1
|
Busselman RE, Curtis-Robles R, Meyers AC, Zecca IB, Auckland LD, Hodo CL, Christopher D, Saunders AB, Hamer SA. Abundant triatomines in Texas dog kennel environments: Triatomine collections, infection with Trypanosoma cruzi, and blood feeding hosts. Acta Trop 2024; 250:107087. [PMID: 38061614 DOI: 10.1016/j.actatropica.2023.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Triatomine insects are vectors of the protozoan parasite Trypanosoma cruzi- the causative agent of Chagas disease. Chagas disease is endemic to Latin America and the southern United States and can cause severe cardiac damage in infected mammals, ranging from chronic disease to sudden death. Identifying interactions among triatomines, T. cruzi discrete typing units (DTUs), and blood feeding hosts is necessary to understand parasite transmission dynamics and effectively protect animal and human health. Through manual insect trapping efforts, kennel staff collections, and with the help of a trained scent detection dog, we collected triatomines from 10 multi-dog kennels across central and south Texas over a one-year period (2018-2019) and tested a subset to determine their T. cruzi infection status and identify the primary bloodmeal hosts. We collected 550 triatomines, including Triatoma gerstaeckeri (n = 515), Triatoma lecticularia (n = 15), Triatoma sanguisuga (n = 6), and Triatoma indictiva (n = 2), with an additional 10 nymphs and 2 adults unable to be identified to species. The trained dog collected 42 triatomines, including nymphs, from areas not previously considered vector habitat by the kennel owners. Using qPCR, we found a T. cruzi infection prevalence of 47 % (74/157), with T. lecticularia individuals more likely to be infected with T. cruzi than other species. Infected insects harbored two T. cruzi discrete typing units: TcI (64 %), TcIV (23 %), and mixed TcI/TcIV infections (13 %). Bloodmeal host identification was successful in 50/149 triatomines, revealing the majority (74 %) fed on a dog (Canis lupus), with other host species including humans (Homo sapiens), raccoons (Procyon lotor), chickens (Gallus gallus), wild pig (Sus scrofa), black vulture (Coragyps atratus), cat (Felis catus), and curve-billed thrasher (Toxostoma curviostre). Given the frequency of interactions between dogs and infected triatomines in these kennel environments, dogs may be an apt target for future vector control and T. cruzi intervention efforts.
Collapse
Affiliation(s)
- R E Busselman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - R Curtis-Robles
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - A C Meyers
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - I B Zecca
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - L D Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - C L Hodo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States; Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | | | - A B Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - S A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
2
|
Ibarra Bouzada LME, Martinez Beningaza A, Cecere MC, Babino L, Guerenstein PG. Two sticky traps baited with synthetic host odors to capture Triatoma infestans, an important vector of Chagas disease. Acta Trop 2023; 246:106993. [PMID: 37516421 DOI: 10.1016/j.actatropica.2023.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Chagas disease is a vector-borne disease caused by Trypanosoma cruzi, which is transmitted by triatomine insects. Triatoma infestans is one of the main vectors. Efforts to eliminate T. infestans have often failed in the Gran Chaco, the largest endemic area of this species. Known methods for assessing triatomine house infestation include timed-manual collections by skilled personnel, bug notifications by householders' and/or non-baited detection devices. However, the detection sensitivity of those methods needs to be improved, especially when the bugs are present at low densities. In this work we design and evaluate the performance of two types of sticky traps (pitfall and climbing traps), when baited with a synthetic host odor lure, to capture T. infestans nymphs within an experimental box under semi-controlled laboratory conditions. Nine assays were conducted for each type of trap using a different experimental box per type of trap design and per treatment. These treatments were: test (T, trap baited with the synthetic lure), positive control (C+, trap baited with a mouse) and negative control (C-, empty trap). One hundred percent of the sticky pitfall and 89% of the climbing traps baited with the synthetic lure captured at least one insect. Moreover, the sticky pitfall trap and the sticky climbing trap, both baited with the synthetic lure, captured 30% and 40% of the insects in a single night, respectively. In both cases, the trap with the synthetic lure captured significantly more insects than the non-baited trap. However, the synthetic lure could be improved, as the traps with this lure captured significantly less insects than the traps with a live host. In summary, the two types of synthetically-baited traps tested were able to capture T. infestans nymphs, indicating that both designs are effective under the laboratory experimental conditions and insect abundance used in this work. These traps deserve to be tested in a field setting.
Collapse
Affiliation(s)
- Lucía M E Ibarra Bouzada
- Laboratorio de Estudio de la Biología de Insectos, Centro de Investigaciones Científicas y de Transferencia Tecnológica a la Producción (CONICET - Prov. Entre Ríos - UADER), Diamante, Entre Ríos E3105, Argentina; Facultad de Bioquímica y Cs. Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina.
| | - Andrea Martinez Beningaza
- Laboratorio de Estudio de la Biología de Insectos, Centro de Investigaciones Científicas y de Transferencia Tecnológica a la Producción (CONICET - Prov. Entre Ríos - UADER), Diamante, Entre Ríos E3105, Argentina
| | - M Carla Cecere
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Lucía Babino
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Pablo G Guerenstein
- Laboratorio de Estudio de la Biología de Insectos, Centro de Investigaciones Científicas y de Transferencia Tecnológica a la Producción (CONICET - Prov. Entre Ríos - UADER), Diamante, Entre Ríos E3105, Argentina; Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Entre Ríos E3100, Argentina
| |
Collapse
|
3
|
Gysin G, Urbano P, Brandner-Garrod L, Begum S, Kristan M, Walker T, Hernández C, Ramírez JD, Messenger LA. Towards environmental detection of Chagas disease vectors and pathogen. Sci Rep 2022; 12:9849. [PMID: 35701602 PMCID: PMC9194887 DOI: 10.1038/s41598-022-14051-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Chagas disease vector control relies on prompt, accurate identification of houses infested with triatomine bugs for targeted insecticide spraying. However, most current detection methods are laborious, lack standardization, have substantial operational costs and limited sensitivity, especially when triatomine bug densities are low or highly focal. We evaluated the use of FTA cards or cotton-tipped swabs to develop a low-technology, non-invasive method of detecting environmental DNA (eDNA) from both triatomine bugs and Trypanosoma cruzi for use in household surveillance in eastern Colombia, an endemic region for Chagas disease. Study findings demonstrated that Rhodnius prolixus eDNA, collected on FTA cards, can be detected at temperatures between 21 and 32 °C, when deposited by individual, recently blood-fed nymphs. Additionally, cotton-tipped swabs are a feasible tool for field sampling of both T. cruzi and R. prolixus eDNA in infested households and may be preferable due to their lower cost. eDNA detection should not yet replace current surveillance tools, but instead be evaluated in parallel as a more sensitive, higher-throughput, lower cost alternative. eDNA collection requires virtually no skills or resources in situ and therefore has the potential to be implemented in endemic communities as part of citizen science initiatives to control Chagas disease transmission.
Collapse
Affiliation(s)
- Grace Gysin
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Plutarco Urbano
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigaciones Biológicas de la Orinoquia, Universidad Internacional del Trópico Americano (Unitrópico), Yopal, Colombia
| | - Luke Brandner-Garrod
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Shahida Begum
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
4
|
Laiño MA, Cardinal MV, Gaspe MS, Enriquez GF, Alvedro A, Macchiaverna NP, Gürtler RE. Control of pyrethroid-resistant populations of Triatoma infestans, the main vector of Trypanosoma cruzi, by treating dogs with fluralaner in the Argentine Chaco. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:149-158. [PMID: 34866216 DOI: 10.1111/mve.12561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
We assessed whether fluralaner administered to outbred healthy dogs reduced or supressed site infestation and abundance of pyrethroid-resistant populations of Triatoma infestans Klug (Heteroptera: Reduviidae). We conducted a placebo-controlled before-and-after efficacy trial in 28 infested sites in Castelli (Argentine Chaco) over 10 months. All 72 dogs initially present received either an oral dose of fluralaner (treated group) or placebo (control group) at month 0 posttreatment (MPT). Preliminary results justified treating all 38 control-house dogs with fluralaner 1 month later, and 71 of 78 existing dogs at 7 MPT. Site-level infestation and triatomine abundance were evaluated using timed manual searches with a dislodging aerosol. In the fluralaner-treated group, infestation dropped significantly from 100% at baseline to 19% over 6-10 MPT whereas mean abundance fell highly significantly from 5.5 to 0.8-0.9 triatomines per unit effort. In the placebo group, site infestation and mean abundance remained stable between 0 and 1 MPT, and strongly declined after fluralaner administration from 13.0-14.7 - triatomines at 0-1 MPT to 4.0-4.2 over 6-10 MPT. Only one of 81 noninfested sites before fluralaner treatment became infested subsequently. Fluralaner significantly reduced the site-level infestation and abundance of pyrethroid-resistant T. infestans and should be tested more widely in Phase III efficacy trials.
Collapse
Affiliation(s)
- Mariano Alberto Laiño
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - María Sol Gaspe
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alejandra Alvedro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ricardo E Gürtler
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
5
|
Rodríguez-Planes LI, Gaspe MS, Enriquez GF, Gürtler RE. Impacts of residual insecticide spraying on the abundance and habitat occupancy of Triatoma sordida and co-occurrence with Triatoma infestans: A three-year follow-up in northeastern Argentina. Acta Trop 2020; 202:105251. [PMID: 31706862 DOI: 10.1016/j.actatropica.2019.105251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
Triatoma infestans, the main vector in the Gran Chaco region, may competitively displace other sympatric species such as Triatoma sordida. We conducted a three-year longitudinal study of site- and house-level infestation and abundance of triatomine bugs before and after an area-wide insecticide spraying campaign followed by sustained vector surveillance in a well-defined rural section of the Argentine Chaco encompassing 368-411 houses. Here, we tested whether insecticide applications targeting and virtually suppressing T. infestans reduced the abundance of T. sordida and modified its habitat occupancies, and whether their joint spatial distribution was random, aggregated or uniform, and varied over time. Systematic timed-manual searches of 18,031 sites yielded 2,226 T. sordida over seven postintervention surveys. Triatoma sordida failed to colonize human sleeping quarters after interventions, and its prime and secondary habitats remained virtually unmodified. Residual insecticide spraying and seasonality best described variations in the house-level abundance of T. sordida as determined using a generalized estimating equation model. Two-species foci occurred in 3.2% of sites ever positive for any species. The habitat-adjusted relative odds of catching one species was 10.8 times greater when the other species was present, with no evidence of heterogeneity among ORs, suggesting no antagonistic interactions throughout the follow-up. The spatial occurrence of both species was significantly aggregated within 300-500 m before and after interventions, and was random at broader spatial scales. The habitat occupancies of T. sordida may be used as a proxy for potential infestation with T. infestans and to guide targeted vector control actions.
Collapse
Affiliation(s)
- Lucía I Rodríguez-Planes
- Universidad de Buenos Aires. Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Universidad Nacional de Tierra del Fuego, Onas 450, Ushuaia 9410, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Onas 450, Ushuaia 9410, Argentina
| | - M Sol Gaspe
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Gustavo F Enriquez
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Ricardo E Gürtler
- Universidad de Buenos Aires. Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Enriquez GF, Cecere MC, Alvarado-Otegui JA, Alvedro A, Gaspe MS, Laiño MA, Gürtler RE, Cardinal MV. Improved detection of house infestations with triatomines using sticky traps: a paired-comparison trial in the Argentine Chaco. Parasit Vectors 2020; 13:26. [PMID: 31937361 PMCID: PMC6961371 DOI: 10.1186/s13071-020-3891-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022] Open
Abstract
Background We conducted a matched-pairs trial of three methods for detecting house infestation with triatominae bugs in a well-defined endemic rural area in the Argentine Chaco. Methods The three methods included a simple double-sided adhesive tape (ST) installed near host resting sites; timed-manual collections with a dislodging aerosol (TMC, the reference method used by vector control programmes), and householders’ bug notifications (HN). Triatomine infestations were evaluated in 103 sites of 54 houses, including domiciles, kitchens and storerooms. Results In domiciles where Triatoma infestans was collected, sensitivity of each single method decreased from 79% by ST and 77% by HN, to 57% by TMC, and increased to 92% when ST was combined with HN. In peridomestic kitchens and storerooms, TMC was relatively as sensitive as ST and significantly more sensitive than HN. On average, the number of bugs recovered by ST was 0.94 times that collected by TMC. The ST mainly collected early-instar nymphs whereas TMC yielded late (larger) stages. Triatomines caught by ST had significantly lower mean weight-to-length ratios and lower blood-feeding rates than those caught by TMC, suggesting the ST intercepted and trapped vectors seeking a blood meal host. Conclusions The ST may effectively replace TMC for detecting T. infestans in domiciles, and is especially apt for early detection of low-density domestic infestations in the frame of community-based surveillance or elimination programmes; decision making on whether an area should be targeted for full-coverage insecticide spraying, and to corroborate that extant conditions are compatible with the interruption of vector-borne transmission.![]()
Collapse
Affiliation(s)
- Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,Instituto de Ecología, Genética y Evolución (IEGEBA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - María Carla Cecere
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución (IEGEBA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Julián Antonio Alvarado-Otegui
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Alvedro
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución (IEGEBA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Sol Gaspe
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución (IEGEBA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Mariano Alberto Laiño
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución (IEGEBA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución (IEGEBA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución (IEGEBA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Moretti AN, Seccacini EA, Zerba EN, Canale D, Alzogaray RA. The Botanical Monoterpenes Linalool and Eugenol Flush-Out Nymphs of Triatoma infestans (Hemiptera: Reduviidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1293-1298. [PMID: 28399279 DOI: 10.1093/jme/tjx068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 06/07/2023]
Abstract
Monoterpenes are the main components of essential oils. Some members of this chemical family present insecticidal activity. Triatoma infestans (Klug) is the main vector of Chagas disease in Argentina, Bolivia, Paraguay, and Perú. The objective of this work was to evaluate the effect of six monoterpenes (1,8-cineole, eugenol, linalool, menthol, α-terpineol, and thymol) on the locomotor and flushing out activity of T. infestans. A video tracking technique was used to evaluate the locomotor activity of nymphs exposed to different concentrations of these chemicals applied as films on filter paper. Papers treated with acetone alone were used as negative controls, while solutions of tetramethrin were applied as positive controls. Only linalool and menthol produced hyperactivation. Flushing out was assessed under laboratory conditions using a standardized aerosolization method. All monoterpenes were applied at 1.5 g/m3. 1,8-Cineole, α-terpineol, and thymol flushed out 10% or less nymphs. The average flushing out produced by eugenol was 36.7%. Values of median flushing out time (FT50) could only be calculated for linalool and menthol (16.67 and 42.98 min, respectively). The FT50 value for the positive control tetramethrin (applied at 0.006 g/m3) was 8.29 min. Following these results, the flushing out activity of a mixture of linalool and eugenol was evaluated. The FT50 of this 2:1 linalool:eugenol mixture was 40.73 min. Finally, flushing out assays performed in semifield conditions showed similar results to those obtained at the laboratory.
Collapse
Affiliation(s)
- A N Moretti
- UNIDEF-CITEDEF-CONICET-CIPEIN, Villa Martelli, Buenos Aires, Argentina
| | - E A Seccacini
- UNIDEF-CITEDEF-CONICET-CIPEIN, Villa Martelli, Buenos Aires, Argentina
| | - E N Zerba
- UNIDEF-CITEDEF-CONICET-CIPEIN, Villa Martelli, Buenos Aires, Argentina
- Instituto de Investigación e Ingeniería Ambiental (UNSAM), San Martín, Buenos Aires, Argentina
| | - D Canale
- Servicio Nacional de Chagas de Argentina, Santa María de Punilla, Provincia de Córdoba
| | - R A Alzogaray
- UNIDEF-CITEDEF-CONICET-CIPEIN, Villa Martelli, Buenos Aires, Argentina
- Instituto de Investigación e Ingeniería Ambiental (UNSAM), San Martín, Buenos Aires, Argentina
| |
Collapse
|
8
|
Reynoso MMN, Seccacini EA, Calcagno JA, Zerba EN, Alzogaray RA. Toxicity, repellency and flushing out in Triatoma infestans (Hemiptera: Reduviidae) exposed to the repellents DEET and IR3535. PeerJ 2017; 5:e3292. [PMID: 28533956 PMCID: PMC5438576 DOI: 10.7717/peerj.3292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 11/20/2022] Open
Abstract
DEET and IR3535 are insect repellents present worldwide in commercial products; their efficacy has been mainly evaluated in mosquitoes. This study compares the toxicological effects and the behavioral responses induced by both repellents on the blood-sucking bug Triatoma infestans Klug (Hemiptera: Reduviidae), one of the main vectors of Chagas disease. When applied topically, the Median Lethal Dose (72 h) for DEET was 220.8 µg/insect. Using IR3535, topical application of 500 µg/insect killed no nymphs. The minimum concentration that produced repellency was the same for both compounds: 1,15 µg/cm2. The effect of a mixture DEET:IR3535 1:1 was similar to that of their pure components. Flushing out was assessed in a chamber with a shelter containing groups of ten nymphs. The repellents were aerosolized on the shelter and the number of insects leaving it was recorded for 60 min. During that time, 0.006 g/m3 of the positive control tetramethrin flushed out 76.7% of the nymphs, while 1.76 g/m3 of DEET or IR3535 flushed out 30 and 0%, respectively. The concentrations required for both compounds to produce toxicity or flushing out are too high to have any practical applications. However, they showed a promising repellency. Additional research should be done to evaluate their possible use for personal protection against T. infestans bites.
Collapse
Affiliation(s)
| | - Emilia A Seccacini
- UNIDEF, CITEDEF, CONICET, CIPEIN, Villa Martelli, Buenos Aires, Argentina
| | - Javier A Calcagno
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico (CEBBAD), Departamento de Ciencias Naturales y Antropológicas, CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Eduardo N Zerba
- UNIDEF, CITEDEF, CONICET, CIPEIN, Villa Martelli, Buenos Aires, Argentina.,Instituto de Investigación e Ingeniería Ambiental (3IA), Universidad Nacional de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Raúl A Alzogaray
- UNIDEF, CITEDEF, CONICET, CIPEIN, Villa Martelli, Buenos Aires, Argentina.,Instituto de Investigación e Ingeniería Ambiental (3IA), Universidad Nacional de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| |
Collapse
|
9
|
Rodríguez-Planes LI, Vazquez-Prokopec GM, Cecere MC, Canale DM, Gürtler RE. Selective Insecticide Applications Directed Against Triatoma infestans (Hemiptera: Reduviidae) Affected a Nontarget Secondary Vector of Chagas Disease, Triatoma garciabesi. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:144-151. [PMID: 26490000 DOI: 10.1093/jme/tjv167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
The control of nondomiciliated triatomine species adapted to peridomestic habitats represents a challenge because they are connected to sylvatic colonies, and pyrethroid insecticides have limited effects outdoors. The effects of residual insecticide spraying have rarely been assessed on secondary triatomines. Triatoma garciabesi (Carcavallo, Martinez, Cichero, Prosen & Ronderos, 1967) is a nontarget vector that inhabits the dry western Chaco region, and a member of the Triatoma sordida Stål 1859 complex. Little is known on the capacity of T. garciabesi to invade and establish viable domestic or peridomestic colonies, and on its response to residual insecticide sprays directed against Triatoma infestans Klug 1834. The presence and abundance of triatomines were assessed by timed manual collections annually or biannually (spring and fall) during 10 yr after a community-wide insecticide spraying campaign and selective insecticide sprays directed against T. infestans in a rural village of northwestern Argentina. T. garciabesi mainly occupied peridomestic habitats associated with chickens, and was unable to colonize human sleeping quarters. Trees with chickens occurred in nearly all houses and were infested in >25% of the occasions. The abundance of bugs at house-compound level was best explained by a generalized estimating equation model that included selective insecticide sprays during the previous semester (negative effects), chicken abundance (positive effects), seasonality, and their interactions. Our results suggest that insecticide applications targeting T. infestans affected the abundance of T. garciabesi, and reduced the likelihood of future infestation.
Collapse
Affiliation(s)
- L I Rodríguez-Planes
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), C1428 Buenos Aires, Argentina (; ; ),
| | | | - M C Cecere
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), C1428 Buenos Aires, Argentina (; ; )
| | - D M Canale
- Coordinación Nacional de Control de Vectores, Córdoba, X5000 Argentina , and
| | - R E Gürtler
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires-IEGEBA (CONICET-UBA), C1428 Buenos Aires, Argentina (; ; ),
| |
Collapse
|
10
|
Travassos-De-Britto B, Rocha PLBD. Habitat amount, habitat heterogeneity, and their effects on arthropod species diversity. ECOSCIENCE 2015. [DOI: 10.2980/20-3-3606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Carrera Vargas C, Narváez AO, Muzzio Aroca J, Shiguango G, Robles LM, Herrera C, Dumonteil E. Seroprevalence of Trypanosoma cruzi Infection in Schoolchildren and in Pregnant Women from an Amazonian Region in Orellana Province, Ecuador. Am J Trop Med Hyg 2015; 93:774-8. [PMID: 26283751 DOI: 10.4269/ajtmh.14-0807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/22/2015] [Indexed: 12/18/2022] Open
Abstract
Chagas disease is a parasitic disease caused by the protozoan parasite Trypanosoma cruzi and about 230,000 persons are estimated to be infected in Ecuador. However, limited studies have been performed in the Amazon region, on the eastern side of the country. We evaluated here the seroprevalence of Trypanosoma cruzi infection in 12 rural villages of the Loreto canton, Orellana Province in schoolchildren aged 5-15 years and in pregnant women. A total of 1,649 blood samples were tested for Trypanosoma cruzi antibodies by enzyme-linked immunosorbent assay and indirect hemaglutination, and discordant samples were tested by indirect immunofluorescence assay. We detected a seroprevalence of anti-Trypanosoma cruzi antibodies of 1.3% in schoolchildren aged 5-15 years, indicating the persistence of a constant and active vectorial transmission in the Loreto County and confirming the need of the implementation of nonconventional vector control. We also observed a seroprevalence of 3.8% in pregnant women, indicating a clear risk of congenital transmission. Further studies should help define this risk more precisely and implement current international guidelines for the diagnosis, treatment, and care of these cases.
Collapse
Affiliation(s)
- Caty Carrera Vargas
- Subproceso de Parasitología, Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autonoma de Yucatán, Merida, Yucatan, Mexico; Ministry of Public Health, Orellana, Ecuador; Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Alberto Orlando Narváez
- Subproceso de Parasitología, Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autonoma de Yucatán, Merida, Yucatan, Mexico; Ministry of Public Health, Orellana, Ecuador; Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Jenny Muzzio Aroca
- Subproceso de Parasitología, Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autonoma de Yucatán, Merida, Yucatan, Mexico; Ministry of Public Health, Orellana, Ecuador; Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Gonzalo Shiguango
- Subproceso de Parasitología, Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autonoma de Yucatán, Merida, Yucatan, Mexico; Ministry of Public Health, Orellana, Ecuador; Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Luiggi Martini Robles
- Subproceso de Parasitología, Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autonoma de Yucatán, Merida, Yucatan, Mexico; Ministry of Public Health, Orellana, Ecuador; Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Claudia Herrera
- Subproceso de Parasitología, Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autonoma de Yucatán, Merida, Yucatan, Mexico; Ministry of Public Health, Orellana, Ecuador; Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Eric Dumonteil
- Subproceso de Parasitología, Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autonoma de Yucatán, Merida, Yucatan, Mexico; Ministry of Public Health, Orellana, Ecuador; Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
12
|
Abad-Franch F, Vega MC, Rolón MS, Santos WS, Rojas de Arias A. Community participation in Chagas disease vector surveillance: systematic review. PLoS Negl Trop Dis 2011; 5:e1207. [PMID: 21713022 PMCID: PMC3119642 DOI: 10.1371/journal.pntd.0001207] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/01/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Vector control has substantially reduced Chagas disease (ChD) incidence. However, transmission by household-reinfesting triatomines persists, suggesting that entomological surveillance should play a crucial role in the long-term interruption of transmission. Yet, infestation foci become smaller and harder to detect as vector control proceeds, and highly sensitive surveillance methods are needed. Community participation (CP) and vector-detection devices (VDDs) are both thought to enhance surveillance, but this remains to be thoroughly assessed. METHODOLOGY/PRINCIPAL FINDINGS We searched Medline, Web of Knowledge, Scopus, LILACS, SciELO, the bibliographies of retrieved studies, and our own records. Data from studies describing vector control and/or surveillance interventions were extracted by two reviewers. Outcomes of primary interest included changes in infestation rates and the detection of infestation/reinfestation foci. Most results likely depended on study- and site-specific conditions, precluding meta-analysis, but we re-analysed data from studies comparing vector control and detection methods whenever possible. Results confirm that professional, insecticide-based vector control is highly effective, but also show that reinfestation by native triatomines is common and widespread across Latin America. Bug notification by householders (the simplest CP-based strategy) significantly boosts vector detection probabilities; in comparison, both active searches and VDDs perform poorly, although they might in some cases complement each other. CONCLUSIONS/SIGNIFICANCE CP should become a strategic component of ChD surveillance, but only professional insecticide spraying seems consistently effective at eliminating infestation foci. Involvement of stakeholders at all process stages, from planning to evaluation, would probably enhance such CP-based strategies.
Collapse
|
13
|
IgM-antibody responses of chickens to salivary antigens of Triatoma infestans as early biomarkers for low-level infestation of triatomines. Int J Parasitol 2010; 40:1295-302. [DOI: 10.1016/j.ijpara.2010.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 11/18/2022]
|
14
|
Abad-Franch F, Ferraz G, Campos C, Palomeque FS, Grijalva MJ, Aguilar HM, Miles MA. Modeling disease vector occurrence when detection is imperfect: infestation of Amazonian palm trees by triatomine bugs at three spatial scales. PLoS Negl Trop Dis 2010; 4:e620. [PMID: 20209149 PMCID: PMC2830460 DOI: 10.1371/journal.pntd.0000620] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 01/15/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Failure to detect a disease agent or vector where it actually occurs constitutes a serious drawback in epidemiology. In the pervasive situation where no sampling technique is perfect, the explicit analytical treatment of detection failure becomes a key step in the estimation of epidemiological parameters. We illustrate this approach with a study of Attalea palm tree infestation by Rhodnius spp. (Triatominae), the most important vectors of Chagas disease (CD) in northern South America. METHODOLOGY/PRINCIPAL FINDINGS The probability of detecting triatomines in infested palms is estimated by repeatedly sampling each palm. This knowledge is used to derive an unbiased estimate of the biologically relevant probability of palm infestation. We combine maximum-likelihood analysis and information-theoretic model selection to test the relationships between environmental covariates and infestation of 298 Amazonian palm trees over three spatial scales: region within Amazonia, landscape, and individual palm. Palm infestation estimates are high (40-60%) across regions, and well above the observed infestation rate (24%). Detection probability is higher ( approximately 0.55 on average) in the richest-soil region than elsewhere ( approximately 0.08). Infestation estimates are similar in forest and rural areas, but lower in urban landscapes. Finally, individual palm covariates (accumulated organic matter and stem height) explain most of infestation rate variation. CONCLUSIONS/SIGNIFICANCE Individual palm attributes appear as key drivers of infestation, suggesting that CD surveillance must incorporate local-scale knowledge and that peridomestic palm tree management might help lower transmission risk. Vector populations are probably denser in rich-soil sub-regions, where CD prevalence tends to be higher; this suggests a target for research on broad-scale risk mapping. Landscape-scale effects indicate that palm triatomine populations can endure deforestation in rural areas, but become rarer in heavily disturbed urban settings. Our methodological approach has wide application in infectious disease research; by improving eco-epidemiological parameter estimation, it can also significantly strengthen vector surveillance-control strategies.
Collapse
|
15
|
Schwarz A, Helling S, Collin N, Teixeira CR, Medrano-Mercado N, Hume JCC, Assumpção TC, Marcus K, Stephan C, Meyer HE, Ribeiro JMC, Billingsley PF, Valenzuela JG, Sternberg JM, Schaub GA. Immunogenic salivary proteins of Triatoma infestans: development of a recombinant antigen for the detection of low-level infestation of triatomines. PLoS Negl Trop Dis 2009; 3:e532. [PMID: 19841746 PMCID: PMC2760138 DOI: 10.1371/journal.pntd.0000532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. METHODOLOGY/PRINCIPAL FINDINGS T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. CONCLUSIONS/SIGNIFICANCE The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.
Collapse
Affiliation(s)
- Alexandra Schwarz
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gürtler RE, Ceballos LA, Stariolo R, Kitron U, Reithinger R. Effects of topical application of fipronil spot-on on dogs against the Chagas disease vector Triatoma infestans. Trans R Soc Trop Med Hyg 2008; 103:298-304. [PMID: 19004462 DOI: 10.1016/j.trstmh.2008.09.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 11/16/2022] Open
Abstract
We assessed the insecticidal effects of fipronil spot-on applied to experimental dogs on the blood-feeding success and other vital parameters of the Trypanosoma cruzi vector Triatoma infestans. In the first trial, the cumulative mortality of 30 third or fourth instar nymphs exposed to eight fipronil-treated dogs differed significantly from those exposed to untreated dogs at 1 week post-treatment, but not at baseline or at 2-6 weeks post-treatment. In the second trial, the effects of multiple exposures to fipronil-treated dogs on bug population dynamics were assessed. A population of 80-84 bugs of various life stages were allowed to colonize eight closed experimental huts, and then exposed twice weekly to control or treated dogs over a period of 110 days and censused at monthly intervals. Throughout the trial, multiple exposure to fipronil did not significantly affect bug population size, fecundity, hatching, molting, survival, blood-feeding success and degree of engorgement. Only when engorgement was taken to include only fully fed bugs, did fipronil significantly reduce their degree of engorgement relative to bugs exposed to control dogs. We conclude that at tested dosages fipronil spot-on would have little effect in controlling (peri)domestic Tri. infestans or protecting dogs from contact with the bugs.
Collapse
Affiliation(s)
- Ricardo E Gürtler
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
17
|
Cecere MC, Vázquez-Prokopec GM, Ceballos LA, Gurevitz JM, Zárate JE, Zaidenberg M, Kitron U, Gürtler RE. Comparative trial of effectiveness of pyrethroid insecticides against peridomestic populations of Triatoma infestans in northwestern Argentina. JOURNAL OF MEDICAL ENTOMOLOGY 2006; 43:902-9. [PMID: 17017227 PMCID: PMC1894891 DOI: 10.1603/0022-2585(2006)43[902:ctoeop]2.0.co;2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The effects of different pyrethroid insecticides, formulations, and doses on peridomestic populations of Triatoma infestans (Klug) were evaluated in 128 houses with 148 identified infested peridomestic sites in northwestern Argentina between October 2003 and March 2005. Four treatments were randomly assigned within each community: two doses of 5% suspension concentrate beta-cypermethrin in water applied with manual compression sprayers, the standard dose (S) at 50 mg and a double dose (2S) at 100 mg active ingredient (AI)/m2; and two emulsifiable concentrates diluted in diesel fuel and applied with power sprayers, 25% cypermethrin (100 mg [AI] /m2) (CF) and 10% permethrin (170 mg [AI]/m2) (DF). Infestation was assessed by timed manual collections with a dislodging agent at baseline, 5, 12, and 17 mo postspraying, and the sites found to be reinfested at 5 mo postspraying were selectively resprayed. Only 2S eliminated T. infestans from all peridomestic sites up to 12 mo postspraying, and it was significantly more effective than all other treatments. At 5 mo postspraying, more sites treated with CF or DF rather than S had bug colonies that probably represented residual foci, which they also failed in eliminating after a second spray. At 17 mo postspraying, the prevalence of reinfested peridomestic sites was 5% for 2S, 29% for S, 43% for CF, and 54% for DF. The application of suspension concentrate pyrethroids in dose twice as large as that currently in use in the attack phase produces a greater initial impact and may eliminate peridomestic populations of T. infestans.
Collapse
Affiliation(s)
- María Carla Cecere
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ceballos LA, Vazquez-Prokopec GM, Cecere MC, Marcet PL, Gürtler RE. Feeding rates, nutritional status and flight dispersal potential of peridomestic populations of Triatomainfestans in rural northwestern Argentina. Acta Trop 2005; 95:149-59. [PMID: 15993834 DOI: 10.1016/j.actatropica.2005.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/31/2005] [Indexed: 11/25/2022]
Abstract
Triatoma infestans, the main vector of Chagas disease in Southern Cone countries, frequently infests peridomestic structures housing domestic animals. A total of 814 T. infestans collected from 35 different peridomestic sites in rural northwestern Argentina over 1-4 consecutive seasons was examined for recent blood meals and nutritional status. Bugs from goat or pig corrals had lower qualitative nutritional status and mean weight to length ratios (W/L) than those captured in chicken coops. Males systematically had lower qualitative nutritional status and W/L than females. Using logistic multiple regression, the daily feeding rates of T. infestans were significantly associated with season and stage but not ecotope, whereas the proportion of well-fed bugs varied significantly with all three factors. The seasonal trends in feeding rates and nutritional status were consistent with the local availability and breeding timing of domestic animals. The observed data fed into an empirical model predicted that the probability of flight initiation would peak in summer from pig or goat corrals, not chicken coops, and be insignificant in all ecotopes in spring and fall. Male T. infestans outnumbered females as potential fliers. This is the first study conducted in well-defined habitat units that shows significant heterogeneities in the feeding rates and nutritional status of triatomine populations linked to host demographics and management, and how these affect flight dispersal potential over seasons. Peridomestic bug populations are of great relevance as a source of domestic reinfestation and for the elimination of T. infestans.
Collapse
Affiliation(s)
- L A Ceballos
- Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, University of Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
19
|
Cecere MC, Gürtler RE, Canale DM, Chuit R, Cohen JE. Effects of partial housing improvement and insecticide spraying on the reinfestation dynamics of Triatoma infestans in rural northwestern Argentina. Acta Trop 2002; 84:101-16. [PMID: 12429427 DOI: 10.1016/s0001-706x(02)00183-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The long-term effects on domiciliary reinfestation by Triatoma infestans of smoothing the plaster of indoor walls prior to insecticide application (in Amamá village) relative to only insecticide application (in Trinidad-Mercedes villages) were evaluated in rural northwestern Argentina from 1992 to 1997. All domestic and peridomestic areas of each house were sprayed with 2.5% suspension concentrate deltamethrin at 25 mg/m(2) in October 1992, and infestations were assessed by various methods every 6 months. Domiciliary infestation decreased from 72-88% in 1992 to 6-17% in late 1995, to increase moderately thereafter without returning to baseline rates. Peridomestic sites were the first in becoming reinfested, and reached more abundant T. infestans populations than domiciliary areas. Domiciliary infestation rates and bug abundances were not significantly different between communities during surveillance. Domiciliary infestation rates in well-plastered houses were very low (5-9%) and approximately stable until 1996, but in houses with regular or bad plaster they consistently increased from 5 to 19-21% in both communities. Logistic multiple regression analysis showed that the likelihood of domestic infestation assessed through householders' collections was significantly and positively associated with the occurrence of an infested peridomestic site in the respective house, the occurrence of high-density domestic infestations before interventions, and well-plastered walls in 1996. Combining insecticide spraying and partial improvement of walls controlled domestic infestations and transmission of Trypanosoma cruzi effectively, but was not sufficient to eliminate T. infestans from the study area or increase the effectiveness of careful chemical control.
Collapse
Affiliation(s)
- M C Cecere
- Department of Ecology, Genetics and Evolution, Faculty of Exact and Natural Sciences, University of Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
20
|
Vazquez-Prokopec GM, Ceballos LA, Salomon OD, Gurtler RE. Field trials of an improved cost-effective device for detecting peridomestic populations of Triatoma infestans (Hemiptera: Reduviidae) in rural Argentina. Mem Inst Oswaldo Cruz 2002; 97:971-7. [PMID: 12471423 DOI: 10.1590/s0074-02762002000700008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An improved device for detecting peridomestic Triatoma infestans consisting of one-liter recycled Tetra Brik milk boxes with a central structure was tested using a matched-pair study design in two rural areas in Argentina. In Olta (La Rioja), the boxes were installed beneath the thatched roofs and on the vertical wooden posts of each peridomestic structure. After a 5-month exposure, at least one of the recovered boxes detected 88% of the 24 T. infestans-positive sites, and 86% of the 7 negative sites by timed manual collections at baseline. In Amamá (Santiago del Estero), the boxes were paired with the best performing prototype tested before (shelter unit). After 3 months, some evidence of infestation was detected in 89% (boxes) and 79% (shelters) of 18-19 sites positive by timed collections, whereas 19% and 16% of 32 negative sites were positive, respectively. Neither device differed significantly in the qualitative or quantitative collection of every sign of infestation. The installation site did not modify significantly the boxes' sampling efficiency in both study areas. As the total cost of each box was half as expensive as each shelter unit, the boxes are thus the most cost-effective and easy-to-use tool for detecting peridomestic T. infestans currently available.
Collapse
Affiliation(s)
- G M Vazquez-Prokopec
- Laboratorio de Ecología General, Departmento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|