1
|
Kawano S, Noda C, Itoh S, Urabe A, Fujii C, Ogawa I, Suzuki R, Hida S. Staphylococcal superantigen-like protein 3 triggers murine mast cell adhesion by binding to CD43 and augments mast cell activation. Genes Cells 2024; 29:397-416. [PMID: 38454012 DOI: 10.1111/gtc.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Sae Kawano
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chisaki Noda
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ayaka Urabe
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chifumi Fujii
- Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano Prefecture, Japan
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
- Center for Medical Education and Clinical Training, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
| | - Isamu Ogawa
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ryo Suzuki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa Prefecture, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| |
Collapse
|
2
|
Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Expert Rev Anti Infect Ther 2024; 22:87-101. [PMID: 38180805 DOI: 10.1080/14787210.2024.2303018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
3
|
Rahman S, Das AK. Staphylococcal superantigen-like protein 10 enhances the amyloidogenic biofilm formation in Staphylococcus aureus. BMC Microbiol 2023; 23:390. [PMID: 38062361 PMCID: PMC10701973 DOI: 10.1186/s12866-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus is a highly infectious pathogen that represents a significant burden on the current healthcare system. Bacterial attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in chronic diseases such as endocarditis, osteomyelitis and wound infections. These biofilms decrease bacterial susceptibility to antibiotics and immune defences, making the infections challenging to treatment. S. aureus produces numerous exotoxins that contribute to the pathogenesis of the bacteria. In this study, we have identified a novel function of staphylococcal superantigen-like protein 10 (SSL10) in enhancing the formation of staphylococcal biofilms. Biofilm biomass is significantly increased when SSL10 is added exogenously to bacterial cultures, whereas SSL2 and SSL12 are found to be less active. Exogenously added SSL10 mask the surface charge of the bacterial cells and lowers their zeta potential, leading to the aggregation of the cells. Moreover, the biofilm formation by SSL10 is governed by amyloid aggregation, as evident from spectroscopic and microscopic studies. These findings thereby give the first overview of the SSL-mediated amyloid-based biofilm formation and further drive the future research in identifying potential molecules for developing new antibacterial therapies against Staphylococcus aureus.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
4
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
5
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
6
|
Wei Y, Sandhu E, Yang X, Yang J, Ren Y, Gao X. Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms 2022; 10:microorganisms10122353. [PMID: 36557606 PMCID: PMC9783839 DOI: 10.3390/microorganisms10122353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
As a Gram-positive cocci existing in nature, Staphylococcus has a variety of species, such as Staphylococcus aureus and Staphylococcus epidermidis, etc. Growing evidence reveals that Staphylococcus is closely related to the occurrence and development of various cancers. On the one hand, cancer patients are more likely to suffer from bacterial infection and antibiotic-resistant strain infection compared to healthy controls. On the other hand, there exists an association between staphylococcal infection and carcinogenesis. Staphylococcus often plays a pathogenic role and evades the host immune system through surface adhesion molecules, α-hemolysin, PVL (Panton-Valentine leukocidin), SEs (staphylococcal enterotoxins), SpA (staphylococcal protein A), TSST-1 (Toxic shock syndrom toxin-1) and other factors. Staphylococcal nucleases (SNases) are extracellular nucleases that serve as genomic markers for Staphylococcus aureus. Interestingly, a human homologue of SNases, SND1 (staphylococcal nuclease and Tudor domain-containing 1), has been recognized as an oncoprotein. This review is the first to summarize the reported basic and clinical evidence on staphylococci and neoplasms. Investigations on the correlation between Staphylococcus and the occurrence, development, diagnosis and treatment of breast, skin, oral, colon and other cancers, are made from the perspectives of various virulence factors and SND1.
Collapse
Affiliation(s)
- Yuannan Wei
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esha Sandhu
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| |
Collapse
|
7
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
8
|
Jia N, Li G, Wang X, Cao Q, Chen W, Wang C, Chen L, Ma X, Zhang X, Tao Y, Zang J, Mo X, Hu J. Staphylococcal superantigen-like protein 10 induces necroptosis through TNFR1 activation of RIPK3-dependent signal pathways. Commun Biol 2022; 5:813. [PMID: 35962126 PMCID: PMC9374677 DOI: 10.1038/s42003-022-03752-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
Staphylococcal aureus (S. aureus) infection can lead to a wide range of diseases such as sepsis and pneumonia. Staphylococcal superantigen-like (SSL) proteins, expressed by all known S. aureus strains, are shown to be involved in immune evasion during S. aureus infection. Here, we show that SSL10, an SSL family protein, exhibits potent cytotoxicity against human cells (HEK293T and HUVEC) by inducing necroptosis upon binding to its receptor TNFR1 on the cell membrane. After binding, two distinct signaling pathways are activated downstream of TNFR1 in a RIPK3-dependent manner, i.e., the RIPK1-RIPK3-MLKL and RIPK3-CaMKII-mitochondrial permeability transition pore (mPTP) pathways. Knockout of ssl10 in S. aureus significantly reduces cytotoxicity of the culture supernatants of S. aureus, indicating that SSL10 is involved in extracellular cytotoxicity during infection. We determined the crystal structure of SSL10 at 1.9 Å resolution and identified a positively charged surface of SSL10 responsible for TNFR1 binding and cytotoxic activity. This study thus provides the description of cytotoxicity through induction of necroptosis by the SSL10 protein, and a potential target for clinical treatment of S. aureus-associated diseases. The Staphylococcal superantigen like protein 10 induces necroptosis in human cells through binding to TNFR1 by both the N- and C-terminal domains and activating RIPK1-RIPK3-MLKL and RIPK3-CaMKII-mitochondrial permeability transition pore pathways.
Collapse
Affiliation(s)
- Nan Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.,The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wanbiao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Chengliang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ling Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoling Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yue Tao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jianye Zang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Xi Mo
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jinfeng Hu
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
9
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
10
|
Yang C, Barbieri JT, Dahms NM, Chen C. Multiple Domains of Staphylococcal Superantigen-like Protein 11 (SSL11) Contribute to Neutrophil Inhibition. Biochemistry 2022; 61:616-624. [PMID: 35285627 DOI: 10.1021/acs.biochem.2c00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen producing many immune evasion molecules targeting various components of the host immune defense, including the Staphylococcal superantigen-like protein (SSL 1-14) family. Despite sharing similar structures with the powerful superantigens (SAgs), which cause massive T cell activation, SSLs interfere with a wide range of innate immune defenses. SSLs are divided into two subgroups, SSLs that contain a conserved carbohydrate Sialyl Lewis X [Neu5Acα2-3Galβ1-4(Fucα1-3) GlcNAcβ, SLeX] binding site and SSLs that lack the SLeX binding site. SSL2-6 and SSL11 possess the SLeX binding site. Our previous studies showed that SSL11 arrests cell motility by inducing cell adhesion in differentiated HL60 (dHL60) cells, while SSL7 did not bind dHL60 cells. SSL7-based chimeras were engineered by exchanging the SSL7 sequence with the corresponding SSL11 sequence and assaying for a gain of SSL11 function, namely, the induction of cell spreading and motility arrest. In addition to the SLeX-binding site, we observed that three beta-strands β6, β7, and β9 and the N-terminal residues, Y16 and Y17, transitioned SSL7 to gain SSL11 activities. These studies define the structure-function properties of SSL11 that may allow SSL11 to inhibit S. aureus clearance by the host innate immune system, allowing S. aureus to maintain a carrier state in humans, an understudied aspect of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Joseph T Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Chen Chen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
11
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 517] [Impact Index Per Article: 172.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
The Role of Chemokines in Cervical Cancers. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111141. [PMID: 34833360 PMCID: PMC8619382 DOI: 10.3390/medicina57111141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Both clinical-pathological and experimental studies have shown that chemokines play a key role in activating the immune checkpoint modulator in cervical cancer progression and are associated with prognosis in tumor cell proliferation, invasion, angiogenesis, chemoresistance, and immunosuppression. Therefore, a clear understanding of chemokines and immune checkpoint modulators is essential for the treatment of this disease. This review discusses the origins and categories of chemokines and the mechanisms that are responsible for activating immune checkpoints in cervical dysplasia and cancer, chemokines as biomarkers, and therapy development that targets immune checkpoints in cervical cancer research.
Collapse
|
13
|
Tsuji T. [Modulation of Host Immune System by Staphylococcal Superantigen-like (SSL) Proteins]. YAKUGAKU ZASSHI 2021; 141:579-589. [PMID: 33790123 DOI: 10.1248/yakushi.20-00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a common pathogen causing a wide range of infectious diseases in humans and animals. This bacterium secretes a variety of exoproteins, including toxins known as superantigens, such as toxic shock syndrome toxin-1 (TSST-1) and enterotoxins. Staphylococcal superantigen-like (SSL) proteins are a family of exoproteins showing structural similarities with superantigens but no superantigenic activity. This family is composed of 14 members (SSL1-SSL14), and recent studies have revealed that these members exhibit various immunomodulatory activities: e.g., inhibition of antibody and complement functions, impairment of leukocyte trafficking, modulation of receptor functions, inappropriate activation of immunocytes, and inhibition of blood coagulation. These activities have been proposed to contribute to immune evasion of the bacteria. The interactions between SSL proteins and their target molecules in the host immune system and the pathophysiological roles of SSL proteins in the bacterial infections are reviewed in this article.
Collapse
Affiliation(s)
- Tsutomu Tsuji
- Hoshi University School of Pharmacy and Pharmaceutical Sciences.,Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
14
|
Bacteria in Carcinogenesis and Cancer Prevention: A Review Study. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.107956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Context: Although conventional therapies improve the conditions of patients with cancer, adverse side effects, and resistance to different therapies have convinced scientists to use alternative methods to overcome these problems. One of the most promising research directions is the application of specific types of bacteria and their components to prevent and treat different cancers. Apart from the ability of bacteria to modulate immune responses, various particular properties such as toxin production and anaerobic lifestyle, have made them one of the potential candidates to help cancer therapy. Evidence Acquisition: In this review, the latest information on the role of bacteria in carcinogenesis and cancer prevention in PubMed, Google scholar, and Science Direct databases in 2020 were considered using a combination of keywords “bacteria”, “carcinogenesis”, “cancer” and “prevention”. Results: Bacteria-cancer interactions can be studied in 2 areas of bacteria and carcinogenesis and the other bacteria and cancer treatment or prevention. In this review, bacterial carcinogenicity has been mentioned with 3 main mechanisms: bacterial toxin, bacterial metabolites, and chronic inflammation caused by bacteria. Bacterial-mediated tumor therapy (BMTT) is briefly discussed in 8 mechanisms including tumor-targeting bacterial therapy, gene therapy and vectors, bacterial products, arginine metabolism, magnetotactic bacteria, combination bacteriolytic therapy (COBALT), immunomodulation of bacteria in cancer, and immune survival. Conclusions: The importance of bacteria in terms of diversity in their interaction with humans, as well as their components that can affect homeostasis and the immune system, has made them a powerful factor in describing the human condition in health and disease. These important elements can be used in the prevention and treatment of many complex diseases with different origins like cancer. The present study can provide an overview of the role of bacteria in cancer development or prevention and potential approaches for bacteria in cancer therapy.
Collapse
|
15
|
Nishiyama S, Urabe A, Morikawa A, Kobayashi M, Onozaki K, Itoh S, Hida S. Staphylococcal superantigen-like 12 induces the production of interleukin 4 in murine basophils. Biochem Biophys Res Commun 2020; 532:200-204. [PMID: 32859377 DOI: 10.1016/j.bbrc.2020.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
S. aureus is associated with atopic dermatitis (AD). Several staphylococcal products including cell wall components, protease, and exotoxins, are thought to be involved in allergic inflammation of AD via activating immune cells such as T cells and mast cells. None of the staphylococcal exotoxins has been reported to activate a primary IL-4 inducer, basophils, that are known to produce large amounts of IL-4 in response to allergens as well as IgE-independent stimuli such as mites and helminth proteases. In this study, we investigated the ability of staphylococcal superantigen-like (SSL) family to activate basophils. SSL12, reported its activity to activate mast cells, induced the production of IL-4 in bone marrow derived basophils. SSL12 also evoked the release of IL-4 in freshly isolated murine basophils in bone marrow cells, as the depletion of basophils by basophils-specific antibodies against high-affinity IgE receptor and CD49b diminished the responsiveness of bone marrow cells for SSL12. These results propose the novel immune regulatory activity of SSL12 by inducing IL-4 in basophils, that contributes to the development of allergic inflammation disorders and the immune evasion of the cocci.
Collapse
Affiliation(s)
- Saishi Nishiyama
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Ayaka Urabe
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Arisa Morikawa
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Masato Kobayashi
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Kikuo Onozaki
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
16
|
Heimes A, Brodhagen J, Weikard R, Seyfert HM, Becker D, Meyerholz MM, Petzl W, Zerbe H, Hoedemaker M, Rohmeier L, Schuberth HJ, Schmicke M, Engelmann S, Kühn C. Hepatic Transcriptome Analysis Identifies Divergent Pathogen-Specific Targeting-Strategies to Modulate the Innate Immune System in Response to Intramammary Infection. Front Immunol 2020; 11:715. [PMID: 32411137 PMCID: PMC7202451 DOI: 10.3389/fimmu.2020.00715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Mastitis is one of the major risks for public health and animal welfare in the dairy industry. Two of the most important pathogens to cause mastitis in dairy cattle are Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). While S. aureus generally induces a chronic and subclinical mastitis, E. coli is an important etiological pathogen resulting in an acute and clinical mastitis. The liver plays a central role in both, the metabolic and inflammatory physiology of the dairy cow, which is particularly challenged in the early lactation due to high metabolic and immunological demands. In the current study, we challenged the mammary glands of Holstein cows with S. aureus or E. coli, respectively, mimicking an early lactation infection. We compared the animals' liver transcriptomes with those of untreated controls to investigate the hepatic response of the individuals. Both, S. aureus and E. coli elicited systemic effects on the host after intramammary challenge and seemed to use pathogen-specific targeting strategies to bypass the innate immune system. The most striking result of our study is that we demonstrate for the first time that S. aureus intramammary challenge causes an immune response beyond the original local site of the mastitis. We found that in the peripheral liver tissue defined biological pathways are switched on in a coordinated manner to balance the immune response in the entire organism. TGFB1 signaling plays a crucial role in this context. Important pathways involving actin and integrin, key components of the cytoskeleton, were downregulated in the liver of S. aureus infected cows. In the hepatic transcriptome of E. coli infected cows, important components of the complement system were significantly lower expressed compared to the control cows. Notably, while S. aureus inhibits the cell signaling by Rho GTPases in the liver, E. coli switches the complement system off. Also, metabolic hepatic pathways (e.g., lipid metabolism) are affected after mammary gland challenge, demonstrating that the liver restricts metabolic tasks in favor of the predominant immune response after infection. Our results provide new insights for the infection-induced modifications of the dairy cow's hepatic transcriptome following mastitis.
Collapse
Affiliation(s)
- Annika Heimes
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Johanna Brodhagen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Doreen Becker
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Marie M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Wolfram Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Holm Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Laura Rohmeier
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany.,Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hanover, Hanover, Germany
| | | | - Marion Schmicke
- Faculty of Natural Sciences III, Martin-Luther Universität Halle-Wittenberg, Halle, Germany
| | - Susanne Engelmann
- Technical University Braunschweig, Institute for Microbiology, Brunswick, Germany.,Helmholtz Centre for Infection Research, Microbial Proteomics, Brunswick, Germany
| | - Christa Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Agricultural and Environmental Faculty, University Rostock, Rostock, Germany
| |
Collapse
|
17
|
Microbiological Advances in Bioactives from High Altitude. MICROBIOLOGICAL ADVANCEMENTS FOR HIGHER ALTITUDE AGRO-ECOSYSTEMS & SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-1902-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Dutta D, Mukherjee D, Mukherjee IA, Maiti TK, Basak A, Das AK. Staphylococcal superantigen-like proteins interact with human MAP kinase signaling protein ERK2. FEBS Lett 2019; 594:266-277. [PMID: 31468523 DOI: 10.1002/1873-3468.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
This study aimed to identify the intracellular binding partner of a unique class of staphylococcal secreted exotoxins called superantigen-like proteins (SSL) from human macrophage and keratinocyte cell lysates. Here, we report that SSL1 specifically binds to human extracellular signal-regulated kinase 2 (hERK2), an important stress-activated kinase in mitogen-activated protein kinase signaling pathways. Western blot and in vitro binding studies with recombinant hERK2 confirmed the binding interaction of SSL1, SSL7, and SSL10 with hERK2. Moreover, the SSLs-hERK2 interaction was validated biochemically by ELISA. Our finding shows that SSLs play a novel role by binding with host cell MAP kinase signaling pathway protein. Understanding the SSL-hERK2 interaction will also provide a basis for designing SSL-based peptide inhibitors of hERK2 in cancer therapy.
Collapse
Affiliation(s)
- Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India
| | - Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | | | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, India.,School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
19
|
Abstract
Staphylococcus aureus has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing S. aureus infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that S. aureus has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of S. aureus, such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how S. aureus evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of S. aureus are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins S. aureus is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.
Collapse
|
20
|
Nasser A, Moradi M, Jazireian P, Safari H, Alizadeh-Sani M, Pourmand MR, Azimi T. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat. Microb Pathog 2019; 131:259-269. [PMID: 31002964 DOI: 10.1016/j.micpath.2019.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus (S.aureus) is a Gram-positive bacterium that causes many infections and diseases. This pathogen can cause many types of infections such as impetigo, toxic shock syndrome toxin (TSST1), pneumonia, endocarditis, and autoimmune diseases like lupus erythematosus and can infect other healthy individuals. In the pathogenic process, colonization is a main risk factor for invasive diseases. Various factors including the cell wall-associated factors and receptors of the epithelial cells facilitate adhesion and colonization of this pathogen. S. aureus has many enzymes, toxins, and strategies to evade from the immune system either by an enzyme that lyses cellular component or by hiding from the immune system via surface antigens like protein A and second immunoglobulin-binding protein (Sbi). The strategies of this bacterium can be divided into five groups: A: Inhibit neutrophil recruitment B: Inhibit phagocytosis C: Inhibit killing by ROS, D: Neutrophil killing, and E: Resistance to antimicrobial peptide. On the other hand, innate immune system via neutrophils, the most important polymorphonuclear leukocytes, fights against bacterial cells by neutrophil extracellular trap (NET). In this review, we try to explain the role of each factor in immune evasion.
Collapse
Affiliation(s)
- Ahmad Nasser
- Microbiology Research center, Ilam University of Medical Sciences, Ilam, Iran; Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Jazireian
- Department of Biology, University Campus 2,University of Guilan, Rasht, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Food Safety and Hygiene Division, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Chen C, Yang C, Barbieri JT. Staphylococcal Superantigen-like protein 11 mediates neutrophil adhesion and motility arrest, a unique bacterial toxin action. Sci Rep 2019; 9:4211. [PMID: 30862940 PMCID: PMC6414612 DOI: 10.1038/s41598-019-40817-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) is a major human pathogen, which causes superficial to lethal clinical infections. Neutrophils are the most abundant leukocytes in the blood and are the first defense mechanism against S. aureus infections. Here we show Staphylococcal Superantigen-Like protein 11 (SSL11) from MRSA USA300_FPR3757 mediated differentiated human neutrophil-like cells (dHL60) motility arrest by inducing cell adhesion and “locking” cells in adhesion stage, without inducing oxidative burst. Pre-incubation of SSL11 with the glycan Sialyl Lewis X blocked SSL11 function and de-glycosylation of dHL60 cells by PNGase F abolished SSL11 binding, suggesting that SSL11 functions via interacting with glycans. This is the first description of a bacterial toxin inhibiting neutrophil motility by inducing adhesion and “locking” cells in an adhesion stage. Therefore, this study might provide a new target against S. aureus infections.
Collapse
Affiliation(s)
- Chen Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Chen Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph T Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
22
|
Kobayashi M, Kitano T, Nishiyama S, Sanjo H, Onozaki K, Taki S, Itoh S, Hida S. Staphylococcal superantigen-like 12 activates murine bone marrow derived mast cells. Biochem Biophys Res Commun 2019; 511:350-355. [PMID: 30795864 DOI: 10.1016/j.bbrc.2019.02.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/01/2022]
Abstract
Staphylococcal superantigen-like (SSL) protein is a family of exotoxins that consists of 14 SSLs, and the roles of several SSLs in immune evasion of the cocci have been revealed. However little is known whether they act as immune activators and are involved in inflammatory disorders such as atopic dermatitis. In this study we examined whether SSLs activate mast cells, the key player of local inflammation. SSL12 evoked the release of a granule enzyme β-hexosaminidase from bone marrow derived mast cells (BMMCs) in the absence of IgE. The release of the granule enzyme caused by SSL12 was not accompanied with the leakage of a cytosolic enzyme lactate dehydrogenase (LDH), unlike staphylococcal δ-toxin that was reported to induce both the release of β-hexosaminidase and the leakage of LDH from the cells, suggesting that SSL12 evokes the degranulation of mast cells without cell membrane damage. Furthermore SSL12 induced IL-6 and IL-13 in both mRNA and protein levels indicating that SSL12 induces de novo synthesis of the cytokines. Evans blue extravasation was elevated by the intradermal injection of SSL12, suggesting that SSL12 is also able to evoke local inflammation in vivo. These findings indicate the novel mast cell activating activity of SSLs, and SSL12 is likely an important factor in both initiation phase and effector phase of allergic and immune responses.
Collapse
Affiliation(s)
- Masato Kobayashi
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takuma Kitano
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saishi Nishiyama
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, School of Medicine Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Kikuo Onozaki
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, School of Medicine Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
23
|
Draaijers L, Hassing RJ, Kooistra M, van Kessel K, Hovens M. Severe Acquired Coagulopathy During Fulminant Staphylococcus aureus Sepsis Most Likely Caused by S. aureus Exotoxins (SSLs). Eur J Case Rep Intern Med 2018; 5:0001002. [PMID: 30756003 PMCID: PMC6346979 DOI: 10.12890/2018_0001002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 12/03/2022] Open
Abstract
Haemostatic abnormalities frequently occur during sepsis and are most often attributed to disseminated intravascular coagulation (DIC). We report the case of a patient with severe coagulopathy acquired during fulminant S. aureus sepsis. DIC was not present. This coagulopathy was most likely caused by S. aureus exotoxins forming inhibitory complexes with coagulation factor Xa.
Collapse
Affiliation(s)
| | - Robert-Jan Hassing
- Internal Medicine, Infectious Diseases, Rijnstate Hospital Arnhem, The Netherlands
| | - Menno Kooistra
- Internal Medicine, Nephrology, Rijnstate Hospital Arnhem, The Netherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Marcel Hovens
- Internal Medicine, Vascular Medicine, Rijnstate Hospital Arnhem, The Netherlands
| |
Collapse
|
24
|
Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K, Chen F, Song H, Dong Z, Tang A. Inhibition of constructed SEC3-ES lentiviral vector to proliferation, migration of Hela cells. Pathol Res Pract 2018; 215:315-321. [PMID: 30554865 DOI: 10.1016/j.prp.2018.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/23/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
AIM To construct a lentiviral vector with endostatin (ES) and staphylococcal enterotoxin C3(SEC3) gene, and investigate its capacities of inhibition on proliferation and migration of Hela cells. METHODS By inserting ES and SEC3 gene into the plasmid and then transfect 293 T cell, the co-expressed (SEC3-ES) vector were constructed. A series of experiments in vitro were carried out to detect its anti-tumor capacity. RESULTS SEC3 expression of the vector is about 3 times of GV365-SEC3 vector, and ES expression is over 22.5-fold compared with GV365-ES vector. Moreover, OD490 value of CO group (1.212 ± 0.003) was notably lower than NC (negative control) group (1.124 ± 0.01) (P < 0.05) in MTT assay. Cell cycle analysis showed it could block Hela cells in S phase. Meanwhile, in wound healing assay, cells of CO group migrated at a slower rate (0.59 ± 0.02) compared with NC group (0.65 ± 0.02)(P < 0.01). CONCLUSION The successful construction of co-expressed vector lays the foundation for further studies in vivo. These promising results suggest a new strategy to treating cervical cancer.
Collapse
Affiliation(s)
- Min Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Sun Yat-Sen University, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yixin Xie
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jingjing Tian
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Kan Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fang Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Huan Song
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhihui Dong
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Aiguo Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
25
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2018; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
26
|
Zhao Y, van Kessel KPM, de Haas CJC, Rogers MRC, van Strijp JAG, Haas PA. Staphylococcal superantigen-like protein 13 activates neutrophils via formyl peptide receptor 2. Cell Microbiol 2018; 20:e12941. [PMID: 30098280 PMCID: PMC6220968 DOI: 10.1111/cmi.12941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Staphylococcal superantigen-like (SSL) proteins, one of the major virulence factor families produced by Staphylococcus aureus, were previously demonstrated to be immune evasion molecules that interfere with a variety of innate immune defences. However, in contrast to characterised SSLs, which inhibit immune functions, we show that SSL13 is a strong activator of neutrophils via the formyl peptide receptor 2 (FPR2). Moreover, our data show that SSL13 acts as a chemoattractant and induces degranulation and oxidative burst in neutrophils. As with many other staphylococcal immune evasion proteins, SSL13 shows a high degree of human specificity. SSL13 is not able to efficiently activate mouse neutrophils, hampering in vivo experiments. In conclusion, SSL13 is a neutrophil chemoattractant and activator that acts via FPR2. Therefore, SSL13 is a unique SSL member that does not belong to the immune evasion class but is a pathogen alarming molecule. Our study provides a new concept of SSLs; SSLs not only inhibit host immune processes but also recruit human neutrophils to the site of infection. This new insight allows us to better understand complex interactions between host and S. aureus pathological processes.
Collapse
Affiliation(s)
- Yuxi Zhao
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Kok P. M. van Kessel
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carla J. C. de Haas
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Malbert R. C. Rogers
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jos A. G. van Strijp
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Pieter‐Jan A. Haas
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
27
|
Oku T, Soma H, Kurisaka C, Tsuji T. Generation of a Monoclonal Antibody Against Staphylococcal Superantigen-Like Protein 5 (SSL5) That Discriminates SSL5 from Other SSL Proteins. Monoclon Antib Immunodiagn Immunother 2018; 37:212-217. [PMID: 30362929 DOI: 10.1089/mab.2018.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus secretes a family of exoproteins structurally homologous to bacterial superantigens, such as toxic shock syndrome toxin-1 (TSST-1), and those exoproteins are thus called staphylococcal superantigen-like proteins (SSLs). Recent studies have revealed that SSLs play roles in evasion of the host defense by disturbing host immune responses. We previously reported that staphylococcal superantigen-like protein 5 (SSL5; a member of the SSL family) inhibited matrix metalloproteinase-9 (MMP-9), which is crucial for leukocyte recruitment to sites of infection. In this study, we established a mouse hybridoma clone (30G5C) producing a monoclonal antibody specific for SSL5. In immunoblotting analysis using recombinant His-tagged SSL1 to SSL14 (His-SSLs), the antibody was found to specifically recognize SSL5 without crossreactivity with other His-SSLs. The antibody bound to the C-terminal region of SSL5 (β-grasp domain), but did not interfere with the binding of SSL5 to MMP-9, suggesting that this antibody is useful for identification of SSL5-producing S. aureus and screening for inhibitors of the SSL5/MMP-9 complex formation.
Collapse
Affiliation(s)
- Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Hikari Soma
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Chisato Kurisaka
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences , Tokyo, Japan
| |
Collapse
|
28
|
Askarian F, Wagner T, Johannessen M, Nizet V. Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors. FEMS Microbiol Rev 2018; 42:656-671. [PMID: 29893825 PMCID: PMC6098222 DOI: 10.1093/femsre/fuy025] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Early recognition of pathogens by the innate immune system is crucial for bacterial clearance. Many pattern recognition receptors (PRRs) such as Toll-like (TLRs) and (NOD)-like (NLRs) receptors have been implicated in initial sensing of bacterial components. The intracellular signaling cascades triggered by these receptors result in transcriptional upregulation of inflammatory pathways. Although this step is crucial for bacterial elimination, it is also associated with the potential for substantial immunopathology, which underscores the need for tight control of inflammatory responses. The leading human bacterial pathogen Staphylococcus aureus expresses over 100 virulence factors that exert numerous effects upon host cells. In this manner, the pathogen seeks to avoid host recognition or perturb PRR-induced innate immune responses to allow optimal survival in the host. These immune system interactions may result in enhanced bacterial proliferation but also provoke systemic cytokine responses associated with sepsis. This review summarizes recent findings on the various mechanisms applied by S. aureus to modulate or interfere with inflammatory responses through PRRs. Detailed understanding of these complex interactions can provide new insights toward future immune-stimulatory therapeutics against infection or immunomodulatory therapeutics to suppress or correct dysregulated inflammation.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Theresa Wagner
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
29
|
Kohno K, Itoh S, Hanai A, Takii T, Fujiwara T, Onozaki K, Tsuji T, Hida S. Identification of matrix metalloproteinase 9-interacting sequences in staphylococcal superantigen-like protein 5. Biochem Biophys Res Commun 2018; 497:713-718. [PMID: 29462623 DOI: 10.1016/j.bbrc.2018.02.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 11/17/2022]
Abstract
Staphylococcal superantigen like 5 (SSL5) is an exotoxin produced by S. aureus and has a strong inhibitory effect on MMP-9 enzymatic activity. However, the mechanism of inhibition remains unclear. We sought to identify the responsible regions of SSL5 for the interaction with MMP-9 by comparing a series of domain swap and deletion mutants of SSL5. Binding analyses revealed that SSL5 had two regions for binding to MMP-9 catalytic domain, β1-3 region (25SKELKNVTGY RYSKGGKHYL IFDKNRKFTR VQIFGK60) in N-terminal half and α4β9 region (138KELDFKLRQY LIQNFDLYKK FPKDSKIKVI MKD170) in C-terminal half. The collagen binding domain and zinc-chelating histidine residues of MMP-9 were not essential for the specific binding to SSL5. The domain swap mutants of SSL5 that conserved β1-3 but not α4β9 region inhibited the gelatinolysis by MMP-9, and the mutant of SSL7 that substituted β1-3 region to that of SSL5 acquired the binding and inhibitory activity. Furthermore, the polypeptide that harbored β1-3 region of SSL5 inhibited gelatinolysis by MMP-9. Taken together, SSL5 inhibits the MMP9 activity through binding to the catalytic domain, and the β1-3 region is responsible for the inhibition of proteolytic activity of MMP-9.
Collapse
Affiliation(s)
- Katsuhiro Kohno
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Akari Hanai
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takemasa Takii
- Bacteriology Division, Mycobacterium Reference Centre, Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Graduate School of Pharmaceutical Sciences, Kindai University, 3-4-1. Kowakae, Higashi-osaka 577-8502, Japan
| | - Kikuo Onozaki
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
30
|
Kurisaka C, Oku T, Itoh S, Tsuji T. Role of sialic acid-containing glycans of matrix metalloproteinase-9 (MMP-9) in the interaction between MMP-9 and staphylococcal superantigen-like protein 5. Microbiol Immunol 2018; 62:168-175. [PMID: 29328525 DOI: 10.1111/1348-0421.12573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/16/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022]
Abstract
Staphylococcal superantigen-like proteins (SSL) show no superantigenic activity but have recently been considered to act as immune suppressors. It was previously reported that SSL5 bound to P-selectin glycoprotein ligand-1 (PSGL-1) and matrix metalloproteinase (MMP)-9, leading to inhibition of leukocyte adhesion and invasion. These interactions were suggested to depend on sialic acid-containing glycans of MMP-9, but the roles of sialic acids in the interaction between SSL5 and MMP-9 are still controversial. In the present study, we prepared recombinant glutathione S-transferase-tagged SSL5 (GST-SSL5) and analyzed its binding capacity to MMP-9 by pull-down assay after various modifications of its carbohydrate moieties. We observed that GST-SSL5 specifically bound to MMP-9 from a human monocytic leukemia cell line (THP-1 cells) and inhibited its enzymatic activity in a concentration-dependent manner. After MMP-9 was treated with neuraminidase, its binding activity towards GST-SSL5 was markedly decreased. Furthermore, recombinant MMP-9 produced by sialic acid-deficient Lec2 mutant cells showed much lower affinity for SSL5 than that produced by wild-type CHO-K1 cells. Treatment of MMP-9 with PNGase F to remove N-glycan resulted in no significant change in the GST-SSL5/MMP-9 interaction. In contrast, the binding of GST-SSL5 to MMP-9 secreted from THP-1 cells cultured in the presence of an inhibitor for the biosynthesis of O-glycan (benzyl-GalNAc) was weaker than the binding of GST-SSL5 to MMP-9 secreted from untreated cells. These results strongly suggest the importance of the sialic acid-containing O-glycans of MMP-9 for the interaction of MMP-9 with GST-SSL5.
Collapse
Affiliation(s)
- Chisato Kurisaka
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Saotomo Itoh
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
31
|
Itoh S, Takii T, Onozaki K, Tsuji T, Hida S. Identification of the blood coagulation factor interacting sequences in staphylococcal superantigen-like protein 10. Biochem Biophys Res Commun 2017; 485:201-208. [DOI: 10.1016/j.bbrc.2017.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 02/03/2023]
|
32
|
Neutrophils and Immunity: From Bactericidal Action to Being Conquered. J Immunol Res 2017; 2017:9671604. [PMID: 28299345 PMCID: PMC5337389 DOI: 10.1155/2017/9671604] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/29/2017] [Indexed: 12/19/2022] Open
Abstract
The neutrophil is the major phagocyte and the final effector cell of the innate immunity, with a primary role in the clearance of extracellular pathogens. Using the broad array of cytokines, extracellular traps, and effector molecules as the humoral arm, neutrophils play a crucial role in the host defense against pathogen infections. On the other hand, the pathogen has the capacity to overcome neutrophil-mediated host defense to establish infection causing human disease. Pathogens, such as S. aureus, have the potential to thwart neutrophil chemotaxis and phagocytosis and thereby succeed in evading killing by neutrophils. Furthermore, S. aureus surviving within neutrophils promotes neutrophil cytolysis, resulting in the release of host-derived molecules that promote local inflammation. Here, we provide a detailed overview of the mechanisms by which neutrophils kill the extracellular pathogens and how pathogens evade neutrophils degradation. This review will provide insights that might be useful for the development of novel therapies against infections caused by antibiotic resistant pathogens.
Collapse
|
33
|
Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, Jansen KU, Gurtman A, Anderson AS. Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert Rev Vaccines 2016; 15:1373-1392. [PMID: 27118628 DOI: 10.1080/14760584.2016.1179583] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is both a commensal organism and also an important opportunistic human pathogen, causing a variety of community and hospital-associated pathologies, such as bacteremia-sepsis, endocarditis, pneumonia, osteomyelitis, arthritis and skin diseases. The resurgence of S. aureus during the last decade in many settings has been facilitated not only by bacterial antibiotic resistance mechanisms but also by the emergence of new S. aureus clonal types with increased expression of virulence factors and the capacity to neutralize the host immune response. Prevention of the spread of S. aureus infection relies on the use of contact precautions and adequate procedures for infection control that so far have not been fully effective. Prevention using a prophylactic vaccine would complement these processes, having the potential to bring additional, significant progress toward decreasing invasive disease due to S. aureus.
Collapse
Affiliation(s)
- Gustavo H Dayan
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Naglaa Mohamed
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Ingrid L Scully
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - David Cooper
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Elizabeth Begier
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Joseph Eiden
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Kathrin U Jansen
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | | | | |
Collapse
|
34
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
35
|
Mazzilli M, Piccinini R, Scali F, Zecconi A. Pattern characterization of genes involved in non-specific immune response in Staphylococcus aureus isolates from intramammary infections. Res Vet Sci 2015; 103:54-9. [PMID: 26679796 DOI: 10.1016/j.rvsc.2015.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus isolated from mammary gland are characterized by different genetic patterns. Ninety four isolates from 33 dairy herds were analyzed by the means of a microarray to investigate S. aureus virulence patterns and the distribution of genes believed to be involved in immune evasion. None of the 94 isolates considered were MRSA. However, 50% of the isolates belonged to complexes related to MRSA and to human diseases, while only about 25% of them can be considered as exclusively of bovine origin. The distribution of clonal complexes and the different gene patterns observed confirmed the presence of an influence of geographical localization. The assessment of the influence of genes related to immune evasion on quarter milk cell count showed as four of them showed to be significantly associated to an increase quarter milk SCC. These genes could be potential target for developing new vaccines against S. aureus.
Collapse
Affiliation(s)
- Maria Mazzilli
- Dept. Animal Pathology, Hygiene and Public Health, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | - Renata Piccinini
- Dept. Animal Pathology, Hygiene and Public Health, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | - Federico Scali
- Dept. Animal Pathology, Hygiene and Public Health, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | - Alfonso Zecconi
- Dept. Animal Pathology, Hygiene and Public Health, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy.
| |
Collapse
|
36
|
Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc Natl Acad Sci U S A 2015; 112:11018-23. [PMID: 26283364 DOI: 10.1073/pnas.1502026112] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are crucial in innate recognition of invading micro-organisms and their subsequent clearance. Bacteria are not passive bystanders and have evolved complex evasion mechanisms. Staphylococcus aureus secretes a potent TLR2 antagonist, staphylococcal superantigen-like protein 3 (SSL3), which prevents receptor stimulation by pathogen-associated lipopeptides. Here, we present crystal structures of SSL3 and its complex with TLR2. The structure reveals that formation of the specific inhibitory complex is predominantly mediated by hydrophobic contacts between SSL3 and TLR2 and does not involve interaction of TLR2-glycans with the conserved Lewis(X) binding site of SSL3. In the complex, SSL3 partially covers the entrance to the lipopeptide binding pocket in TLR2, reducing its size by ∼50%. We show that this is sufficient to inhibit binding of agonist Pam2CSK4 effectively, yet allows SSL3 to bind to an already formed TLR2-Pam2CSK4 complex. The binding site of SSL3 overlaps those of TLR2 dimerization partners TLR1 and TLR6 extensively. Combined, our data reveal a robust dual mechanism in which SSL3 interferes with TLR2 activation at two stages: by binding to TLR2, it blocks ligand binding and thus inhibits activation. Second, by interacting with an already formed TLR2-lipopeptide complex, it prevents TLR heterodimerization and downstream signaling.
Collapse
|
37
|
Boer JC, van Marion DMS, Joseph JV, Kliphuis NM, Timmer-Bosscha H, van Strijp JAG, de Vries EGE, den Dunnen WFA, Kruyt FAE, Walenkamp AME. Microenvironment involved in FPR1 expression by human glioblastomas. J Neurooncol 2015; 123:53-63. [PMID: 25894595 PMCID: PMC4439437 DOI: 10.1007/s11060-015-1777-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). Immunohistochemistry was used to assess FPR1 expression in GBM patient samples, which was present in all 178 samples. Also FPR1 mRNA levels measured with quantitative PCR, could be detected in all 25 GBM patient samples tested. Activation of FPR1 in U87 cells, as measured by human mitochondrial-derived agonists, increased calcium mobilization, AKT and ERK1/2 phosphorylation, and ligand-induced migration. Inhibition of all responses could be achieved with CHIPS. Eight early passage human Groningen Glioma (GG) cell lines, isolated from primary GBM tissue were screened for the presence of FPR1. FPR1 mRNA and protein expression as well as receptor activation could not be detected in any of these early passage GG cell lines. However FPR1 was present in ex vivo tumors formed by the same GG cell lines after being implanted in mouse brains. FPR1 is highly expressed in human GBM specimens, it can be activated by human mitochondrial-derived agonists in U87 and inhibited with CHIPS. FPR1 cannot be detected in early passage GG cell lines in vitro, however when engrafted in the mouse brain these cells show FPR1 expression. These results suggest a role of the brain microenvironment in FPR1 expression in GBM.
Collapse
Affiliation(s)
- J C Boer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700, RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Duy Nguyen V, Nguyen HHC. Molecular Screening of Azurin-Like Anticancer Bacteriocins from Human Gut Microflora Using Bioinformatics. ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING 2015. [DOI: 10.1007/978-3-319-17996-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation. Curr Top Microbiol Immunol 2015; 409:441-489. [PMID: 26919864 DOI: 10.1007/82_2015_5017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.
Collapse
Affiliation(s)
- Kirsten J Koymans
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Manouk Vrieling
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, G04-614, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
40
|
Spaan AN, Surewaard BGJ, Nijland R, van Strijp JAG. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 2013; 67:629-50. [PMID: 23834243 DOI: 10.1146/annurev-micro-092412-155746] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogen Staphylococcus aureus is well adapted to its human host. Neutrophil-mediated killing is a crucial defense system against S. aureus; however, the pathogen has evolved many strategies to resist killing. We first describe the discrete steps of neutrophil activation and migration to the site of infection and the killing of microbes by neutrophils in general. We then highlight the different approaches utilized by S. aureus to resist the different steps of neutrophil attack. Various molecules are discussed in their evolutionary context. Most of the molecules secreted by S. aureus to combat neutrophil attacks at the site of infection show clear human specificity. Many elements of human neutrophil defenses appear redundant, and so the evasion strategies of staphylococci display redundant functions as well. All efforts by S. aureus to resist neutrophil-mediated killing stress the importance of these mechanisms in the pathophysiology of staphylococcal diseases. However, the highly human-specific nature of most host-pathogen interactions hinders the in vivo establishment of their contribution to staphylococcal pathophysiology.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; , , ,
| | | | | | | |
Collapse
|
41
|
Itoh S, Yokoyama R, Kamoshida G, Fujiwara T, Okada H, Takii T, Tsuji T, Fujii S, Hashizume H, Onozaki K. Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain. J Biol Chem 2013; 288:21569-80. [PMID: 23754290 DOI: 10.1074/jbc.m113.451419] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The staphylococcal superantigen-like protein (SSL) family is composed of 14 exoproteins sharing structural similarity with superantigens but no superantigenic activity. Target proteins of four SSLs have been identified to be involved in host immune responses. However, the counterparts of other SSLs have been functionally uncharacterized. In this study, we have identified porcine plasma prothrombin as SSL10-binding protein by affinity purification using SSL10-conjugated Sepharose. The resin recovered the prodomain of prothrombin (fragment 1 + 2) as well as factor Xa in pull-down analysis. The equilibrium dissociation constant between SSL10 and prothrombin was 1.36 × 10(-7) M in surface plasmon resonance analysis. On the other hand, the resin failed to recover γ-carboxyglutamic acid (Gla) domain-less coagulation factors and prothrombin from warfarin-treated mice, suggesting that the Gla domain of the coagulation factors is essential for the interaction. SSL10 prolonged plasma clotting induced by the addition of Ca(2+) and factor Xa. SSL10 did not affect the protease activity of thrombin but inhibited the generation of thrombin activity in recalcified plasma. S. aureus produces coagulase that non-enzymatically activates prothrombin. SSL10 attenuated clotting induced by coagulase, but the inhibitory effect was weaker than that on physiological clotting, and SSL10 did not inhibit protease activity of staphylothrombin, the complex of prothrombin with coagulase. These results indicate that SSL10 inhibits blood coagulation by interfering with activation of coagulation cascade via binding to the Gla domain of coagulation factor but not by directly inhibiting thrombin activity. This is the first finding that the bacterial protein inhibits blood coagulation via targeting the Gla domain of coagulation factors.
Collapse
Affiliation(s)
- Saotomo Itoh
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bernardes N, Chakrabarty AM, Fialho AM. Engineering of bacterial strains and their products for cancer therapy. Appl Microbiol Biotechnol 2013; 97:5189-99. [DOI: 10.1007/s00253-013-4926-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023]
|
43
|
Staphylococcal superantigen-like protein 8 (SSL8) binds to tenascin C and inhibits tenascin C-fibronectin interaction and cell motility of keratinocytes. Biochem Biophys Res Commun 2013; 433:127-32. [PMID: 23485472 DOI: 10.1016/j.bbrc.2013.02.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 01/25/2023]
Abstract
Staphylococcal superantigen-like protein (SSL), a family of exotoxins composed of 14 SSLs, exhibits no superantigenic activity despite of its structural similarity with superantigens. Several SSLs have been revealed to bind to host immune molecules such as IgA, IgG, complement and cell surface molecules expressed on immune cells, but the physiological function of SSL family has not been fully identified. In this study we attempted to isolate host target proteins of SSLs from human breast milk using SSLs-conjugated Sepharose. SSL8-conjugated Sepharose specifically recovered tenascin C (TNC), a multimodular and multifunctional extracellular matrix protein. Pull down analysis using SSL8-conjugated Sepharose and recombinant truncated fragments of TNC revealed that SSL8 interacts with fibronectin (FN) type III repeats 1-5 of TNC. The interaction of TNC with immobilized FN was attenuated, the scratch wound closure by HaCaT human keratinocytes was delayed and the inhibition of cell spreading on FN by TNC was recovered in the presence of SSL8. These findings suggest that SSL8 binds to TNC, thereby inhibits the TNC-FN interaction and motility of keratinocytes. The present study added a novel role of SSL family protein as an interrupting molecule against the function of extracellular matrix.
Collapse
|
44
|
Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 2013; 150:12-22. [PMID: 23376548 DOI: 10.1016/j.imlet.2013.01.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/09/2012] [Accepted: 01/08/2013] [Indexed: 01/04/2023]
Abstract
In the last decades, Staphylococcus aureus acquired a dramatic relevance in human and veterinary medicine for different reasons, one of them represented by the increasing prevalence of antibiotic resistant strains. However, antibiotic resistance is not the only weapon in the arsenal of S. aureus. Indeed, these bacteria have plenty of virulence factors, including a vast ability to evade host immune defenses. The innate immune system represents the first line of defense against invading pathogens. This system consists of three major effector mechanisms: antimicrobial peptides and enzymes, the complement system and phagocytes. In this review, we focused on S. aureus virulence factors involved in the immune evasion in the first phases of infection: TLR recognition avoidance, adhesins affecting immune response and resistance to host defenses peptides and polypeptides. Studies of innate immune defenses and their role against S. aureus are important in human and veterinary medicine given the problems related to S. aureus antimicrobial resistance. Moreover, due to the pathogen ability to manipulate the immune response, these data are needed to develop efficacious vaccines or molecules against S. aureus.
Collapse
Affiliation(s)
- Alfonso Zecconi
- Università degli Studi di Milano, Dip. Scienze Veterinarie e Sanità Pubblica, Via Celoria 10, 20133 Milano, Italy.
| | | |
Collapse
|
45
|
Itoh S, Yokoyama R, Murase C, Takii T, Tsuji T, Onozaki K. Staphylococcal superantigen-like protein 10 binds to phosphatidylserine and apoptotic cells. Microbiol Immunol 2012; 56:363-71. [PMID: 22486378 DOI: 10.1111/j.1348-0421.2012.00452.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Staphylococcal superantigen-like proteins (SSLs) are a family of exoproteins that have structural similarities to staphylococcal superantigens. Although SSLs do not have superantigenic activity, some of them have been reported to bind to host immune related molecules and they have been implicated in immune evasion by S. aureus. In this study, we showed that SSL10 is capable of binding to phospholipids. SSL10 bound to phosphatidylserine (PS) containing liposome, but not to phosphatidylcholine liposome. SSL10, but not SSL7, bound to PS containing liposome, suggesting that SSL10 specifically binds to PS. Analysis of PS binding ability among recombinant truncated SSL10 fragments revealed that the β-barrel in the N-terminal oligonucleotide/oligosaccharide-binding (OB)-fold domain contributes to PS binding capacity. Fluorescein isothiocyanate labeled OB-fold of SSL10 stained hydrogen peroxide treated Jurkat cells. Annexin V is widely utilized for detection of apoptosis. Unlike annexin V, the OB-fold domain of SSL10 also bound to apoptotic cells in the presence of EDTA, suggesting that the OB-fold of SSL10 recognizes PS and apoptotic cells in a Ca(2+) independent manner. These findings suggest SSL10 and its derived peptides may be a novel detection tool for apoptotic cells.
Collapse
Affiliation(s)
- Saotomo Itoh
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-Dori, Mizuho-ku, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Fusion of the Fc part of human IgG1 to CD14 enhances its binding to Gram-negative bacteria and mediates phagocytosis by Fc receptors of neutrophils. Immunol Lett 2012; 146:31-9. [DOI: 10.1016/j.imlet.2012.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/18/2022]
|
47
|
Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJM, Ruyken M, Malone CL, Heezius EC, Ward R, Milligan G, van Strijp JAG, de Haas CJC, Horswill AR, van Kessel KPM, Rooijakkers SHM. Staphylococcus aureus Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 2012; 31:3607-19. [PMID: 22850671 PMCID: PMC3433787 DOI: 10.1038/emboj.2012.212] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/11/2012] [Indexed: 02/07/2023] Open
Abstract
Neutrophil activation and recruitment to the site of infection are critical for host immunity. In humans, the cysteine protease Staphopain A of the pathogen S. aureus blocks this process by cleaving the chemokine receptor CXCR2. The CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system is not well understood. Here, we identify the cysteine protease Staphopain A as a chemokine receptor blocker. Neutrophils treated with Staphopain A are unresponsive to activation by all unique CXCR2 chemokines due to cleavage of the N-terminal domain, which can be neutralized by specific protease inhibitors. Moreover, Staphopain A inhibits neutrophil migration towards CXCR2 chemokines. By comparing a methicillin-resistant S. aureus (MRSA) strain with an isogenic Staphopain A mutant, we demonstrate that Staphopain A is the only secreted protease with activity towards CXCR2. Although the inability to cleave murine CXCR2 limits in-vivo studies, our data indicate that Staphopain A is an important immunomodulatory protein that blocks neutrophil recruitment by specific cleavage of the N-terminal domain of human CXCR2.
Collapse
Affiliation(s)
- Alexander J Laarman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bardoel BW, Vos R, Bouman T, Aerts PC, Bestebroer J, Huizinga EG, Brondijk THC, van Strijp JAG, de Haas CJC. Evasion of Toll-like receptor 2 activation by staphylococcal superantigen-like protein 3. J Mol Med (Berl) 2012; 90:1109-20. [PMID: 22714643 DOI: 10.1007/s00109-012-0926-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/02/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are crucial for our host defense against microbial infections. TLR2 is especially important to fight bacterial infections, as it specifically recognizes bacterial lipoproteins of both Gram-positive and Gram-negative origin. Present on a variety of immune cells, TLR2 is critical for host protection against several bacterial infections, including those caused by Staphylococcus aureus. This major human pathogen causes increasing health care problems due to its increased resistance to antibiotics. S. aureus secretes a wide variety of proteins that inhibit innate immune responses. Recently, several staphylococcal superantigen-like proteins (SSLs) have been described to mediate immune evasive properties. Here, we describe that SSL3 specifically binds and inhibits TLR2 activation on human and murine neutrophils and monocytes. Through binding of the extracellular TLR2 domain, SSL3 inhibits IL-8 production by HEK cells expressing TLR1/2 and TLR2/6 dimers, stimulated with their specific ligands. The SSL3-TLR2 interaction is partially glycan dependent as binding of SSL3 to TLR2 is affected upon removal of sialic acid residues. Moreover, the SSL3(R308A) mutant lacking glycan-binding properties shows lower TLR2 inhibition. An SSL3 mutant, lacking the N-terminal 126 amino acids, still retains full TLR2 inhibiting activity. Of other SSLs tested, only SSL4, which shares the highest homology with SSL3, blocks TLR2 activation. SSL3 is the first-described bacterial protein that blocks TLR2 activation through direct extracellular interaction with the receptor. This unique function of SSL3 adds to the arsenal of immune evasive molecules that S. aureus can employ to subvert both innate and adaptive immunity.
Collapse
Affiliation(s)
- B W Bardoel
- Medical Microbiology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Staphylococcal superantigen-like protein 3 binds to the Toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages. Infect Immun 2012; 80:2816-25. [PMID: 22665377 DOI: 10.1128/iai.00399-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcal superantigen-like proteins (SSLs) are a family of exoproteins sharing structural similarity with superantigens, but no superantigenic activity. Corresponding host target proteins or receptors against a portion of SSLs in the family have been identified. In this study, we show that SSL3 specifically binds to Toll-like receptor 2 (TLR2) and inhibits the stimulation of macrophages by TLR2 ligands. An approximately 100-kDa protein was recovered by using recombinant His-tagged SSL3-conjugated Sepharose from the lysate of porcine spleen, and the protein was identified as porcine TLR2 by peptide mass fingerprinting analysis. The SSL3-conjugated Sepharose recovered human and mouse TLR2 but not TLR4 from human neutrophils and mouse macrophage RAW 264.7 cells, as well as a recombinant TLR2 extracellular domain chimera protein. The production levels of interleukin 12 (IL-12) from mouse macrophages treated with heat-killed Staphylococcus aureus and of tumor necrosis factor alpha (TNF-α) from RAW 264.7 cells induced by peptidoglycan or lipopeptide TLR2 ligands were strongly suppressed in the presence of SSL3. The mutation of consensus sialic acid-containing glycan-binding residues in SSL3 did not abrogate the binding ability to TLR2 or inhibitory activity on TLR2, indicating that the interaction of SSL3 with TLR2 was independent of the sialic acid-containing glycan-binding residues. These findings demonstrate that SSL3 is able to bind the extracellular domain of TLR2 and interfere with TLR2 function. The present study provides a novel mechanism of SSL3 in immune evasion of S. aureus via interfering with its recognition by innate immune cells.
Collapse
|
50
|
The interconnectedness of cancer cell signaling. Neoplasia 2012; 13:1183-93. [PMID: 22241964 DOI: 10.1593/neo.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
Collapse
|