1
|
Abstract
Tumour cells migrate very early from primary sites to distant sites, and yet metastases often take years to manifest themselves clinically or never even surface within a patient's lifetime. This pause in cancer progression emphasizes the existence of barriers that constrain the growth of disseminated tumour cells (DTCs) at distant sites. Although the nature of these barriers to metastasis might include DTC-intrinsic traits, recent studies have established that the local microenvironment also controls the formation of metastases. In this Perspective, I discuss how site-specific differences of the immune system might be a major selective growth restraint on DTCs, and argue that harnessing tissue immunity will be essential for the next stage in immunotherapy development that reliably prevents the establishment of metastases.
Collapse
|
2
|
Baik JS, Seo YN, Lee YC, Yi JM, Rhee MH, Park MT, Kim SD. Involvement of the p38 MAPK-NLRC4-Caspase-1 Pathway in Ionizing Radiation-Enhanced Macrophage IL-1β Production. Int J Mol Sci 2022; 23:ijms232213757. [PMID: 36430236 PMCID: PMC9698243 DOI: 10.3390/ijms232213757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1β in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1β to mature IL-1β in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1β production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1β production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1β production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1β production in response to LPS.
Collapse
Affiliation(s)
- Ji Sue Baik
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - You Na Seo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Microbiology and Immunology, College of Medicine, Inge University, Busan 47392, Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inge University, Busan 47392, Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyoung Pook National University, Daegu 41566, Korea
| | - Moon-Taek Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Correspondence: (M.-T.P.); (S.D.K.); Tel.: +82-51-720-5141 (M.-T.P.); +82-53-950-5958 (S.D.K.)
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyoung Pook National University, Daegu 41566, Korea
- Correspondence: (M.-T.P.); (S.D.K.); Tel.: +82-51-720-5141 (M.-T.P.); +82-53-950-5958 (S.D.K.)
| |
Collapse
|
3
|
Abstract
ABSTRACT Brain metastasis (BM) is the leading cause of mortality in lung cancer patients. The process of BM (from initial primary tumor development, migration and intravasation, dissemination and survival in the bloodstream, extravasation, to colonization and growth to metastases) is a complex process for which few tumor cells complete the entire process. Recent research on BM of lung cancer has recently stressed the essential role of tumor microenvironment (TME) in assisting tumor cells in the completion of each BM step. This review summarizes recent studies regarding the effects of TME on tumor cells in the entire process of BM derived from lung cancer. The identification of vulnerable targets in the TME and their prospects to provide novel therapeutic opportunities are also discussed.
Collapse
|
4
|
Tyagi A, Wu SY, Watabe K. Metabolism in the progression and metastasis of brain tumors. Cancer Lett 2022; 539:215713. [PMID: 35513201 PMCID: PMC9999298 DOI: 10.1016/j.canlet.2022.215713] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/30/2023]
Abstract
Malignant brain tumors and metastases pose significant health problems and cause substantial morbidity and mortality in children and adults. Based on epidemiological evidence, gliomas comprise 30% and 80% of primary brain tumors and malignant tumors, respectively. Brain metastases affect 15-30% of cancer patients, particularly primary tumors of the lung, breast, colon, and kidney, and melanoma. Despite advancements in multimodal molecular targeted therapy and immunotherapy that do not ensure long-term treatment, malignant brain tumors and metastases contribute significantly to cancer related mortality. Recent studies have shown that metastatic cancer cells possess distinct metabolic traits to adapt and survive in new environment that differs significantly from the primary site in both nutrient composition and availability. As metabolic regulation lies at the intersection of many research areas, concerted efforts to understand the metabolic mechanism(s) driving malignant brain tumors and metastases may reveal novel therapeutic targets to prevent or reduce metastasis and predict biomarkers for the treatment of this aggressive disease. This review focuses on various aspects of metabolic signaling, interface between metabolic regulators and cellular processes, and implications of their dysregulation in the context of brain tumors and metastases.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Wang G, Zhong K, Wang Z, Zhang Z, Tang X, Tong A, Zhou L. Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities. Front Immunol 2022; 13:964898. [PMID: 35967394 PMCID: PMC9363573 DOI: 10.3389/fimmu.2022.964898] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Currently, the standard treatment of glioblastoma includes surgery, radiotherapy, and chemotherapy. Despite aggressive treatment, the median survival is only 15 months. GBM progression and therapeutic resistance are the results of the complex interactions between tumor cells and tumor microenvironment (TME). TME consists of several different cell types, such as stromal cells, endothelial cells and immune cells. Although GBM has the immunologically "cold" characteristic with very little lymphocyte infiltration, the TME of GBM can contain more than 30% of tumor-associated microglia and macrophages (TAMs). TAMs can release cytokines and growth factors to promote tumor proliferation, survival and metastasis progression as well as inhibit the function of immune cells. Thus, TAMs are logical therapeutic targets for GBM. In this review, we discussed the characteristics and functions of the TAMs and evaluated the state of the art of TAMs-targeting strategies in GBM. This review helps to understand how TAMs promote GBM progression and summarizes the present therapeutic interventions to target TAMs. It will possibly pave the way for new immune therapeutic avenues for GBM patients.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
7
|
Luo L, Liu P, Zhao K, Zhao W, Zhang X. The Immune Microenvironment in Brain Metastases of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:698844. [PMID: 34336687 PMCID: PMC8316686 DOI: 10.3389/fonc.2021.698844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Brain metastasis of non-small cell lung cancer is associated with poor survival outcomes and poses rough clinical challenges. At the era of immunotherapy, it is urgent to perform a comprehensive study uncovering the specific immune microenvironment of brain metastases of NSCLC. The immune microenvironment of brain is distinctly different from microenvironments of extracranial lesions. In this review, we summarized the process of brain metastases across the barrier and revealed that brain is not completely immune-privileged. We comprehensively described the specific components of immune microenvironment for brain metastases such as central nervous system-derived antigen-presenting cells, microglia and astrocytes. Besides, the difference of immune microenvironment between brain metastases and primary foci of lung was particularly demonstrated.
Collapse
Affiliation(s)
- Lumeng Luo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyi Liu
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixin Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Fares J, Ulasov I, Timashev P, Lesniak MS. Emerging principles of brain immunology and immune checkpoint blockade in brain metastases. Brain 2021; 144:1046-1066. [PMID: 33893488 PMCID: PMC8105040 DOI: 10.1093/brain/awab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are the most common type of brain tumours, harbouring an immune microenvironment that can in principle be targeted via immunotherapy. Elucidating some of the immunological intricacies of brain metastases has opened a therapeutic window to explore the potential of immune checkpoint inhibitors in this globally lethal disease. Multiple lines of evidence suggest that tumour cells hijack the immune regulatory mechanisms in the brain for the benefit of their own survival and progression. Nonetheless, the role of the immune checkpoint in the complex interplays between cancers cells and T cells and in conferring resistance to therapy remains under investigation. Meanwhile, early phase trials with immune checkpoint inhibitors have reported clinical benefit in patients with brain metastases from melanoma and non-small cell lung cancer. In this review, we explore the workings of the immune system in the brain, the immunology of brain metastases, and the current status of immune checkpoint inhibitors in the treatment of brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
9
|
de Farias JO, de Freitas Lima SM, Rezende TMB. Physiopathology of nitric oxide in the oral environment and its biotechnological potential for new oral treatments: a literature review. Clin Oral Investig 2020; 24:4197-4212. [PMID: 33057827 DOI: 10.1007/s00784-020-03629-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES A narrative review on the NO properties and their relationship with the oral environment describing NO's molecular origin, role, and perspectives regarding oral pathological, physiological, and regenerative processes for future applications and possible use as prevention or treatment in dentistry. MATERIALS AND METHODS Pubmed was searched using the word "nitric oxide." Reviews, clinical studies, and experimental studies were eligible for the screening process. Similar search procedures were then performed with the additional search words "conservative dentistry," "orthodontics," "endodontics," "implants," "periodontics," "oral cancer," "pulp revascularization," and "oral surgery." Furthermore, references of included articles were examined to identify further relevant articles. RESULTS There is a relationship between NO production and oral diseases such as caries, periodontal diseases, pulp inflammation, apical periodontitis, oral cancer, with implants, and orthodontics. Studies on this relationship and uses of NO, in diagnosis, prevention, and treatment, are being developed. Also, some NO and oral cavity patents have already registered. CONCLUSIONS The understanding of how NO can interfere in oral health maintenance or disease processes can contribute to elucidate the disease development and optimize treatment approaches. CLINICAL RELEVANCE NO has considerable biotechnological potential and can contribute to improving diagnostics and treating the oral environment. As a biomarker, NO has an important role in the early diagnosis of diseases. Regarding treatments, NO can possibly be used as a regulator of inflammation, anti-biofilm action, replacing antibiotics, inducing apoptosis of cancerous cells, and contributing to the angiogenesis. All these studies are initial considerations regarding the relationship between NO and dentistry.
Collapse
Affiliation(s)
- Jade Ormondes de Farias
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil.,Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N - Módulo B Avenida W5-Campus II -Modulo C, room C-221, Asa Norte, Brasília, DF, 70.790-160, Brazil.,Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n-Asa Norte, Brasília, DF, Brazil
| | - Stella Maris de Freitas Lima
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil.,Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N - Módulo B Avenida W5-Campus II -Modulo C, room C-221, Asa Norte, Brasília, DF, 70.790-160, Brazil
| | - Taia Maria Berto Rezende
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil. .,Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N - Módulo B Avenida W5-Campus II -Modulo C, room C-221, Asa Norte, Brasília, DF, 70.790-160, Brazil. .,Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n-Asa Norte, Brasília, DF, Brazil.
| |
Collapse
|
10
|
De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, Reichardt E, Goring KA, King J, Grisdale CJ, Grinshtein N, Hambardzumyan D, Reilly KM, Blough MD, Cairncross JG, Yong VW, Marra MA, Jones SJM, Kaplan DR, McCoy KD, Holland EC, Bose P, Chan JA, Robbins SM, Senger DL. Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun 2020; 11:4997. [PMID: 33020472 PMCID: PMC7536425 DOI: 10.1038/s41467-020-18569-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.
Collapse
Affiliation(s)
- Astrid De Boeck
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bo Young Ahn
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Charlotte D'Mello
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xueqing Lun
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shyam V Menon
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mana M Alshehri
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Frank Szulzewsky
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Lubaba Khan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elliott Reichardt
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kimberly-Ann Goring
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer King
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Natalie Grinshtein
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute and the Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Karlyne M Reilly
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Michael D Blough
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J Gregory Cairncross
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto and Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric C Holland
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Pinaki Bose
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephen M Robbins
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Donna L Senger
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
11
|
Izraely S, Witz IP. Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. Int J Cancer 2020; 148:1308-1322. [PMID: 32761606 PMCID: PMC7891572 DOI: 10.1002/ijc.33247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The conclusion derived from the information provided in this review is that disseminating tumor cells (DTC) collaborate with the microenvironment of a future metastatic organ site in the establishment of organ‐specific metastasis. We review the basic principles of site‐specific metastasis and the contribution of the cross talk between DTC and the microenvironment of metastatic sites (metastatic microenvironment [MME]) to the establishment of the organ‐specific premetastatic niche; the targeted migration of DTC to the endothelium of the future organ‐specific metastasis; the transmigration of DTC to this site and the seeding and colonization of DTC in their future MME. We also discuss the role played by DTC‐MME interactions on tumor dormancy and on the differential response of tumor cells residing in different MMEs to antitumor therapy. Finally, we summarize some studies dealing with the effects of the MME on a unique site‐specific metastasis—brain metastasis.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Salvati L, Mandalà M, Massi D. Melanoma brain metastases: review of histopathological features and immune-molecular aspects. Melanoma Manag 2020; 7:MMT44. [PMID: 32821376 PMCID: PMC7426753 DOI: 10.2217/mmt-2019-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Patients with melanoma brain metastases (MBM) have a dismal prognosis, but the unprecedented advances in systemic therapy alone or in combination with local therapy have now extended the 1-year overall survival rate from 20–25% to nearing 80–85%, mainly in asymptomatic patients. The histopathological and molecular characterization of MBM and the understanding of the microenvironment are critical to more effectively manage patients with advanced melanoma and to design biologically driven clinical trials. This review aims to give an overview of the main histopathological features and the immune-molecular aspects of MBM.
Collapse
Affiliation(s)
- Lorenzo Salvati
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology & Hematology, Pope John XXIII Cancer Center Hospital, Bergamo, Italy
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Hung YW, Wang Y, Lee SL. DPP-4 inhibitor reduces striatal microglial deramification after sensorimotor cortex injury induced by external force impact. FASEB J 2020; 34:6950-6964. [PMID: 32246809 DOI: 10.1096/fj.201902818r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 inhibitors (or gliptins), a class of antidiabetic drugs, have recently been shown to have protective actions in the central nervous system. Their cellular and molecular mechanisms responsible for these effects are largely unknown. In the present study, two structurally different gliptins, sitagliptin and vildagliptin, were examined for their therapeutic actions in a controlled cortical impact (CCI) model of moderate traumatic brain injury (TBI) in mice. Early post-CCI treatment with sitagliptin, but not vildagliptin, significantly reduced body asymmetry, locomotor hyperactivity, and brain lesion volume. Sitagliptin attenuated post-CCI microglial deramification in the ipsilateral dorsolateral (DL) striatum, while vildagliptin had no effect. Sitagliptin also reduced striatal expression of galectin-3 and monocyte chemoattractant protein 1(MCP-1), and increased the cortical and striatal levels of the anti-inflammatory cytokine IL-10 on the ipsilateral side. These data support a differential protective effect of sitagliptin against TBI, possibly mediated by an anti-inflammatory effect in striatum to preserve connective network. Both sitagliptin and vildagliptin produced similar increases of active glucagon-like peptide-1 (GLP-1) in blood and brain. Increasing active GLP-1 may not be the sole molecular mechanisms for the neurotherapeutic effect of sitagliptin in TBI.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| | - Sheau-Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| |
Collapse
|
14
|
Leibold AT, Monaco GN, Dey M. The role of the immune system in brain metastasis. CURRENT NEUROBIOLOGY 2019; 10:33-48. [PMID: 31097897 PMCID: PMC6513348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metastatic brain tumors are the most common brain tumors in adults. With numerous successful advancements in systemic treatment of most common cancer types, brain metastasis is becoming increasingly important in the overall prognosis of cancer patients. Brain metastasis of peripheral tumor is the result of complex interplay of primary tumor, immune system and central nervous system microenvironment. Once formed, brain metastases hide behind the blood brain barrier and become inaccessible to chemotherapies that are otherwise successful in targeting systemic cancer. The approval of immune checkpoint inhibitors for several common cancers such as advanced melanoma and lung cancers brings with it the opportunity and obligation to further understand the mechanisms of immunosuppression by tumors that spread to the brain as well as the interaction between the brain environment and tumor microenvironment. In this review paper we define the central role of the immune system in the development of brain metastases. We performed a comprehensive review of the literature to outline the molecular mechanisms of immunosuppression used by tumors and how the immune system interacts with the central nervous system to facilitate brain metastasis. In particular we discuss the tumor-type-specific mechanisms of metastasis of cancers that preferentially metastasize to the brain as well as the therapies that effectively modulate the immune response, such as immune checkpoint inhibitors and vaccines.
Collapse
Affiliation(s)
- Adam T Leibold
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| | - Gina N Monaco
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Long-term characterization of activated microglia/macrophages facilitating the development of experimental brain metastasis through intravital microscopic imaging. J Neuroinflammation 2019; 16:4. [PMID: 30616691 PMCID: PMC6323850 DOI: 10.1186/s12974-018-1389-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/11/2018] [Indexed: 01/17/2023] Open
Abstract
Background Microglia/macrophages (M/Ms) with multiple functions derived from distinct activation states are key surveillants maintaining brain homeostasis. However, their activation status and role during the brain metastasis of malignant tumors have been poorly characterized. Methods Heterozygous CX3CR1-GFP transgenic mice were used to visualize the dynamic changes of M/Ms during the development of experimental brain metastasis through long-term intravital imaging equipped with redesigned bilateral cranial windows. The occurrence of experimental brain metastasis was evaluated after M/Ms were depleted with PLX3397, a CSF-1R inhibitor. The possible mediators of M/Ms in facilitating the brain metastasis were determined using reverse transcription-PCR, immunofluorescence, correlational analysis, and MMP inhibition. Results Here, we showed that M/Ms were persistently activated and facilitated the formation of melanoma brain metastasis in vivo. We observed that M/Ms gradually and massively accumulated in the metastasis, with a 2.89-fold increase. To precisely depict the dynamic changes in the activation state of M/Ms, we defined the branching parameter to quantify their morphological alterations. The quantitative data showed that the extent of activation of M/Ms in metastatic foci was enhanced, with a 2.27-fold increase from day 1 to day 21. Along with the activation, the M/Ms increased their moving velocity (4.15-fold) and established a rapid, confined, and discontinuous motility behavior. The occurrence of melanoma brain metastasis was significantly hindered under M/M elimination, indicating the key role of M/Ms in the experimental brain metastasis. Interestingly, we found that M/Ms highly expressed matrix metalloproteinase 3 (MMP3), which were strongly correlated with M/M activation and the decrease of tight junction protein zonula occludens-1 (ZO-1). An MMP inhibitor moderately decreased the occurrence of melanoma brain metastasis, suggesting that MMP3 secreted by M/Ms may facilitate melanoma cell growth. Conclusions Our results indicated that the activated M/Ms were essential in the development of melanoma brain metastasis, suggesting that M/Ms are a potential therapeutic target for tumor brain metastasis. Electronic supplementary material The online version of this article (10.1186/s12974-018-1389-9) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Izraely S, Ben-Menachem S, Sagi-Assif O, Telerman A, Zubrilov I, Ashkenazi O, Meshel T, Maman S, Orozco JI, Salomon MP, Marzese DM, Pasmanik-Chor M, Pikarski E, Ehrlich M, Hoon DS, Witz IP. The metastatic microenvironment: Melanoma-microglia cross-talk promotes the malignant phenotype of melanoma cells. Int J Cancer 2018; 144:802-817. [DOI: 10.1002/ijc.31745] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Sivan Izraely
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Shlomit Ben-Menachem
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Alona Telerman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Inna Zubrilov
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Ofir Ashkenazi
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Shelly Maman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Javier I.J. Orozco
- Department of Translational Molecular Medicine; John Wayne Cancer Institute at Providence Saint John's Health Center; Santa Monica CA
| | - Matthew P. Salomon
- Department of Translational Molecular Medicine; John Wayne Cancer Institute at Providence Saint John's Health Center; Santa Monica CA
| | - Diego M. Marzese
- Department of Translational Molecular Medicine; John Wayne Cancer Institute at Providence Saint John's Health Center; Santa Monica CA
| | - Metsada Pasmanik-Chor
- Bioinforamatics Unit, The George S. Wise Faculty of Life Science; Tel Aviv University; Tel-Aviv Israel
| | - Eli Pikarski
- The Lautenberg Center for Immunology and Cancer Research; Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School; Jerusalem Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Dave S.B. Hoon
- Department of Translational Molecular Medicine; John Wayne Cancer Institute at Providence Saint John's Health Center; Santa Monica CA
| | - Isaac P. Witz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
17
|
Sarkar S, Poon CC, Mirzaei R, Rawji KS, Hader W, Bose P, Kelly J, Dunn JF, Yong VW. Microglia induces Gas1 expression in human brain tumor-initiating cells to reduce tumorigenecity. Sci Rep 2018; 8:15286. [PMID: 30327548 PMCID: PMC6191418 DOI: 10.1038/s41598-018-33306-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/20/2018] [Indexed: 12/26/2022] Open
Abstract
We reported previously that microglia decreased the growth of human brain tumor-initiating cells (BTICs). Through microarray analyses of BTICs exposed in vitro to microglia, we found the induction of several genes ascribed to have roles in cell cycle arrest, reduced cell proliferation and differentiation. Herein, we tested the hypothesis that one of these genes, growth arrest specific 1 (Gas1), is a novel growth reduction factor that is induced in BTICs by microglia. We found that microglia increased the expression of Gas1 transcript and protein in glioblastoma patient-derived BTIC lines. Using neurosphere assay we show that RNAi-induced reduction of Gas1 expression in BTICs blunted the microglia-mediated BTIC growth reduction. The role of Gas1 in mediating BTIC growth arrest was further validated using orthotopic brain xenografts in mice. When microglia-induced Gas1-expressing BTIC cells (mGas1-BTICs) were implanted intra-cranially in mice, tumor growth was markedly decreased; this was mirrored in the remarkable increase in survival of mGas1-BT025 and mGas1-BT048 implanted mice, compared to mice implanted with non-microglia-exposed BTIC cells. In conclusion, this study has identified Gas1 as a novel factor and mechanism through which microglia arrest the growth of BTICs for anti-tumor property.
Collapse
Affiliation(s)
- Susobhan Sarkar
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Candice C Poon
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Khalil S Rawji
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Walter Hader
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.,Department of Surgery, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - John Kelly
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - Jeffrey F Dunn
- Department of Radiology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada. .,Department of Oncology, Hotchkiss Brain Institute and the Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Canada.
| |
Collapse
|
18
|
Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:168. [PMID: 30041669 PMCID: PMC6058381 DOI: 10.1186/s13046-018-0792-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a primary brain tumor with a 5-year survival rate of ≤5%. We have shown earlier that GBM-antibody-linked curcumin (CC) and also phytosomal curcumin (CCP) rescue 50-60% of GBM-bearing mice while repolarizing the tumor-associated microglia/macrophages (TAM) from the tumor-promoting M2-type to the tumoricidal M1-type. However, systemic application of CCP yields only sub-IC50 concentrations of CC in the plasma, which is unlikely to kill GBM cells directly. This study investigates the role of CC-evoked intra-GBM recruitment of activated natural killer (NK) cells in the elimination of GBM and GBM stem cells. METHODS We have used an immune-competent syngeneic C57BL6 mouse model with the mouse-GBM GL261 cells orthotopically implanted in the brain. Using immunohistochemistry and flow cytometry, we have quantitatively analyzed the role of the intra-GBM-recruited NK cells by (i) injecting (i.p.) the NK1.1 antibody (NK1.1Ab) to temporarily eliminate the NK cells and (ii) blocking NK recruitment by injecting an IL12 antibody (IL12Ab). The treatment cohorts used randomly-chosen GL261-implanted mice and data sets were compared using two-tailed t-test or ANOVA. RESULTS CCP treatment caused the GBM tumor to acquire M1-type macrophages (50-60% of the TAM) and activated NK cells. The treatment also elicited (a) suppression of the M2-linked tumor-promoting proteins STAT3, ARG1, and IL10, (b) induction of the M1-linked anti-tumor proteins STAT1 and inducible nitric oxide synthase in the TAM, (c) elimination of CD133(+) GBM stem cells, and (d) activation of caspase3 in the GBM cells. Eliminating intra-GBM NK cell recruitment caused a partial reversal of each of these effects. Concomitantly, we observed a CCP-evoked dramatic induction of the chemokine monocyte chemotactic protein-1 (MCP-1) in the TAM. CONCLUSIONS The recruited NK cells mediate a major part of the CCP-evoked elimination of GBM and GBM stem cells and stabilization of the TAM in the M1-like state. MCP-1 is known to activate peripheral M1-type macrophages to secrete IL12, an activator of NK cells. Based on such observations, we postulate that by binding to peripheral M1-type macrophages and IL12-activated NK cells, the brain-released chemokine MCP-1 causes recruitment of peripheral immune cells into the GBM, thereby causing destruction of the GBM cells and GBM stem cells.
Collapse
|
19
|
Mukherjee S, Hussaini R, White R, Atwi D, Fried A, Sampat S, Piao L, Pan Q, Banerjee P. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol Immunother 2018; 67:761-774. [PMID: 29453519 PMCID: PMC11028238 DOI: 10.1007/s00262-018-2130-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Our earlier studies reported a unique potentiated combination (TriCurin) of curcumin (C) with two other polyphenols. The TriCurin-associated C displays an IC50 in the low micromolar range for cultured HPV+ TC-1 cells. In contrast, because of rapid degradation in vivo, the TriCurin-associated C reaches only low nano-molar concentrations in the plasma, which are sub-lethal to tumor cells. Yet, injected TriCurin causes a dramatic suppression of tumors in TC-1 cell-implanted mice (TC-1 mice) and xenografts of Head and Neck Squamous Cell Carcinoma (HNSCC) cells in nude/nude mice. Here, we use the TC-1 mice to test our hypothesis that a major part of the anti-tumor activity of TriCurin is evoked by innate and adaptive immune responses. TriCurin injection repolarized arginase1high (ARG1high), IL10high, inducible nitric oxide synthaselow (iNOSlow), IL12low M2-type tumor-associated macrophages (TAM) into ARG1low, IL10low, iNOShigh, and IL12high M1-type TAM in HPV+ tumors. The M1 TAM displayed sharply suppressed STAT3 and induced STAT1 and NF-kB(p65). STAT1 and NF-kB(p65) function synergistically to induce iNOS and IL12 transcription. Neutralizing IL12 signaling with an IL12 antibody abrogated TriCurin-induced intra-tumor entry of activated natural killer (NK) cells and Cytotoxic T lymphocytes (CTL), thereby confirming that IL12 triggers recruitment of NK cells and CTL. These activated NK cells and CTL join the M1 TAM to elicit apoptosis of the E6+ tumor cells. Corroboratively, neutralizing IL12 signaling partially reversed this TriCurin-mediated apoptosis. Thus, injected TriCurin elicits an M2→M1 switch in TAM, accompanied by IL12-dependent intra-tumor recruitment of NK cells and CTL and elimination of cancer cells.
Collapse
Affiliation(s)
- Sumit Mukherjee
- CUNY Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA
- Department of Chemistry, Building 6S, The City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Rahman Hussaini
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Richard White
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Doaa Atwi
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Angela Fried
- CUNY Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Samay Sampat
- College of Arts and Science, New York University, New York, NY, 10003, USA
| | - Longzhu Piao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Probal Banerjee
- Department of Chemistry, Building 6S, The City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
20
|
Valiente M, Ahluwalia MS, Boire A, Brastianos PK, Goldberg SB, Lee EQ, Le Rhun E, Preusser M, Winkler F, Soffietti R. The Evolving Landscape of Brain Metastasis. Trends Cancer 2018; 4:176-196. [PMID: 29506669 PMCID: PMC6602095 DOI: 10.1016/j.trecan.2018.01.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/24/2022]
Abstract
Metastasis, involving the spread of systemic cancer to the brain, results in neurologic disability and death. Current treatments are largely palliative in nature; improved therapeutic approaches represent an unmet clinical need. However, recent experimental and clinical advances challenge the bleak long-term outcome of this disease. Encompassing key recent findings in epidemiology, genetics, microenvironment, leptomeningeal disease, neurocognition, targeted therapy, immunotherapy, and prophylaxis, we review preclinical and clinical studies to provide a comprehensive picture of contemporary research and the management of secondary brain tumors.
Collapse
Affiliation(s)
- Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro 3, Madrid, Spain.
| | - Manmeet S Ahluwalia
- Brain Metastasis Research Program, Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Medicine, Cleveland Clinic, Neurological Institute, 9500 Euclid Avenue, 44195 Cleveland, OH, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065 New York, NY, USA
| | - Priscilla K Brastianos
- Division of Hematology/Oncology, Department of Medicine; Division of Neuro-Oncology, Department of Neurology; Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street Boston, 02114 Boston, MA, USA
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, 02215 Boston, MA, USA
| | - Emilie Le Rhun
- Neuro-Oncology, Department of Neurosurgery, University Hospital Lille, Salengro Hospital, Rue Emile Laine, 59037 Lille, France; Neurology, Department of Medical Oncology, Oscar Lambret Center, 59020 Lille, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1192, Villeneuve d'Ascq, France; Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine I, Comprehensive Cancer Center Vienna, CNS Unit (CCC-CNS), Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University Hospital Turin, Via Cherasco 15, 10126 Turin, Italy.
| |
Collapse
|
21
|
Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM) and GBM Stem Cells. Molecules 2018; 23:molecules23010201. [PMID: 29346317 PMCID: PMC6017476 DOI: 10.3390/molecules23010201] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is a deadly brain tumor with a current mean survival of 12-15 months. Despite being a potent anti-cancer agent, the turmeric ingredient curcumin (C) has limited anti-tumor efficacy in vivo due to its low bioavailability. We have reported earlier a strategy involving the use two other polyphenols, epicatechin gallate (E) from green tea and resveratrol (R) from red grapes at a unique, synergistic molar ratio with C (C:E:R: 4:1:12.5, termed TriCurin) to achieve superior potency against HPV+ tumors than C alone at C:E:R (μM): 32:8:100 (termed 32 μM+ TriCurin). We have now prepared liposomal TriCurin (TrLp) and demonstrated that TrLp boosts activated p53 in cultured GL261 mouse GBM cells to trigger apoptosis of GBM and GBM stem cells in vitro. TrLp administration into mice yielded a stable plasma concentration of 210 nM C for 60 min, which, though sub-lethal for cultured GL261 cells, was able to cause repolarization of M2-like tumor (GBM)-associated microglia/macrophages to the tumoricidal M1-like phenotype and intra-GBM recruitment of activated natural killer cells. The intratumor presence of such tumoricidal immune cells was associated with concomitant suppression of tumor-load, and apoptosis of GBM and GBM stem cells. Thus, TrLp is a potential onco-immunotherapeutic agent against GBM tumors.
Collapse
|
22
|
Wasilewski D, Priego N, Fustero-Torre C, Valiente M. Reactive Astrocytes in Brain Metastasis. Front Oncol 2017; 7:298. [PMID: 29312881 PMCID: PMC5732246 DOI: 10.3389/fonc.2017.00298] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS), exceeds the incidence of primary brain tumors (i.e., gliomas) by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.
Collapse
Affiliation(s)
- David Wasilewski
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
23
|
Poon CC, Sarkar S, Yong VW, Kelly JJP. Glioblastoma-associated microglia and macrophages: targets for therapies to improve prognosis. Brain 2017; 140:1548-1560. [PMID: 28334886 DOI: 10.1093/brain/aww355] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/20/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common and most malignant primary adult human brain tumour. Diagnosis of glioblastoma carries a dismal prognosis. Treatment resistance and tumour recurrence are the result of both cancer cell proliferation and their interaction with the tumour microenvironment. A large proportion of the tumour microenvironment consists of an inflammatory infiltrate predominated by microglia and macrophages, which are thought to be subverted by glioblastoma cells for tumour growth. Thus, glioblastoma-associated microglia and macrophages are logical therapeutic targets. Their emerging roles in glioblastoma progression are reflected in the burgeoning research into therapeutics directed at their modification or elimination. Here, we review the biology of glioblastoma-associated microglia and macrophages, and model systems used to study these cells in vitro and in vivo. We discuss translation of results using these model systems and review recent advances in immunotherapies targeting microglia and macrophages in glioblastoma. Significant challenges remain but medications that affect glioblastoma-associated microglia and macrophages hold considerable promise to improve the prognosis for patients with this disease.
Collapse
Affiliation(s)
- Candice C Poon
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - John J P Kelly
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Xue J, Jiang W, Chen Y, Gong F, Wang M, Zeng P, Xia C, Wang Q, Huang K. Thioredoxin reductase from Toxoplasma gondii: an essential virulence effector with antioxidant function. FASEB J 2017; 31:4447-4457. [PMID: 28687608 DOI: 10.1096/fj.201700008r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Abstract
Thioredoxin reductase (TR) can help pathogens resist oxidative-burst injury from host immune cells by maintaining a thioredoxin-reduction state during NADPH consumption. TR is a necessary virulence factor that enables the persistent infection of some parasites. We performed bioinformatics analyses and biochemical assays to characterize the activity, subcellular localization, and genetic ablation of Toxoplasma gondii TR (TgTR), to shed light on its biologic function. We expressed the TgTR protein with an Escherichia coli expression system and analyzed its enzyme activity, reporting a Km for the recombinant TgTR of 11.47-15.57 μM, using NADPH as a substrate, and 130.48-151.09 μM with dithio-bis-nitrobenzoic acid as a substrate. The TgTR sequence shared homology with that of TR, but lacked a selenocysteine residue in the C-terminal region and was thought to contain 2 flavin adenine dinucleotide (FAD) domains and 1 NADPH domain. In addition, immunoelectron microscopy results showed that TgTR was widely dispersed in the cytoplasm, and we observed that parasite antioxidant capacity, invasion efficiency, and proliferation were decreased in TR-knockout (TR-KO) strains in vitro, although this strain still stimulated the release of reactive oxygen species release in mouse macrophages while being more sensitive to H2O2 toxicity in vitro Furthermore, our in vivo results revealed that the survival time of mice infected with the TR-KO strain was significantly prolonged relative to that of mice infected with the wild-type strain. These results suggest that TgTR plays an important role in resistance to oxidative damage and can be considered a virulence factor associated with T. gondii infection.-Xue, J., Jiang, W., Chen, Y., Gong, F., Wang, M., Zeng, P., Xia, C., Wang, Q., Huang, K. Thioredoxin reductase from Toxoplasma gondii: an essential virulence effector with antioxidant function.
Collapse
Affiliation(s)
- Junxin Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Fengju Gong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Minyan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Peng Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Can Xia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China;
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China;
| |
Collapse
|
25
|
Zhong W, Hu C. [Tumor Cells and Micro-environment in Brain Metastases]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 19:626-35. [PMID: 27666556 PMCID: PMC5972957 DOI: 10.3779/j.issn.1009-3419.2016.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
近年来,随着早期诊断的方法的出现及精准治疗的应用,肺癌患者的生存及生活质量都得到很大改善。然而,对于肺癌的脑转移病灶,目前仍缺乏一个理想的治疗方案,严重影响了该部分患者生存状态。了解肿瘤细胞如何在中枢神经系统定植、生长和侵袭等相关生物学行为及其产生机制对预防及治疗肿瘤细胞脑转移病灶具有重大的意义。“种子-土壤”这一假说可以很好的解释这一过程,这一假说的关键即肿瘤细胞可与中枢神经系统微环境各组成之间产生相互适应性变化,正是这种相互作用决定了脑转移病灶的发生发展。本文就脑转移肿瘤细胞、脑转移肿瘤微环境及他们之间的相互作用进行综述,旨在为脑转移病灶的治疗提供新的思路。
Collapse
Affiliation(s)
- Wen Zhong
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
26
|
Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, Kim G, Brown MA, Elkahloun AG, Maric D, Sweeney CL, Gossa S, Malech HL, McGavern DB, Park JK. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 2017; 20:753-759. [PMID: 28253233 PMCID: PMC5404968 DOI: 10.1038/nn.4534] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022]
Abstract
Microglia are resident inflammatory cells of the CNS and have important roles in development, homeostasis and a variety of neurologic and psychiatric diseases. Difficulties in procuring human microglia have limited their study and hampered the clinical translation of microglia-based treatments shown to be effective in animal disease models. Here we report the differentiation of human induced pluripotent stem cells (iPSC) into microglia-like cells by exposure to defined factors and co-culture with astrocytes. These iPSC-derived microglia have the phenotype, gene expression profile and functional properties of brain-isolated microglia. Murine iPSC-derived microglia generated using a similar protocol have equivalent efficacy to primary brain-isolated microglia in treatment of murine syngeneic intracranial malignant gliomas. The ability to generate human microglia facilitates the further study of this important CNS cell type and raises the possibility of their use in personalized medicine applications.
Collapse
Affiliation(s)
- Hetal Pandya
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael J Shen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - David M Ichikawa
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea B Sedlock
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Yong Choi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Gloria Kim
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mason A Brown
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Abdel G Elkahloun
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Colin L Sweeney
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Selamawit Gossa
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Harry L Malech
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - John K Park
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Santa Barbara Neuroscience Institute, Santa Barbara, California, USA
| |
Collapse
|
27
|
Nagano T, Nishiyama R, Sanada A, Mutaguchi Y, Ioku A, Umeki H, Kishimoto S, Yamanaka D, Kimura SH, Takemura M. Prostaglandin E 2 potentiates interferon-γ-induced nitric oxide production in cultured rat microglia. J Neurochem 2017; 140:605-612. [PMID: 27973680 DOI: 10.1111/jnc.13926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/26/2022]
Abstract
Prostaglandin E2 (PGE2 ) plays crucial roles in managing microglial activation through the prostanoid EP2 receptor, a PGE2 receptor subtype. In this study, we report that PGE2 enhances interferon-γ (IFN-γ)-induced nitric oxide production in microglia. IFN-γ increased the release of nitrite, a metabolite of nitric oxide, which was augmented by PGE2 , although PGE2 by itself slightly affects nitrite release. The potentiating effect of PGE2 was positively associated with increased expression of inducible nitric oxide synthase. In contrast to nitrite release induced by IFN-γ, lipopolysaccharide-induced nitrite release was not affected by PGE2 . An EP2 agonist, ONO-AE1-259-01 also augmented IFN-γ-induced nitrite release, while an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, or an EP4 agonist, ONO-AE1-329, did not. In addition, the potentiating effect of PGE2 was inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6 M. Among the EP agonists, ONO-AE1-259-01 alone was able to accumulate cyclic adenosine monophosphate (AMP), and among the EP antagonists, PF-04418948 was the only one able to inhibit PGE2 -increased intracellular cyclic AMP accumulation. On the other hand, IFN-γ promoted phosphorylation of signal transducer and activator of transcription 1, which was not affected by PGE2 . Furthermore, other prostanoid receptor agonists, PGD2 , PGF2α , iloprost, and U-46119, slightly affected IFN-γ-induced nitrite release. These results indicate that PGE2 potentiates IFN-γ-induced nitric oxide production in microglia through the EP2 receptor, which may shed light on one of the pro-inflammatory aspects of PGE2 .
Collapse
Affiliation(s)
- Takayuki Nagano
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ryo Nishiyama
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Ayaka Sanada
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yukiko Mutaguchi
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Anna Ioku
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hirohisa Umeki
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Satoshi Kishimoto
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Daisuke Yamanaka
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Shinya H Kimura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Motohiko Takemura
- Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
28
|
Alshehri MM, Robbins SM, Senger DL. The Role of Neurotrophin Signaling in Gliomagenesis: A Focus on the p75 Neurotrophin Receptor (p75 NTR/CD271). VITAMINS AND HORMONES 2017; 104:367-404. [PMID: 28215302 DOI: 10.1016/bs.vh.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p75 neurotrophin receptor (p75NTR, a.k.a. CD271), a transmembrane glycoprotein and a member of the tumor necrosis family (TNF) of receptors, was originally identified as a nerve growth factor receptor in the mid-1980s. While p75NTR is recognized to have important roles during neural development, its presence in both neural and nonneural tissues clearly supports the potential to mediate a broad range of functions depending on cellular context. Using an unbiased in vivo selection paradigm for genes underlying the invasive behavior of glioma, a critical characteristic that contributes to poor clinical outcome for glioma patients, we identified p75NTR as a central regulator of glioma invasion. Herein we review the expanding role that p75NTR plays in glioma progression with an emphasis on how p75NTR may contribute to the treatment refractory nature of glioma. Based on the observation that p75NTR is expressed and functional in two critical glioma disease reservoirs, namely, the highly infiltrative cells that evade surgical resection, and the radiation- and chemotherapy-resistant brain tumor-initiating cells (also referred to as brain tumor stem cells), we propose that p75NTR and its myriad of downstream signaling effectors represent rationale therapeutic targets for this devastating disease. Lastly, we provide the provocative hypothesis that, in addition to the well-documented cell autonomous signaling functions, the neurotrophins, and their respective receptors, contribute in a cell nonautonomous manner to drive the complex cellular and molecular composition of the brain tumor microenvironment, an environment that fuels tumorigenesis.
Collapse
Affiliation(s)
- M M Alshehri
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - S M Robbins
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - D L Senger
- Arnie Charbonneau Cancer Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
29
|
Lowery FJ, Yu D. Brain metastasis: Unique challenges and open opportunities. Biochim Biophys Acta Rev Cancer 2016; 1867:49-57. [PMID: 27939792 DOI: 10.1016/j.bbcan.2016.12.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
The metastasis of cancer to the central nervous system (CNS) remains a devastating clinical reality, carrying an estimated survival time of less than one year in spite of recent therapeutic breakthroughs for other disease contexts. Advances in brain metastasis research are hindered by a number of factors, including its complicated nature and the difficulty of modeling metastatic cancer growth in the unique brain microenvironment. In this review, we will discuss the clinical challenge, and compare the merits and limitations of the available models for brain metastasis research. Additionally, we will specifically address current knowledge on how brain metastases take advantage of the unique brain environment to benefit their own growth. Finally, we will explore the distinctive metabolic and chemical characteristics of the brain and how these paradoxically represent barriers to establishment of brain metastasis, but also provide ample supplies for metastatic cells' growth in the brain. We envision that multi-disciplinary innovative approaches will open opportunities for the field to make breakthroughs in tackling unique challenges of brain metastasis.
Collapse
Affiliation(s)
- Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Xu X, Gao Y, Wen L, Zhai Z, Zhang S, Shan F, Feng J. Methionine enkephalin regulates microglia polarization and function. Int Immunopharmacol 2016; 40:90-97. [PMID: 27584058 DOI: 10.1016/j.intimp.2016.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022]
|
31
|
Mukherjee S, Baidoo J, Fried A, Atwi D, Dolai S, Boockvar J, Symons M, Ruggieri R, Raja K, Banerjee P. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int J Cancer 2016; 139:2838-2849. [DOI: 10.1002/ijc.30398] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Sumit Mukherjee
- CUNY Doctoral Program In Biochemistry, CUNY Graduate Center, NY-10016
- Department of Chemistry; City University of New York at The College of Staten Island; NY 10314
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island; NY 10314
| | - Juliet Baidoo
- CUNY Doctoral Program In Biochemistry, CUNY Graduate Center, NY-10016
- Department of Chemistry; City University of New York at The College of Staten Island; NY 10314
| | - Angela Fried
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island; NY 10314
| | - Doaa Atwi
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island; NY 10314
| | - Sukanta Dolai
- CUNY Doctoral Program In Chemistry, CUNY Graduate Center, NY-10016
| | - John Boockvar
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, NY 11030
- Department of Neurosurgery, Hofstra Northwell School of Medicine, NY 11030
- Department of Otolaryngology, Hofstra Northwell School of Medicine, NY 11030
| | - Marc Symons
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, NY 11030
- Department of Neurosurgery, Hofstra Northwell School of Medicine, NY 11030
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, NY 11030
| | - Rosamaria Ruggieri
- Karches Center for Oncology Research, Feinstein Institute for Medical Research, NY 11030
- Department of Molecular Medicine, Hofstra Northwell School of Medicine, NY 11030
- Department of Radiation Medicine, Hofstra Northwell School of Medicine, NY 11030
| | - Krishnaswami Raja
- Department of Chemistry; City University of New York at The College of Staten Island; NY 10314
| | - Probal Banerjee
- CUNY Doctoral Program In Biochemistry, CUNY Graduate Center, NY-10016
- Department of Chemistry; City University of New York at The College of Staten Island; NY 10314
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island; NY 10314
| |
Collapse
|
32
|
The brain metastatic niche. J Mol Med (Berl) 2016; 93:1213-20. [PMID: 26489608 DOI: 10.1007/s00109-015-1357-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022]
Abstract
Metastasizing cancer cells that arrest in brain microvessels have to face an organ microenvironment that is alien, and exclusive. In order to survive and thrive in this foreign soil, the malignant cells need to successfully master a sequence of steps that includes close interactions with pre-existing brain microvessels, and other nonmalignant cell types. Unfortunately, a relevant number of circulating cancer cells is capable of doing so: brain metastasis is a frequent and devastating complication of solid tumors, becoming ever more important in times where the systemic tumor disease is better controlled and life of cancer patients is prolonged. Thus, it is very important to understand which environmental cues are necessary for effective brain colonization. This review gives an overview of the niches we know, including those who govern cancer cell dormancy, survival, and proliferation in the brain. Colonization of pre-existing niches related to stemness and resistance is a hallmark of successful brain metastasis. A deeper understanding of those host factors can help to identify the most vulnerable steps of the metastatic cascade, which might be most amenable to therapeutic interventions.
Collapse
|
33
|
Abstract
Many patients with lung cancer, breast cancer, and melanoma develop brain metastases that are resistant to conventional therapy. The median survival for untreated patients is 1 to 2 months, which may be extended to 6 months with surgery, radiotherapy, and chemotherapy. The outcome of metastasis depends on multiple interactions of unique metastatic cells with host homeostatic mechanisms which the tumor cells exploit for their survival and proliferation. The blood-brain barrier is leaky in metastases that are larger than 0.5-mm diameter because of production of vascular endothelial growth factor by metastatic cells. Brain metastases are surrounded and infiltrated by microglia and activated astrocytes. The interaction with astrocytes leads to up-regulation of multiple genes in the metastatic cells, including several survival genes that are responsible for the increased resistance of tumor cells to cytotoxic drugs. These findings substantiate the importance of the "seed and soil" hypothesis and that successful treatment of brain metastases must include targeting of the organ microenvironment.
Collapse
|
34
|
Farber SH, Tsvankin V, Narloch JL, Kim GJ, Salama AKS, Vlahovic G, Blackwell KL, Kirkpatrick JP, Fecci PE. Embracing rejection: Immunologic trends in brain metastasis. Oncoimmunology 2016; 5:e1172153. [PMID: 27622023 DOI: 10.1080/2162402x.2016.1172153] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022] Open
Abstract
Brain metastases represent the most common type of brain tumor. These tumors offer a dismal prognosis and significantly impact quality of life for patients. Their capacity for central nervous system (CNS) invasion is dependent upon induced disruptions to the blood-brain barrier (BBB), alterations to the brain microenvironment, and mechanisms for escaping CNS immunosurveillance. In the emerging era of immunotherapy, understanding how metastases are influenced by the immunologic peculiarities of the CNS will be crucial to forging therapeutic advances. In this review, the immunology of brain metastasis is explored.
Collapse
Affiliation(s)
- S Harrison Farber
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Vadim Tsvankin
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Jessica L Narloch
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Grace J Kim
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - April K S Salama
- Division of Medical Oncology, Duke University Medical Center , Durham, NC, USA
| | - Gordana Vlahovic
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Division of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - Kimberly L Blackwell
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - John P Kirkpatrick
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
Kuhn S, Yang J, Ronchese F. Monocyte-Derived Dendritic Cells Are Essential for CD8(+) T Cell Activation and Antitumor Responses After Local Immunotherapy. Front Immunol 2015; 6:584. [PMID: 26635798 PMCID: PMC4655312 DOI: 10.3389/fimmu.2015.00584] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Tumors harbor several populations of dendritic cells (DCs) with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate antitumor immune responses and is associated with the appearance of a population of monocyte-derived DCs (moDCs) in the tumor and tumor-draining lymph node (dLN). Here, we use depletion of DCs or monocytes and monocyte transfer to show that these moDCs are critical to the activation of antitumor immune responses. Treatment with the immunostimulatory agents monosodium urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the dLN, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα, and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of colony-stimulating factor-1 receptor signaling prevented the generation of moDCs, the infiltration of tumor-specific T cells into the tumor, and antitumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c(+) cells were sufficient to rescue CD8(+) T cell priming in lymph node and delay tumor growth. Thus, monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8(+) T cells and antitumor immunity.
Collapse
Affiliation(s)
- Sabine Kuhn
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Jianping Yang
- Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research , Wellington , New Zealand
| |
Collapse
|
36
|
Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochem Int 2015; 95:46-54. [PMID: 26522689 DOI: 10.1016/j.neuint.2015.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/08/2015] [Accepted: 10/24/2015] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a hallmark of neurodegenerative disease and cytotoxic levels of nitric oxide (NO) and pro-inflammatory cytokines can initiate neuronal death pathways. A range of cellular assays were used to assess the anti-inflammatory and neuroprotective action of resveratrol using murine microglial (C8-B4), macrophage (RAW264.7) and neuronal-like (Neuro2a) cell lines. We examined the release of NO by Griess assay and used a Bioplex array to measure a panel of pro- and anti-inflammatory cytokines and chemokines, in response to the inflammatory stimuli lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Resveratrol was a potent inhibitor of NO and cytokine release in activated macrophages and microglia. The activity of resveratrol increased marginally in potency with longer pre-incubation times in cell culture that was not due to cytotoxicity. Using an NO donor we show that resveratrol can protect Neuro2a cells from cytotoxic concentrations of NO. The protective effect of resveratrol from pro-inflammatory signalling in RAW264.7 cells was confirmed in co-culture experiments leading to increased survival of Neuro2a cells. Together our data are indicative of the potential neuroprotective effect of resveratrol during nitrosative stress and neuroinflammation.
Collapse
|
37
|
Dubey A, Park DW, Kwon JE, Jeong YJ, Kim T, Kim I, Kang SC, Chi KW. Investigation of the biological and anti-cancer properties of ellagic acid-encapsulated nano-sized metalla-cages. Int J Nanomedicine 2015; 10 Spec Iss:227-40. [PMID: 26366074 PMCID: PMC4562765 DOI: 10.2147/ijn.s88289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Three new large hexanuclear metalla-prisms 9-11 incorporating 1,3, 5-tris(pyridin-4-ylethynyl)benzene (tpeb) 4 and one of the dinuclear arene ruthenium clips [Ru2(p-iPrC6H4Me)2(OO∩OO)][CF3SO3]2 (OO∩OO =2,5-dioxydo-1,4-benzoquinonato [dobq] 1, 5,8-dihydroxy-1,4-naphthaquinonato (donq) 2, and 6,11-dihydroxy-5,12-naphthacenedionato [dotq] 3), which encapsulate the guest molecule ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione, 5) were prepared. All complexes were isolated as triflate salts in good yields and were fully characterized by (1)H NMR spectroscopy and electrospray ionization mass spectrometry. The photophysical properties of these metalla-prisms were also investigated. Compounds 9 and 10 showed potent antioxidant activity, but 10 had the superior ORACPE value (1.30 ± 0.020). Ellagic acid (5) and compound 11 showed weaker activity than that of Trolox. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the metalla-prism compounds exhibit anticancer properties in vitro. Compound 10 inhibited the growth of all cancer cell lines at micromolar concentrations, with the highest cytotoxicity observed against A549 human lung cancer cells (IC50 =25.9 μM). However, these compounds had a lower anti-cancer activity than that of doxorubicin. In a tumoricidal assay, ellagic acid (5) and compound 10 induced cytotoxicity in tumor cells, while doxorubicin did not. While free ellagic acid had no effect on the granulocyte-colony stimulating factor and regulated on activation normal T cell expressed and secreted protein, the encapsulated metalla-prism 10 stimulated granulocyte-colony stimulating factor and reduced regulated on activation normal T cell expressed and secreted protein expression in the RAW264.7 macrophage line. Our results show that ellagic acid encapsulated in metalla-prisms inhibited cancer cells via the modulation of mRNA induction and protein expression levels of the granulocyte-colony stimulating factor and regulated on activation normal T cell expressed and secreted protein in macrophages.
Collapse
Affiliation(s)
- Abhishek Dubey
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Dae Won Park
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Jung Eun Kwon
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Yong Joon Jeong
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Taegeun Kim
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| | - Inhye Kim
- Laboratory of Bio-Resources, Yongin-si, Gyeonggi-Do, Republic of Korea
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam, Republic of Korea
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
38
|
Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 2015; 131:65-86. [PMID: 26067058 DOI: 10.1016/j.pneurobio.2015.05.003] [Citation(s) in RCA: 495] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/22/2015] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Macrophages are important players in the fight against viral, bacterial, fungal and parasitic infections. From a resting state they may undertake two activation pathways, the classical known as M1, or the alternative known as M2. M1 markers are mostly mediators of pro-inflammatory responses whereas M2 markers emerge for resolution and cleanup. Microglia exerts in the central nervous system (CNS) a function similar to that of macrophages in the periphery. Microglia activation and proliferation occurs in almost any single pathology affecting the CNS. Often microglia activation has been considered detrimental and drugs able to stop microglia activation were considered for the treatment of a variety of diseases. Cumulative evidence shows that microglia may undergo the alternative activation pathway, express M2-type markers and contribute to neuroprotection. This review focuses on details about the role of M2 microglia and in the approaches available for its identification. Approaches to drive the M2 phenotype and data on its potential in CNS diseases are also reviewed.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Diana Fernández-Suárez
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
39
|
Shim DH, Lim JW, Kim H. Differentially expressed proteins in nitric oxide-stimulated NIH/3T3 fibroblasts: implications for inhibiting cancer development. Yonsei Med J 2015; 56:563-71. [PMID: 25684010 PMCID: PMC4329373 DOI: 10.3349/ymj.2015.56.2.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Recent evidence shows that nitric oxide (NO) may exhibit both pro-cancer and anti-cancer activities. The present study aimed to determine the differentially expressed proteins in NO-treated NIH/3T3 fibroblasts in order to investigate whether NO induces proteins with pro-cancer or anti-cancer effects. MATERIALS AND METHODS The cells were treated with 300 μM of an NO donor 3,3-bis-(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18) for 12 h. The changed protein patterns, which were separated by two-dimensional electrophoresis using pH gradients of 4-7, were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. RESULTS Seventeen differentially expressed proteins were identified in NOC-18-treated cells. Nine proteins [vinculin protein, keratin 19, ubiquitous tropomodulin, F-actin capping protein (α1 subunit), tropomyosin 3, 26S proteasome-associated pad1 homolog, T-complex protein 1 (ε subunit) N(G)-dimethylarginine dimethylaminohydrolase, and heat shock protein 90] were increased and eight proteins (heat shock protein 70, glucosidase II, lamin B1, calreticulin, nucleophosmin 1, microtubule-associated protein retinitis pigmentosa/end binding family member 1, 150 kD oxygen-regulated protein precursor, and heat shock 70-related protein albino or pale green 2) were decreased by NOC-18 in the cells. Thirteen proteins are related to the suppression of cancer cell proliferation, invasion, and metastasis while two proteins (heat shock protein 90 and N(G)-dimethylarginine dimethylaminohydrolase) are related to carcinogenesis. The functions of 150 kD oxygen-regulated protein precursor and T-complex protein 1 (ε subunit) are unknown in relation to carcinogenesis. CONCLUSION Most proteins differentially expressed by NOC-18 are involved in inhibiting cancer development.
Collapse
Affiliation(s)
- Dong Hwi Shim
- Department of Pharmacology, College of Medicine, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea.
| | - Hyeyoung Kim
- Department of Pharmacology, College of Medicine, Yonsei University, Seoul, Korea.; Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea.
| |
Collapse
|
40
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci 2015; 9:3. [PMID: 25653586 PMCID: PMC4300918 DOI: 10.3389/fnins.2015.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to stressful stimuli causes activation of the hypothalamic-pituitary-adrenal axis which rapidly releases high concentrations of glucocorticoid stress hormones, resulting in increased cellular metabolism and spontaneous oxygen and nitrogen radical formation. High concentrations of nitrogen radicals, including nitric oxide, cause damage to cellular proteins in addition to inhibiting components of the mitochondrial transport chain, leading to cellular energy deficiency. During stress exposure, pharmacological inhibition of nitric oxide production reduces indicators of anxiety- and depressive-like behavior in animal models. Therefore, the purpose of this review is to present an overview of the current literature on stress-evoked changes in the nitrergic system, particularly within neural tissue.
Collapse
Affiliation(s)
| | - Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
41
|
Gorantla V, Kirkwood JM, Tawbi HA. Melanoma brain metastases: an unmet challenge in the era of active therapy. Curr Oncol Rep 2014; 15:483-91. [PMID: 23954973 DOI: 10.1007/s11912-013-0335-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic disease to the brain is a frequent manifestation of melanoma and is associated with significant morbidity and mortality and poor prognosis. Surgery and stereotactic radiosurgery provide local control but less frequently affect the overall outcome of melanoma brain metastases (MBM). The role of systemic therapies for active brain lesions has been largely underinvestigated, and patients with active brain lesions are excluded from the vast majority of clinical trials. The advent of active systemic therapy has revolutionized the care of melanoma patients, but this benefit has not been systematically translated into intracranial activity. In this article, we review the biology and clinical outcomes of patients with MBM, and the evidence supporting the use of radiation, surgery, and systemic therapy in MBM. Prospective studies that included patients with active MBM have shown clinical intracranial activity that parallels systemic activity and support the inclusion of patients with active MBM in clinical trials involving novel agents and combination therapies.
Collapse
Affiliation(s)
- Vikram Gorantla
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
42
|
Oronsky B, Fanger GR, Oronsky N, Knox S, Scicinski J. The implications of hyponitroxia in cancer. Transl Oncol 2014; 7:167-73. [PMID: 24731473 PMCID: PMC4101386 DOI: 10.1016/j.tranon.2014.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/07/2014] [Accepted: 01/30/2014] [Indexed: 01/31/2023] Open
Abstract
Tumors are spatially heterogeneous, with regions of relative hypoxia and normoxia. The tumor microenvironment is an important determinant of both tumor growth and response to a variety of cytotoxic and targeted therapies. In the tumor microenvironment, reactive oxygen species and nitric oxide (NO) are important mediators of the level of expression of many transcription factors and signaling cascades that affect tumor growth and responses to therapy. The primary objective of this review is to explore and discuss the seemingly dichotomous actions of NO in cancer biology as both a tumor promoter and suppressor with an emphasis on understanding the role of persistently low NO concentrations or hyponitroxia as a key mediator in tumor progression. This review will also discuss the potential role of hyponitroxia as a novel therapeutic target to treat cancer and outline an approach that provides new opportunities for pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | - Susan Knox
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | | |
Collapse
|
43
|
O'Brien ER, Kersemans V, Tredwell M, Checa B, Serres S, Soto MS, Gouverneur V, Leppert D, Anthony DC, Sibson NR. Glial activation in the early stages of brain metastasis: TSPO as a diagnostic biomarker. J Nucl Med 2014; 55:275-80. [PMID: 24434290 DOI: 10.2967/jnumed.113.127449] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Metastatic spread of cancer cells to the brain is associated with high mortality, primarily because current diagnostic tools identify only well-advanced metastases. Brain metastases have been shown to induce a robust glial response, including both astrocyte and microglial activation. On the basis of these findings, we hypothesized that this stromal response may provide a sensitive biomarker of tumor burden, in particular through the use of SPECT/PET imaging agents targeting the translocator protein (TSPO) that is upregulated on activated glia. Our goals, therefore, were first to determine the spatial and temporal profile of glial activation during early metastasis growth in vivo and second to assess the potential of the radiolabeled TSPO ligand (123)I-DPA-713 for early detection of brain metastases. METHODS Metastatic mouse mammary carcinoma 4T1-green fluorescent protein cells were injected either intracerebrally or intracardially into female BALB/c mice to induce brain metastases. Astrocyte and microglial activation was assessed immunohistochemically over a 28-d period, together with immunofluorescence detection of TSPO upregulation. Subsequently, SPECT imaging and autoradiography were used to determine in vivo binding of (123)I-DPA-713 at metastatic sites. RESULTS Dynamic astrocyte and microglial activation was evident throughout the early stages of tumor growth, with the extent of astrocyte activation correlating significantly with tumor size (P < 0.0001). Microglial activation appeared to increase more rapidly than astrocyte activation at the earlier time points, but by later time points the extent of activation was comparable between the glial cell types. Upregulation of TSPO expression was found on both glial populations. Both autoradiographic and in vivo SPECT data showed strong positive binding of (123)I-DPA-713 in the intracerebrally induced model of brain metastasis, which was significantly greater than that observed in controls (P < 0.05). (123)I-DPA-713 binding was also evident autoradiographically in the intracardially induced model of brain metastasis but with lower sensitivity because of smaller tumor size (∼ 100-μm diameter vs. ∼ 600-μm diameter in the intracerebral model). CONCLUSION These data suggest that the glial response to brain metastasis may provide a sensitive biomarker of tumor burden, with a tumor detection threshold lying between 100 and 600 μm in diameter. This approach could enable substantially earlier detection of brain metastases than the current clinical approach of gadolinium-enhanced MR imaging.
Collapse
Affiliation(s)
- Emma R O'Brien
- CR-United Kingdom/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Berghoff AS, Preusser M. Biology in prevention and treatment of brain metastases. Expert Rev Anticancer Ther 2014; 13:1339-48. [DOI: 10.1586/14737140.2013.852067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anna S Berghoff
- Department of Medicine I and Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I and Comprehensive Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| |
Collapse
|
45
|
Yokoi K, Tanei T, Godin B, van de Ven AL, Hanibuchi M, Matsunoki A, Alexander J, Ferrari M. Serum biomarkers for personalization of nanotherapeutics-based therapy in different tumor and organ microenvironments. Cancer Lett 2013; 345:48-55. [PMID: 24370567 DOI: 10.1016/j.canlet.2013.11.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022]
Abstract
Enhanced permeation and retention (EPR) effect, the mechanism by which nanotherapeutics accumulate in tumors, varies in patients based on differences in the tumor and organ microenvironment. Surrogate biomarkers for the EPR effect will aid in selecting patients who will accumulate higher amounts of nanotherapeutics and show better therapeutic efficacy. Our data suggest that the differences in the vascular permeability and pegylated liposomal doxorubicin (PLD) accumulation are tumor type as well as organ-specific and significantly correlated with the relative ratio of MMP-9 to TIMP-1 in the circulation, supporting development of these molecules as biomarkers for the personalization of nanoparticle-based therapy.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Biomarkers, Tumor/blood
- Brain Neoplasms/blood
- Brain Neoplasms/drug therapy
- Brain Neoplasms/metabolism
- Brain Neoplasms/secondary
- Capillary Permeability
- Doxorubicin/administration & dosage
- Doxorubicin/analogs & derivatives
- Doxorubicin/pharmacokinetics
- Drug Delivery Systems
- Female
- Liver Neoplasms, Experimental/blood
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Matrix Metalloproteinase 9/blood
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Nanoparticles/administration & dosage
- Nanoparticles/metabolism
- Neoplasms, Experimental/blood
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Polyethylene Glycols/administration & dosage
- Polyethylene Glycols/pharmacokinetics
- Tissue Inhibitor of Metalloproteinase-1/blood
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kenji Yokoi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA; Department of Cancer Biology, Cancer Metastasis Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - Tomonori Tanei
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA
| | - Anne L van de Ven
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA
| | - Masaki Hanibuchi
- Department of Cancer Biology, Cancer Metastasis Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Aika Matsunoki
- Department of Cancer Biology, Cancer Metastasis Research Center, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jenolyn Alexander
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Street, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Sarkar S, Döring A, Zemp FJ, Silva C, Lun X, Wang X, Kelly J, Hader W, Hamilton M, Mercier P, Dunn JF, Kinniburgh D, van Rooijen N, Robbins S, Forsyth P, Cairncross G, Weiss S, Yong VW. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 2013; 17:46-55. [PMID: 24316889 DOI: 10.1038/nn.3597] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022]
Abstract
Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.
Collapse
Affiliation(s)
- Susobhan Sarkar
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Axinia Döring
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada. [3]
| | - Franz J Zemp
- 1] The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada. [2]
| | - Claudia Silva
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xueqing Lun
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xiuling Wang
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - John Kelly
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Walter Hader
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mark Hamilton
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Philippe Mercier
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dave Kinniburgh
- Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Stephen Robbins
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter Forsyth
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gregory Cairncross
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
47
|
Balathasan L, Beech JS, Muschel RJ. Ultrasonography-guided intracardiac injection: an improvement for quantitative brain colonization assays. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:26-34. [PMID: 23665347 DOI: 10.1016/j.ajpath.2013.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 03/26/2013] [Indexed: 12/21/2022]
Abstract
Brain metastasis is a frequent occurrence in patients with cancer, with devastating consequences. The current animal models for brain metastasis are highly variable, leading to a need for improved in vivo models that recapitulate the clinical disease. Herein, we describe an experimental brain metastasis model that uses ultrasonographic guidance to perform intracardiac injections. This method is easy to perform, giving consistent and quantitative results. Demonstrating the utility of this method, we have assessed a variety of metastatic cell lines for their ability to develop into brain metastases. Those cell lines that were competent at brain colonization could be detected in the brain vasculature 4 hours after intracardiac injection, and a few adherent cells persisted until colonization occurred. In contrast, those cell lines that were deficient in brain colonization were infrequently found 4 hours after introduction into the arterial circulation and were not detected at later time points. All of these cells were capable of brain colonization after intraparenchymal injection. We propose that adherence to the brain vasculature may be the key limiting step that determines the ability of a cancer cell to form brain metastases successfully. Identifying brain endothelium-specific adhesion molecules may enable development of screening modalities to detect brain-colonizing cancer cells and therapies to prevent these metastatic cells from seeding the brain.
Collapse
Affiliation(s)
- Lukxmi Balathasan
- Department of Oncology, the Gray Institute for Radiation, Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
48
|
Fokas E, Steinbach JP, Rödel C. Biology of brain metastases and novel targeted therapies: time to translate the research. Biochim Biophys Acta Rev Cancer 2012; 1835:61-75. [PMID: 23142311 DOI: 10.1016/j.bbcan.2012.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 01/23/2023]
Abstract
Brain metastases (BM) occur in 20% to 40% of patients with cancer and result in significant morbidity and poor survival. The main therapeutic options include surgery, whole brain radiotherapy, stereotactic radiosurgery and chemotherapy. Although significant progress has been made in diagnostic and therapeutic methods, the prognosis in these patients remains poor. Furthermore, the poor penetrability of chemotherapy agents through the blood brain barrier (BBB) continues to pose a challenge in the management of this disease. Preclinical evidence suggests that new targeted treatments can improve local tumor control but our clinical experience with these agents remains limited. In addition, several clinical studies with these novel agents have produced disappointing results. This review will examine the knowledge of targeted therapies in BM. The preclinical and clinical evidence of their use in BM induced by breast cancer, non-small cell lung cancer and melanoma will be presented. In addition, we will discuss the role of antiangiogenic and radiosensitising agents in the treatment of BM and the current strategies available to increase BBB permeability. A better understanding of the mechanism of action of these agents will help us to identify the best targets for testing in future clinical studies.
Collapse
Affiliation(s)
- Emmanouil Fokas
- Department of Radiation Therapy and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | |
Collapse
|
49
|
Effects of Taraxacum officinale on fatigue and immunological parameters in mice. Molecules 2012; 17:13253-65. [PMID: 23135630 PMCID: PMC6268574 DOI: 10.3390/molecules171113253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/18/2012] [Accepted: 10/31/2012] [Indexed: 11/24/2022] Open
Abstract
In Korean herbal medicine dandelion (Taraxacum officinale, TO) has been used to improve energy levels and health. However, the effects of TO in experimental models remain unclear. We examined the anti-fatigue and immune-enhancing effects of TO in mice by performing a forced swimming test (FST) and in vitro by using peritoneal macrophages, respectively. After daily oral administration of TO, blood biochemical parameters related to fatigue were measured after the FST. FST immobility time was significantly decreased in the TO-treated group (100 mg/kg) on the tenth day. TO (10 and 100 mg/kg) treatment significantly increased glucose levels, acting as an energy source. The level of lactic dehydrogenase, which is an accurate indicator of muscle damage, tended to decline after TO administration (10 and 100 mg/kg). When TO (100 mg/kg) was orally administered to mice, blood urea nitrogen levels decreased significantly. We also examined the effect of TO on the production of cytokines and nitric oxide (NO) in mouse peritoneal macrophages. When TO was used in combination with recombinant interferon-gamma (rIFN-γ), a noticeable cooperative induction of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-12p70, and IL-10 production was observed. Furthermore, in peritoneal macrophages, rIFN-γ plus TO treatment significantly increased the production of NO through inducible nitric oxide synthase (iNOS) induction. Taken together, these results suggest that TO improves fatigue-related indicators and immunological parameters in mice.
Collapse
|
50
|
Xu L, Yao Z, Wu H, Wang F, Zhang S. The immune regulation of κ-carrageenan oligosaccharide and its desulfated derivatives on LPS-activated microglial cells. Neurochem Int 2012; 61:689-96. [DOI: 10.1016/j.neuint.2012.06.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/25/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
|