deacetylation, arginine methylation and O-GlcNAcylation, activate or inhibit FOXO1. The regulation of FOXO1 and its role might provide a significant avenue for the prevention and treatment of diseases. However, the subtle mechanisms of the post-transcriptional modifications and the effect of FOXO1 remain elusive and even conflicting in the development of many diseases. The determination of these questions potentially has implications for further research regarding FOXO1 signalling and the identification of targeted drugs.
Collapse
|
50
|
Hou T, Li Z, Zhao Y, Zhu WG. Mechanisms controlling the anti-neoplastic functions of FoxO proteins. Semin Cancer Biol 2017; 50:101-114. [PMID: 29155239 DOI: 10.1016/j.semcancer.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
The Forkhead box O (FoxO) proteins comprise a family of evolutionarily conserved transcription factors that predominantly function as tumor suppressors. These proteins assume diverse roles in the cellular anti-neoplastic response, including regulation of apoptosis and autophagy, cancer metabolism, cell-cycle arrest, oxidative stress and the DNA damage response. More recently, FoxO proteins have been implicated in cancer immunity and cancer stem-cell (CSC) homeostasis. Interestingly, in some sporadic sub-populations, FoxO protein function may also be manipulated by factors such as β-catenin whereby they instead can facilitate cancer progression via maintenance of CSC properties or promoting drug resistance or metastasis and invasion. This review highlights the essential biological functions of FoxOs and explores the areas that may be exploited in FoxO protein signaling pathways in the development of novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Tianyun Hou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|