1
|
Mshaik R, Simonet J, Georgievski A, Jamal L, Bechoua S, Ballerini P, Bellaye PS, Mlamla Z, Pais de Barros JP, Geissler A, Francin PJ, Girodon F, Garrido C, Quéré R. HSP90 inhibitor NVP-BEP800 affects stability of SRC kinases and growth of T-cell and B-cell acute lymphoblastic leukemias. Blood Cancer J 2021; 11:61. [PMID: 33737511 PMCID: PMC7973815 DOI: 10.1038/s41408-021-00450-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
T-cell and B-cell acute lymphoblastic leukemias (T-ALL, B-ALL) are aggressive hematological malignancies characterized by an accumulation of immature T- or B-cells. Although patient outcomes have improved, novel targeted therapies are needed to reduce the intensity of chemotherapy and improve the prognosis of high-risk patients. Using cell lines, primary cells and patient-derived xenograft (PDX) models, we demonstrate that ALL cells viability is sensitive to NVP-BEP800, an ATP-competitive inhibitor of Heat shock protein 90 (HSP90). Furthermore, we reveal that lymphocyte-specific SRC family kinases (SFK) are important clients of the HSP90 chaperone in ALL. When PDX mice are treated with NVP-BEP800, we found that there is a decrease in ALL progression. Together, these results demonstrate that the chaperoning of SFK by HSP90 is involved in the growth of ALL. These novel findings provide an alternative approach to target SRC kinases and could be used for the development of new treatment strategies for ALL.
Collapse
Affiliation(s)
- Rony Mshaik
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
| | - John Simonet
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Layla Jamal
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
| | - Shaliha Bechoua
- Centre de Ressources Biologiques Ferdinand Cabanne, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Paola Ballerini
- Laboratoire d'Hématologie, Assistance Publique Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Pierre-Simon Bellaye
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Zandile Mlamla
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Plateforme de Lipidomique, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
- Plateforme de Lipidomique, Université de Bourgogne Franche-Comté, Dijon, France
| | - Audrey Geissler
- Plateforme d'Imagerie Cellulaire, CellImaP, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Jean Francin
- Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie, Hôpital Universitaire François Mitterrand, Dijon, France
| | - François Girodon
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- Service d'Hématologie Biologique, Hôpital Universitaire François Mitterrand, Dijon, France
| | - Carmen Garrido
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France
- Centre Georges-François Leclerc, Dijon, France
| | - Ronan Quéré
- UMR1231, Inserm, Université de Bourgogne Franche-Comté, Dijon, France.
- LipSTIC LabEx, Fondation de Coopération Scientifique de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
2
|
Radiosensitization of HSF-1 Knockdown Lung Cancer Cells by Low Concentrations of Hsp90 Inhibitor NVP-AUY922. Cells 2019; 8:cells8101166. [PMID: 31569342 PMCID: PMC6829369 DOI: 10.3390/cells8101166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/25/2022] Open
Abstract
The inhibition of heat shock protein 90 (Hsp90) a molecular chaperone for multiple oncogenic client proteins is considered as a promising approach to overcome radioresistance. Since most Hsp90 inhibitors activate HSF-1 that induces the transcription of cytoprotective and tumor-promoting stress proteins such as Hsp70 and Hsp27, a combined approach consisting of HSF-1 knockdown (k.d.) and Hsp90 inhibition was investigated. A specific HSF-1 k.d. was achieved in H1339 lung cancer cells using RNAi-Ready pSIRENRetroQ vectors with puromycin resistance. The Hsp90 inhibitor NVP-AUY922 was evaluated at low concentrations—ranging from 1–10 nM—in control and HSF-1 k.d. cells. Protein expression (i.e., Hsp27/Hsp70, HSF-1, pHSF-1, Akt, ß-actin) and transcriptional activity was assessed by western blot analysis and luciferase assays and radiosensitivity was measured by proliferation, apoptosis (Annexin V, active caspase 3), clonogenic cell survival, alkaline comet, γH2AX, 53BP1, and Rad51 foci assays. The k.d. of HSF-1 resulted in a significant reduction of basal and NVP-AUY922-induced Hsp70/Hsp27 expression levels. A combined approach consisting of HSF-1 k.d. and low concentrations of the Hsp90 inhibitor NVP-AUY922 reduces the Hsp90 client protein Akt and potentiates radiosensitization, which involves an impaired homologous recombination mediated by Rad51. Our findings are key for clinical applications of Hsp90 inhibitors with respect to adverse hepatotoxic effects.
Collapse
|
3
|
MEK-inhibitor PD184352 enhances the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922: the role of cell type and drug-irradiation schedule. Oncotarget 2018; 9:37379-37392. [PMID: 30647839 PMCID: PMC6324777 DOI: 10.18632/oncotarget.26436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
Targeting MEK protein in cancer cells usually leads to acquired resistance to MEK inhibitors and activation of the prosurvival protein Akt. Since both MEK and Akt are clients of the Hsp90 chaperone system, the present study explores the responses of irradiated lung carcinoma A549 and glioblastoma SNB19 cell lines to combined MEK and Hsp90 inhibition. Unexpectedly, the MEK inhibitor PD184352 administered 24 h prior to irradiation, enhanced cell survival through upregulation of not only MEK and Erk1/2 but also of Akt. In contrast, PD184352 added 1 h before irradiation strongly reduced the expression of Erk and did not upregulate Akt in both cell lines. As a result, the MEK inhibitor increased the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in glioblastoma SNB19 cells. Possible reasons for the enhanced cell killing under this short-term pretreatment schedule may be a down-regulation of Erk during or directly after irradiation, increased DNA damage and/or a strong G2/M arrest 24 h after irradiation. In addition, an 1-h pretreatment with PD184352 and/or NVP-AUY922 under schedule II induced neither G1 arrest nor up-regulation of p-Akt in both cell lines as it did under schedule I. Yet, a long-term treatment with the MEK inhibitor alone caused a strong cytostatical effect. We conclude that the duration of drug pretreatment before irradiation plays a key role in the targeting of MEK in tumor cells. However, due to an aberrant activation of prosurvival proteins, the therapeutic window needs to be carefully defined, or a combination of inhibitors should be considered.
Collapse
|
4
|
Djuzenova CS, Fiedler V, Katzer A, Michel K, Deckert S, Zimmermann H, Sukhorukov VL, Flentje M. Dual PI3K- and mTOR-inhibitor PI-103 can either enhance or reduce the radiosensitizing effect of the Hsp90 inhibitor NVP-AUY922 in tumor cells: The role of drug-irradiation schedule. Oncotarget 2018; 7:38191-38209. [PMID: 27224913 PMCID: PMC5122382 DOI: 10.18632/oncotarget.9501] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/01/2016] [Indexed: 12/12/2022] Open
Abstract
Inhibition of Hsp90 can increase the radiosensitivity of tumor cells. However, inhibition of Hsp90 alone induces the anti-apoptotic Hsp70 and thereby decreases radiosensitivity. Therefore, preventing Hsp70 induction can be a promising strategy for radiosensitization. PI-103, an inhibitor of PI3K and mTOR, has previously been shown to suppress the up-regulation of Hsp70. Here, we explore the impact of combining PI-103 with the Hsp90 inhibitor NVP-AUY922 in irradiated glioblastoma and colon carcinoma cells. We analyzed the cellular response to drug-irradiation treatments by colony-forming assay, expression of several marker proteins, cell cycle progression and induction/repair of DNA damage. Although PI-103, given 24 h prior to irradiation, slightly suppressed the NVP-AUY922-mediated up-regulation of Hsp70, it did not cause radiosensitization and even diminished the radiosensitizing effect of NVP-AUY922. This result can be explained by the activation of PI3K and ERK pathways along with G1-arrest at the time of irradiation. In sharp contrast, PI-103 not only exerted a radiosensitizing effect but also strongly enhanced the radiosensitization by NVP-AUY922 when both inhibitors were added 3 h before irradiation and kept in culture for 24 h. Possible reasons for the observed radiosensitization under this drug-irradiation schedule may be a down-regulation of PI3K and ERK pathways during or directly after irradiation, increased residual DNA damage and strong G2/M arrest 24 h thereafter. We conclude that duration of drug treatment before irradiation plays a key role in the concomitant targeting of PI3K/mTOR and Hsp90 in tumor cells.
Collapse
Affiliation(s)
- Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Konstanze Michel
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Stefanie Deckert
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer-Institut für Biomedizinische Technik, St. Ingbert and Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Preclinical Study of AUY922, a Novel Hsp90 Inhibitor, in the Treatment of Esophageal Adenocarcinoma. Ann Surg 2017; 264:297-304. [PMID: 26445473 DOI: 10.1097/sla.0000000000001467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess the efficacy of heat-shock protein 90 (Hsp90) inhibitor, NVP-AUY922-AG (AUY922), in the treatment of esophageal adenocarcinoma (EAC) in vitro and in vivo. BACKGROUND EAC is a leading cause of cancer death, and current treatment options are limited. Hsp90, a chaperone protein that regulates several oncoproteins, is upregulated in EAC, and may be a novel target for therapy. METHODS In vitro, EAC cell lines were utilized to evaluate AUY922, alone and in combination with 5-fluorouracil (5-FU) and cisplatin. BrdU ELISA and flow cytometry were used to assess proliferation and measure apoptosis, respectively. Western blot and RT-PCR were performed to quantitate Hsp90 pathway expression. In vivo, esophagojejunostomy was performed on rats and treatment animals received AUY922 32 to 40 weeks postoperatively. Drug efficacy was evaluated with magnetic resonance imaging (MRI), endoscopic biopsy, gross histological evaluation, and Hsp90 pathway expression. RESULTS In vitro, AUY922 demonstrated antiproliferative activity in both cell lines and showed enhanced efficacy with cisplatin and 5-FU. Western Blot and RT-PCR demonstrated downregulation of CDK1 and CDK4 and upregulation of Hsp72. In vivo, AUY922 showed decrease in tumor volume in 36.4% of rats (control = 9.4%), increase in 9.1% (control = 37.5%), and stable disease in 54.5% (control = 43.7%). Necropsy confirmed the presence of EAC in 50% of treatment animals and 75% of control animals. mRNA expression, pre- and posttreatment, demonstrated significant downregulation of MIF, Hsp70, Hsp90β, and CDK4, and upregulation of Hsp72. CONCLUSIONS AUY922 exhibits antitumor efficacy in vitro and in vivo for EAC, suggesting the need for human clinical trials.
Collapse
|
6
|
Khan Z, Khan AA, Yadav H, Prasad GBKS, Bisen PS. Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett 2017; 22:8. [PMID: 28536639 PMCID: PMC5415770 DOI: 10.1186/s11658-017-0038-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common cancer worldwide. The treatment of locally advanced disease generally requires various combinations of radiotherapy, surgery, and systemic therapy. Despite aggressive multimodal treatment, most of the patients relapse. Identification of molecules that sustain cancer cell growth and survival has made molecular targeting a feasible therapeutic strategy. Survivin is a member of the Inhibitor of Apoptosis Protein (IAP) family, which is overexpressed in most of the malignancies including SCC and totally absent in most of the normal tissues. This feature makes survivin an ideal target for cancer therapy. It orchestrates several important mechanisms to support cancer cell survival including inhibition of apoptosis and regulation of cell division. Overexpression of survivin in tumors is also associated with poor prognosis, aggressive tumor behavior, resistance to therapy, and high tumor recurrence. Various strategies have been developed to target survivin expression in cancer cells, and their effects on apoptosis induction and tumor growth attenuation have been demonstrated. In this review, we discuss recent advances in therapeutic potential of survivin in cancer treatment.
Collapse
Affiliation(s)
- Zakir Khan
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India.,Department of Biomedical Sciences, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hariom Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Prakash Singh Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India
| |
Collapse
|
7
|
Lee SL, Dempsey-Hibbert NC, Vimalachandran D, Wardle TD, Sutton PA, Williams JHH. Re-examining HSPC1 inhibitors. Cell Stress Chaperones 2017; 22:293-306. [PMID: 28255900 PMCID: PMC5352602 DOI: 10.1007/s12192-017-0774-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
HSPC1 is a critical protein in cancer development and progression, including colorectal cancer (CRC). However, clinical trial data reporting the effectiveness of HSPC1 inhibitors on several cancer types has not been as successful as predicted. Furthermore, some N-terminal inhibitors appear to be much more successful than others despite similar underlying mechanisms. This study involved the application of three N-terminal HSPC1 inhibitors, 17-DMAG, NVP-AUY922 and NVP-HSP990 on CRC cells. The effects on client protein levels over time were examined. HSPC1 inhibitors were also applied in combination with chemotherapeutic agents commonly used in CRC treatment (5-fluorouracil, oxaliplatin and irinotecan). As HSPA1A and HSPB1 have anti-apoptotic activity, gene-silencing techniques were employed to investigate the significance of these proteins in HSPC1 inhibitor and chemotherapeutic agent resistance. When comparing the action of the three HSPC1 inhibitors, there are distinct differences in the time course of important client protein degradation events. The differences between HSPC1 inhibitors were also reflected in combination treatment-17-DMAG was more effective compared with NVP-AUY922 in potentiating the cytotoxic effects of 5-fluorouracil, oxaliplatin and irinotecan. This study concludes that there are distinct differences between N-terminal HSPC1 inhibitors, despite their common mode of action. Although treatment with each of the inhibitors results in significant induction of the anti-apoptotic proteins HSPA1A and HSPB1, sensitivity to HSPC1 inhibitors is not improved by gene silencing of HSPA1A or HSPB1. HSPC1 inhibitors potentiate the cytotoxic effects of chemotherapeutic agents in CRC, and this approach is readily available to enter clinical trials. From a translational point of view, there may be great variability in sensitivity to the inhibitors between individual patients.
Collapse
Affiliation(s)
- Sheah Lin Lee
- Chester Centre for Stress Research, Institute of Medicine, University of Chester, Bache Hall, CH2 1BR, Chester, UK.
- University Hospital Southampton, Tremona Road, SO16 6YD, Southampton, UK.
| | - Nina Claire Dempsey-Hibbert
- Chester Centre for Stress Research, Institute of Medicine, University of Chester, Bache Hall, CH2 1BR, Chester, UK
- Centre for Biomedicine Research, Manchester Metropolitan University, Chester Street, M1 5GD, Manchester, UK
| | | | | | - Paul A Sutton
- Countess of Chester Hospital, Liverpool Rd, CH2 1UL, Chester, UK
| | - John H H Williams
- Chester Centre for Stress Research, Institute of Medicine, University of Chester, Bache Hall, CH2 1BR, Chester, UK
| |
Collapse
|
8
|
Spiegelberg D, Dascalu A, Mortensen AC, Abramenkovs A, Kuku G, Nestor M, Stenerlöw B. The novel HSP90 inhibitor AT13387 potentiates radiation effects in squamous cell carcinoma and adenocarcinoma cells. Oncotarget 2016; 6:35652-66. [PMID: 26452257 PMCID: PMC4742132 DOI: 10.18632/oncotarget.5363] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022] Open
Abstract
Overexpression of heat shock protein 90 (HSP90) is associated with increased tumor cell survival and radioresistance. In this study we explored the efficacy of the novel HSP90 inhibitor AT13387 and examined its radiosensitizing effects in combination with gamma-radiation in 2D and 3D structures as well as mice-xenografts. AT13387 induced effective cytotoxic activity and radiosensitized cancer cells in monolayer and tumor spheroid models, where low drug doses triggered significant synergistic effects on cell survival together with radiation. Furthermore, AT13387 treatment resulted in G2/M-phase arrest and significantly reduced the migration capacity. The expression of selected client proteins involved in DNA repair, cell-signaling and cell growth was downregulated in vitro, though the expression of most investigated proteins recurred after 8–24 h. These results were confirmed in vivo where AT13387 treated tumors displayed effective downregulation of HSP90 and its oncogenic client proteins. In conclusion, our results demonstrate that AT13387 is a potent new cancer drug and effective radiosensitizer in vitro with an excellent in vivo efficacy. AT13387 treatment has the potential to improve external beam therapy and radionuclide therapy outcomes and restore treatment efficacy in cancers that are resistant to initial therapeutic regimes.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Adrian Dascalu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anja C Mortensen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andris Abramenkovs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gamze Kuku
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Unit of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Wang Y, Liu H, Diao L, Potter A, Zhang J, Qiao Y, Wang J, Proia DA, Tailor R, Komaki R, Lin SH. Hsp90 Inhibitor Ganetespib Sensitizes Non-Small Cell Lung Cancer to Radiation but Has Variable Effects with Chemoradiation. Clin Cancer Res 2016; 22:5876-5886. [PMID: 27354472 DOI: 10.1158/1078-0432.ccr-15-2190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE HSP90 inhibition is well known to sensitize cancer cells to radiation. However, it is currently unknown whether additional radiosensitization could occur in the more clinically relevant setting of chemoradiation (CRT). We used the potent HSP90 inhibitor ganetespib to determine whether it can enhance CRT effects in NSCLC. EXPERIMENTAL DESIGN We first performed in vitro experiments in various NSCLC cell lines combining radiation with or without ganetespib. Some of these experiments included clonogenic survival assay, DNA damage repair, and cell-cycle analysis, and reverse-phase protein array. We then determined whether chemotherapy affected ganetespib radiosensitization by adding carboplatin-paclitaxel to some of the in vitro and in vivo xenograft experiments. RESULTS Ganetespib significantly reduced radiation clonogenic survival in a number of lung cancer cell lines, and attenuated DNA damage repair with irradiation. Radiation caused G2-M arrest that was greatly accentuated by ganetespib. Ganetespib with radiation also dose-dependently upregulated p21 and downregulated pRb levels that were not apparent with either drug or radiation alone. However, when carboplatin-paclitaxel was added, ganetespib was only able to radiosensitize some cell lines but not others. This variable in vitro CRT effect was confirmed in vivo using xenograft models. CONCLUSIONS Ganetespib was able to potently sensitize a number of NSCLC cell lines to radiation but has variable effects when added to platinum-based doublet CRT. For optimal clinical translation, our data emphasize the importance of preclinical testing of drugs in the context of clinically relevant therapy combinations. Clin Cancer Res; 22(23); 5876-86. ©2016 AACR.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Hui Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adam Potter
- Texas A&M School of Medicine, College Station, Texas
| | - Jianhu Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yawei Qiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David A Proia
- Synta Pharmaceuticals Corp, Lexington, Massachusetts
| | - Ramesh Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
11
|
Hirakawa H, Fujisawa H, Masaoka A, Noguchi M, Hirayama R, Takahashi M, Fujimori A, Okayasu R. The combination of Hsp90 inhibitor 17AAG and heavy-ion irradiation provides effective tumor control in human lung cancer cells. Cancer Med 2015; 4:426-36. [PMID: 25582113 PMCID: PMC4380968 DOI: 10.1002/cam4.377] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/29/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023] Open
Abstract
Hsp90 inhibitors have become well-studied antitumor agents for their selective property against tumors versus normal cells. The combined treatment of Hsp90 inhibitor and conventional photon radiation also showed more effective tumor growth delay than radiation alone. However, little is known regarding the combined treatment of Hsp90 inhibitor and heavy-ion irradiation. In this study, SQ5 human lung tumor cells were used in vitro for clonogenic cell survival and in vivo for tumor growth delay measurement using a mouse xenograft model after 17-allylamino-17-demethoxygeldanamycin (17AAG) pretreatment and carbon ion irradiation. Repair of DNA double strand breaks (DSBs) was also assessed along with expressions of DSB repair-related proteins. Cell cycle analysis after the combined treatment was also performed. The combined treatment of 17AAG and carbon ions revealed a promising treatment option in both in vitro and in vivo studies. One likely cause of this effectiveness was shown to be the inhibition of homologous recombination repair by 17AAG. The more intensified G2 cell cycle delay was also associated with the combined treatment when compared with carbon ion treatment alone. Our findings indicate that the combination of Hsp90 inhibition and heavy-ion irradiation provides a new effective therapeutic alternative for treatment of solid tumors.
Collapse
Affiliation(s)
- Hirokazu Hirakawa
- International Open Laboratory and Research Center for Charged Particle Therapy/Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lee SL, Dempsey-Hibbert NC, Vimalachandran D, Wardle TD, Sutton P, Williams JHH. Targeting Heat Shock Proteins in Colorectal Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-17211-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Wu J, Wang W, Shao Q, Xiao G, Cheng J, Yuan Y, Zhang M. Irradiation facilitates the inhibitory effect of the heat shock protein 90 inhibitor NVP-BEP800 on the proliferation of malignant glioblastoma cells through attenuation of the upregulation of heat shock protein 70. Exp Ther Med 2014; 8:893-898. [PMID: 25120620 PMCID: PMC4113540 DOI: 10.3892/etm.2014.1800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/30/2014] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to investigate the effect of NVP-BEP800, a novel heat shock protein (Hsp) 90 inhibitor of the 2-aminothieno[2,3-d]pyrimidine class, in combination with radiation on glioblastoma cells. T98G human glioblastoma cells were treated with dimethyl sulfoxide (DMSO), NVP-BEP800, NVP-BEP800 in combination with X-ray irradiation (10 Gy, 20 min), or X-ray irradiation only, and cultured for 40 h. Cell viability was measured upon completion of the treatments. In addition, apoptosis was measured and immunoblot analysis was performed to analyze the expression levels of cellular protein inhibitory κB kinase β (IKKβ). The combined treatment with NVP-BEP800 and X-ray irradiation resulted in the synergistic destruction of malignant cells. Furthermore, NVP-BEP800 significantly induced apoptosis in the human glioblastoma cells. The immunoblot analysis data indicated that NVP-BEP800 markedly reduced the expression level of IKKβ. The results also revealed that X-ray irradiation significantly attenuated the increase in the level of Hsp70 in cells treated with NVP-BEP800. Since elevated levels of Hsp70 are associated with drug resistance induced by Hsp90 inhibitors, the effects of X-ray irradiation on Hsp70 levels may be associated with the enhanced effect on cells of the presence of irradiation. The results of the current study suggest that irradiation enhances the inhibitory effect of NVP-BEP800 on the proliferation of malignant glioblastoma cells by downregulating the expression level of cellular signaling protein IKKβ and attenuating the upregulation of Hsp70 that is induced by NVP-BEP800.
Collapse
Affiliation(s)
- Jianyue Wu
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Weimin Wang
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Qin Shao
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Guomin Xiao
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jun Cheng
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yunpeng Yuan
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Mei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
14
|
Wachsberger PR, Lawrence YR, Liu Y, Rice B, Feo N, Leiby B, Dicker AP. Hsp90 inhibition enhances PI-3 kinase inhibition and radiosensitivity in glioblastoma. J Cancer Res Clin Oncol 2014; 140:573-82. [PMID: 24500492 DOI: 10.1007/s00432-014-1594-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE Combined targeting with a PI3-kinase inhibitor, BKM120, and an Hsp90 inhibitor, HSP990, was investigated as a multi-targeted approach to potentiate cell death in glioblastoma (GBM). Additionally, the effect of dual drug treatment combined with cytotoxic stress (radiation therapy) was examined. METHODS Four human GBM cell lines containing wild-type or mutated PTEN and/or p53 were studied. The effects of drug treatments on cell viability, apoptosis induction, pAKt activity, cell cycle arrest, clonogenicity, and tumor growth delay were studied. RESULTS Combined concurrent treatment with both drugs produced more cell killing in cell viability and apoptosis assays than either drug alone. BKM120 plus HSP990 induced suppression of baseline Akt signaling as well as radiation (RT)-induced pAkt signaling in all cell lines. Cell cycle analysis revealed that HSP990 and BKM120, singly or combined, induced G2/M arrest leading to apoptosis/necrosis and polyploidy. Additionally, the drugs radiosensitized GBM cells in clonogenic assays. In vivo tumor growth delay studies demonstrated the effectiveness of combined drug treatment with HSP990 and BKM120 over single drug treatment, as well as the effectiveness of combined drug treatment in enhancing the effectiveness of radiation therapy. CONCLUSIONS In conclusion, HSP990 and BKM120, with and without RT, are active agents against glioma tumors. The sensitivity to these agents does not appear to depend on PTEN/p53status in the cell lines tested. We suggest that the combined action of both drugs is a viable multi-targeted strategy with the potential to improve clinical outcome for patients with high-grade glioma.
Collapse
Affiliation(s)
- Phyllis R Wachsberger
- Department of Radiation Oncology, Thomas Jefferson University, Jefferson Alumni Hall, Room 341, 1020 Locust St., Philadelphia, PA, 19107, USA,
| | | | | | | | | | | | | |
Collapse
|
15
|
Memmel S, Sukhorukov VL, Höring M, Westerling K, Fiedler V, Katzer A, Krohne G, Flentje M, Djuzenova CS. Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status. PLoS One 2014; 9:e87052. [PMID: 24498019 PMCID: PMC3909012 DOI: 10.1371/journal.pone.0087052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/17/2013] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by rapid growth, invasion and resistance to chemo−/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM), the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT) technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN) exhibited the lowest degree of membrane folding, probed by the area-specific capacitance Cm = 1.9 µF/cm2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19) showed the highest Cm values of 3.7–4.0 µF/cm2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the migration and invasion of GBM and other tumor types.
Collapse
Affiliation(s)
- Simon Memmel
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Vladimir L. Sukhorukov
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
- * E-mail: (VLS); (CSD)
| | - Marcus Höring
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Katherine Westerling
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Georg Krohne
- Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Cholpon S. Djuzenova
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
- * E-mail: (VLS); (CSD)
| |
Collapse
|
16
|
Alexander BM, Ligon KL, Wen PY. Enhancing radiation therapy for patients with glioblastoma. Expert Rev Anticancer Ther 2013; 13:569-81. [PMID: 23617348 DOI: 10.1586/era.13.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radiation therapy has been the foundation of therapy following maximal surgical resection in patients with newly diagnosed glioblastoma for decades and the primary therapy for unresected tumors. Using the standard approach with radiation and temozolomide, however, outcomes are poor, and glioblastoma remains an incurable disease with the majority of recurrences and progression within the radiation treatment field. As such, there is much interest in elucidating the mechanisms of resistance to radiation therapy and in developing novel approaches to overcoming this treatment resistance.
Collapse
Affiliation(s)
- Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA.
| | | | | |
Collapse
|
17
|
Molecularly targeted agents as radiosensitizers in cancer therapy--focus on prostate cancer. Int J Mol Sci 2013; 14:14800-32. [PMID: 23863691 PMCID: PMC3742274 DOI: 10.3390/ijms140714800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022] Open
Abstract
As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer.
Collapse
|
18
|
Gandhi N, Wild AT, Chettiar ST, Aziz K, Kato Y, Gajula RP, Williams RD, Cades JA, Annadanam A, Song D, Zhang Y, Hales RK, Herman JM, Armour E, DeWeese TL, Schaeffer EM, Tran PT. Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells. Cancer Biol Ther 2013; 14:347-56. [PMID: 23358469 DOI: 10.4161/cbt.23626] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the "non-oncogene" addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded "client" proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4-1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G 2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies.
Collapse
Affiliation(s)
- Nishant Gandhi
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hartmann S, Günther N, Biehl M, Katzer A, Kuger S, Worschech E, Sukhorukov VL, Krohne G, Zimmermann H, Flentje M, Djuzenova CS. Hsp90 inhibition by NVP-AUY922 and NVP-BEP800 decreases migration and invasion of irradiated normoxic and hypoxic tumor cell lines. Cancer Lett 2013; 331:200-10. [PMID: 23340178 DOI: 10.1016/j.canlet.2012.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/19/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
This study explores the impact of Hsp90 inhibitors NVP-AUY922 and NVP-BEP800 in combination with ionizing radiation (IR) on the migration and invasion of lung carcinoma A549 and glioblastoma SNB19 cells, under normoxia or hypoxia. Independent of oxygen concentration, both drugs decreased the migration and invasion rates of non-irradiated tumor cells. Combined drug-IR treatment under hypoxia inhibited cell invasion to a greater extent than did each treatment alone. Decreased migration of cells correlated with altered expression of several matrix-associated proteins (FAK/p-FAK, Erk2, RhoA) and impaired F-actin modulation. The anti-metastatic efficacy of the Hsp90 inhibitors could be useful in combinational therapies of cancer.
Collapse
Affiliation(s)
- Susanne Hartmann
- Department of Radiation Oncology, University of Würzburg, Josef-Schneider-Strasse 11, D-97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|