1
|
Hawkes WL, Menz MHM, Wotton KR. Lords of the flies: dipteran migrants are diverse, abundant and ecologically important. Biol Rev Camb Philos Soc 2025. [PMID: 40165599 DOI: 10.1111/brv.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Insect migrants are hugely abundant, with recent studies identifying the megadiverse order Diptera as the major component of many migratory assemblages. Despite this, their migratory behaviour has been widely overlooked in favour of more 'charismatic' migrant insects such as butterflies, dragonflies, and moths. Herein we review the available literature on dipteran migration to determine its prevalence, identify key migratory routes and elucidate areas that may prove fruitful for future research. Using 13 lines of evidence to determine migratory behaviour, we determined that species from 60 out of 130 dipteran families show evidence of migration, with Syrphidae fulfilling 12 of these criteria, followed by the Tephritidae with 10. By contrast, 22 families met just two criteria or fewer, underlining the need for more research into the migratory characteristics of these groups. In total, 592 species of Diptera were identified as potentially migratory, making them the most speciose group of insect migrants yet described. Despite this, only 0.5% of dipteran species were found to be migrants, a figure rising to 3% for the Syrphidae, a percentage mirrored by other migratory taxa such as butterflies, noctuid moths, and bats. Research was biased to locations in Europe (49% of publications) and while vast regions remain understudied, our review identified major flyways used by dipteran migrants across all biogeographic realms. Finally, we highlight an unsurpassed level of ecological diversity within dipteran migrants, including ecological roles of huge economic value. Overall, this review highlights how little is known about dipteran migration and how vital their migratory behaviour may be to the health of global ecosystems.
Collapse
Affiliation(s)
- Will L Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
- Swiss Ornithological Institute, Sempach, 6204, Switzerland
| | - Myles H M Menz
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4814, Australia
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, 78315, Germany
| | - Karl R Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
2
|
Cao R, Feng J. Future Climate Change and Anthropogenic Disturbance Promote the Invasions of the World's Worst Invasive Insect Pests. INSECTS 2024; 15:280. [PMID: 38667410 PMCID: PMC11050065 DOI: 10.3390/insects15040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Invasive insect pests adversely impact human welfare and global ecosystems. However, no studies have used a unified scheme to compare the range dynamics of the world's worst invasive insect pests. We investigated the future range shifts of 15 of the world's worst invasive insect pests. Although future range dynamics varied substantially among the 15 worst invasive insect pests, most exhibited large range expansions. Increases in the total habitat suitability occurred in more than ca. 85% of global terrestrial regions. The relative impacts of anthropogenic disturbance and climate variables on the range dynamics depended on the species and spatial scale. Aedes albopictus, Cinara cupressi, and Trogoderma granarium occurred four times in the top five largest potential ranges under four future climate scenarios. Anoplophora glabripennis, Aedes albopictus, and Co. formosanus were predicted to have the largest range expansions. An. glabripennis, Pl. manokwari, Co. formosanus, and So. invicta showed the largest range centroid shifts. More effective strategies will be required to prevent their range expansions. Although the strategies should be species-specific, mitigating anthropogenic disturbances and climate change will be essential to preventing future invasions. This study provides critical and novel insights for developing global strategies to combat the invasions of invasive insect pests in the future.
Collapse
Affiliation(s)
| | - Jianmeng Feng
- College of Agriculture and Biological Science, Dali University, Dali 671003, China;
| |
Collapse
|
3
|
Wilke ABB, Vasquez C, Medina J, Unlu I, Beier JC, Ajelli M. Presence and abundance of malaria vector species in Miami-Dade County, Florida. Malar J 2024; 23:24. [PMID: 38238772 PMCID: PMC10797977 DOI: 10.1186/s12936-024-04847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Malaria outbreaks have sporadically occurred in the United States, with Anopheles quadrimaculatus serving as the primary vector in the eastern region. Anopheles crucians, while considered a competent vector, has not been directly implicated in human transmission. Considering the locally acquired Plasmodium vivax cases in Sarasota County, Florida (7 confirmed cases), Cameron County, Texas (one confirmed case), and Maryland (one confirmed case) in the summer of 2023. The hypothesis of this study is that major cities in the United States harbour sufficient natural populations of Anopheles species vectors of malaria, that overlap with human populations that could support local transmission to humans. The objective of this study is to profile the most abundant Anopheles vector species in Miami-Dade County, Florida-An. crucians and An. quadrimaculatus. METHODS This study was based on high-resolution mosquito surveillance data from 2020 to 2022 in Miami-Dade County, Florida. Variations on the relative abundance of An. crucians and An. quadrimaculatus was assessed by dividing the total number of mosquitoes collected by each individual trap in 2022 by the number of mosquitoes collected by the same trap in 2020. In order to identify influential traps, the linear distance in meters between all traps in the surveillance system from 2020 to 2022 was calculated and used to create a 4 km buffer radius around each trap in the surveillance system. RESULTS A total of 36,589 An. crucians and 9943 An. quadrimaculatus were collected during this study by the surveillance system, consisting of 322 CO2-based traps. The findings reveal a highly heterogeneous spatiotemporal distribution of An. crucians and An. quadrimaculatus in Miami-Dade County, highlighting the presence of highly conducive environments in transition zones between natural/rural and urban areas. Anopheles quadrimaculatus, and to a lesser extent An. crucians, pose a considerable risk of malaria transmission during an outbreak, given their high abundance and proximity to humans. CONCLUSIONS Understanding the factors driving the proliferation, population dynamics, and spatial distribution of Anopheles vector species is vital for implementing effective mosquito control and reducing the risk of malaria outbreaks in the United States.
Collapse
Affiliation(s)
- André B B Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | | | - Johana Medina
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - Isik Unlu
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| |
Collapse
|
4
|
Lippi CA, Mundis SJ, Sippy R, Flenniken JM, Chaudhary A, Hecht G, Carlson CJ, Ryan SJ. Trends in mosquito species distribution modeling: insights for vector surveillance and disease control. Parasit Vectors 2023; 16:302. [PMID: 37641089 PMCID: PMC10463544 DOI: 10.1186/s13071-023-05912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Species distribution modeling (SDM) has become an increasingly common approach to explore questions about ecology, geography, outbreak risk, and global change as they relate to infectious disease vectors. Here, we conducted a systematic review of the scientific literature, screening 563 abstracts and identifying 204 studies that used SDMs to produce distribution estimates for mosquito species. While the number of studies employing SDM methods has increased markedly over the past decade, the overwhelming majority used a single method (maximum entropy modeling; MaxEnt) and focused on human infectious disease vectors or their close relatives. The majority of regional models were developed for areas in Africa and Asia, while more localized modeling efforts were most common for North America and Europe. Findings from this study highlight gaps in taxonomic, geographic, and methodological foci of current SDM literature for mosquitoes that can guide future efforts to study the geography of mosquito-borne disease risk.
Collapse
Affiliation(s)
- Catherine A Lippi
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| | - Stephanie J Mundis
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Rachel Sippy
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK
| | - J Matthew Flenniken
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Anusha Chaudhary
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
| | - Gavriella Hecht
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32601, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
5
|
Species distribution models applied to mosquitoes: Use, quality assessment, and recommendations for best practice. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Mace KE, Lucchi NW, Tan KR. Malaria Surveillance — United States, 2018. MMWR. SURVEILLANCE SUMMARIES 2022; 71:1-35. [PMID: 36048717 PMCID: PMC9470224 DOI: 10.15585/mmwr.ss7108a1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Problem/Condition Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. Most malaria infections in the United States and its territories occur among persons who have traveled to regions with ongoing malaria transmission. However, among persons who have not traveled out of the country, malaria is occasionally acquired through exposure to infected blood or tissues, congenital transmission, nosocomial exposure, or local mosquitoborne transmission. Malaria surveillance in the United States and its territories provides information on its occurrence (e.g., temporal, geographic, and demographic), guides prevention and treatment recommendations for travelers and patients, and facilitates rapid transmission control measures if locally acquired cases are identified. Period Covered This report summarizes confirmed malaria cases in persons with onset of illness in 2018 and trends in previous years. Description of System Malaria cases diagnosed by blood smear microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments through electronic laboratory reports or by health care providers or laboratory staff members directly reporting to CDC or health departments. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC clinical consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood specimens submitted by health care providers or local or state health departments. This report summarizes data from the integration of all cases from NMSS and NNDSS, CDC clinical consultations, and CDC reference laboratory reports. Results CDC received reports of 1,823 confirmed malaria cases with onset of symptoms in 2018, including one cryptic case and one case acquired through a bone marrow transplant. The number of cases reported in 2018 is 15.6% fewer than in 2017. The number of cases diagnosed in the United States and its territories has been increasing since the mid-1970s; the number of cases reported in 2017 was the highest since 1972. Of the cases in 2018, a total of 1,519 (85.0%) were imported cases that originated from Africa; 1,061 (69.9%) of the cases from Africa were from West Africa, a similar proportion to what was observed in 2017. Among all cases, P. falciparum accounted for most infections (1,273 [69.8%]), followed by P. vivax (173 [9.5%]), P. ovale (95 [5.2%]), and P. malariae (48 [2.6%]). For the first time since 2008, an imported case of P. knowlesi was identified in the United States and its territories. Infections by two or more species accounted for 17 cases (<1.0%). The infecting species was not reported or was undetermined in 216 cases (11.9%). Most patients (92.6%) had symptom onset <90 days after returning to the United States or its territories from a country with malaria transmission. Of the U.S. civilian patients who reported reason for travel, 77.0% were visiting friends and relatives. Chemoprophylaxis with antimalarial medications are recommended for U.S. residents to prevent malaria while traveling in countries where it is endemic. Fewer U.S. residents with imported malaria reported taking any malaria chemoprophylaxis in 2018 (24.5%) than in 2017 (28.4%), and adherence was poor among those who took chemoprophylaxis. Among the 864 U.S. residents with malaria for whom information on chemoprophylaxis use and travel region were known, 95.0% did not adhere to or did not take a CDC-recommended chemoprophylaxis regimen. Among 683 women with malaria, 19 reported being pregnant. Of these, 11 pregnant women were U.S. residents, and one of whom reported taking chemoprophylaxis to prevent malaria but her adherence to chemoprophylaxis was not reported. Thirty-eight (2.1%) malaria cases occurred among U.S. military personnel in 2018, more than in 2017 (26 [1.2%]). Among all reported malaria cases in 2018, a total of 251 (13.8%) were classified as severe malaria illness, and seven persons died from malaria. In 2018, CDC analyzed 106 P. falciparum-positive and four P. falciparum mixed species specimens for antimalarial resistance markers (although certain loci were untestable in some specimens); identification of genetic polymorphisms associated with resistance to pyrimethamine were found in 99 (98.0%), to sulfadoxine in 49 (49.6%), to chloroquine in 50 (45.5%), and to mefloquine in two (2.0%); no specimens tested contained a marker for atovaquone or artemisinin resistance. Interpretation The importation of malaria reflects the overall trends in global travel to and from areas where malaria is endemic, and 15.6% fewer cases were imported in 2018 compared with 2017. Of imported cases, 59.3% were among persons who had traveled from West Africa. Among U.S. civilians, visiting friends and relatives was the most common reason for travel (77.1%). Public Health Actions The best way for U.S. residents to prevent malaria is to take chemoprophylaxis medication before, during, and after travel to a country where malaria is endemic. Adherence to recommended malaria prevention strategies among U.S. travelers would reduce the number of imported cases. Reported reasons for nonadherence include prematurely stopping after leaving the area where malaria was endemic, forgetting to take the medication, and experiencing a side effect. Health care providers can make travelers aware of the risks posed by malaria and incorporate education to motivate them to be adherent to chemoprophylaxis. Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient’s age, pregnancy status, medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Antimalarial use for chemoprophylaxis and treatment should be determined by the CDC guidelines, which are frequently updated. In April 2019, intravenous (IV) artesunate became the first-line medication for treatment of severe malaria in the United States and its territories. Artesunate was approved by the Food and Drug Administration (FDA) in 2020 and is commercially available (Artesunate for Injection) from major U.S. drug distributors (https://amivas.com). Stocking IV artesunate locally allows for immediate treatment of severe malaria once diagnosed and provides patients with the best chance of a complete recovery and no sequelae. With commercial IV artesunate now available, CDC will discontinue distribution of non–FDA-approved IV artesunate under an investigational new drug protocol on September 30, 2022. Detailed recommendations for preventing malaria are online at https://www.cdc.gov/malaria/travelers/drugs.html. Malaria diagnosis and treatment recommendations are also available online at https://www.cdc.gov/malaria/diagnosis_treatment. Health care providers who have sought urgent infectious disease consultation and require additional assistance on diagnosis and treatment of malaria can call the Malaria Hotline 9:00 a.m.–5:00 p.m. Eastern Time, Monday–Friday, at 770-488-7788 or 855-856-4713 or after hours for urgent inquiries at 770-488-7100. Persons submitting malaria case reports (care providers, laboratories, and state and local public health officials) should provide complete information because incomplete reporting compromises case investigations and public health efforts to prevent future infections and examine trends in malaria cases. Molecular surveillance of antimalarial drug resistance markers enables CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and globally. A greater proportion of specimens from domestic malaria cases are needed to improve the completeness of antimalarial drug resistance analysis; therefore, CDC requests that blood specimens be submitted for any case of malaria diagnosed in the United States and its territories.
Collapse
Affiliation(s)
- Kimberly E. Mace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Kathrine R. Tan
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| |
Collapse
|
7
|
Giordano BV, Cruz A, Pérez-Ramos DW, Ramos MM, Tavares Y, Caragata EP. Mosquito Communities Vary across Landscape and Vertical Strata in Indian River County, Florida. Pathogens 2021; 10:pathogens10121575. [PMID: 34959530 PMCID: PMC8708810 DOI: 10.3390/pathogens10121575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Mosquito and arbovirus surveillance is essential to the protection of public health. A majority of surveys are undertaken at ground level. However, mosquitoes shelter, breed, and quest for hosts across vertical strata, thus limiting our ability to fully describe mosquito and arboviral communities. To elucidate patterns of mosquito vertical stratification, canopy traps were constructed to sample mosquitoes at heights of 1.5, 5.0, and 8.7 m across three different landscape types in a Florida coastal conservation area. We assessed trapping efforts using individual-based rarefaction and extrapolation. The effects of height, landscape, site location, and sampling date on mosquito community composition were parsed out using permutational ANOVA on a Hellinger-transformed Bray–Curtis dissimilarity abundance matrix. Lastly, a generalized linear mixed effects model (GLMM) was used to explore species-specific vertical patterns. We observed differences in sampling effort and community composition structure across various heights and landscapes. Our GLMM revealed significant effects of trap height for Aedes taeniorhynchus, Anopheles crucians, Anopheles quadrimaculatus, and Culex coronator, but not for Culex nigripalpus, the ultra-dominant species present in this area. Together these data provide evidence that height and landscape significantly affect mosquito community structures and highlight a need to develop sampling regimes to target specific vector and nuisance species at their preferred height and across different landscape types.
Collapse
|
8
|
Peffers CS, Pomeroy LW, Meuti ME. Critical Photoperiod and Its Potential to Predict Mosquito Distributions and Control Medically Important Pests. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1610-1618. [PMID: 33835160 DOI: 10.1093/jme/tjab049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Diapause, a period of arrested development that allows mosquitoes to survive inhospitable conditions, is triggered by short daylengths in temperate mosquitoes. Different populations of mosquitoes initiate diapause in response to a specific photoperiod, or daylength, resulting in population-specific differences in annual cycles of abundance. The photoperiod that causes approximately 50% of a population to initiate diapause is known as the critical photoperiod (CPP). The autumn daylength corresponding to the CPP in the field likely marks the day beyond which the photoperiods would trigger and maintain 50% or more diapause incidence in a population, although temperature, diet, and other factors can impact diapause initiation. In the Northern Hemisphere, northern populations of mosquitoes experience lower temperatures earlier in the year and must be triggered into diapause by longer daylengths than southern populations. CPP is genetically based, but also adapts over time responding to the population's environment. Therefore, CPP has been shown to lengthen with increasing latitude and altitude. While the positive correlation between CPP and latitude/altitude has been established in a few mosquito species, including Aedes albopictus (Skuse, Diptera: Culicidae), Aedes triseriatus, Aedes sierrensis, and Wyeomyia smithii (Coquillett, Diptera: Culicidae), we do not know when most other species initiate their seasonal responses. As several of these species transmit important diseases, characterizing the CPP of arthropod vectors could improve existing control by ensuring that surveillance efforts align with the vector's seasonally active period. Additionally, better understanding when mosquitoes and other vectors initiate diapause can reduce the frequency of chemical applications, thereby ameliorating the negative impacts to nontarget insects.
Collapse
Affiliation(s)
- Caitlin S Peffers
- Department of Entomology, The Ohio State University, Coffey Road, Kottman Hall, Columbus, OH, USA
| | - Laura W Pomeroy
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Neil Avenue, Cunz Hall, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Neil Avenue, Suite, Pomerene Hall, Columbus, OH, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, Coffey Road, Kottman Hall, Columbus, OH, USA
| |
Collapse
|
9
|
Mace KE, Lucchi NW, Tan KR. Malaria Surveillance - United States, 2017. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2021; 70:1-35. [PMID: 33735166 PMCID: PMC8017932 DOI: 10.15585/mmwr.ss7002a1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PROBLEM/CONDITION Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, nosocomial exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate rapid transmission control measures if locally acquired cases are identified. PERIOD COVERED This report summarizes confirmed malaria cases in persons with onset of illness in 2017 and trends in previous years. DESCRIPTION OF SYSTEM Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments through electronic laboratory reports or by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all cases from NMSS and NNDSS, CDC reference laboratory reports, and CDC clinical consultations. RESULTS CDC received reports of 2,161 confirmed malaria cases with onset of symptoms in 2017, including two congenital cases, three cryptic cases, and two cases acquired through blood transfusion. The number of malaria cases diagnosed in the United States has been increasing since the mid-1970s; in 2017, the number of cases reported was the highest in 45 years, surpassing the previous peak of 2,078 confirmed cases reported in 2016. Of the cases in 2017, a total of 1,819 (86.1%) were imported cases that originated from Africa; 1,216 (66.9%) of these came from West Africa. The overall proportion of imported cases originating from West Africa was greater in 2017 (57.6%) than in 2016 (51.6%). Among all cases, P. falciparum accounted for the majority of infections (1,523 [70.5%]), followed by P. vivax (216 [10.0%]), P. ovale (119 [5.5%]), and P. malariae (55 [2.6%]). Infections by two or more species accounted for 22 cases (1.0%). The infecting species was not reported or was undetermined in 226 cases (10.5%). CDC provided diagnostic assistance for 9.5% of confirmed cases and tested 8.0% of specimens with P. falciparum infections for antimalarial resistance markers. Most patients (94.8%) had symptom onset <90 days after returning to the United States from a country with malaria transmission. Of the U.S. civilian patients who reported reason for travel, 73.1% were visiting friends and relatives. The proportion of U.S. residents with malaria who reported taking any chemoprophylaxis in 2017 (28.4%) was similar to that in 2016 (26.4%), and adherence was poor among those who took chemoprophylaxis. Among the 996 U.S. residents with malaria for whom information on chemoprophylaxis use and travel region were known, 93.3% did not adhere to or did not take a CDC-recommended chemoprophylaxis regimen. Among 805 women with malaria, 27 reported being pregnant. Of these, 10 pregnant women were U.S. residents, and none reported taking chemoprophylaxis to prevent malaria. A total of 26 (1.2%) malaria cases occurred among U.S. military personnel in 2017, fewer than in 2016 (41 [2.0%]). Among all reported cases in 2017, a total of 312 (14.4%) were classified as severe malaria illnesses, and seven persons died. In 2017, CDC analyzed 117 P. falciparum-positive and six P. falciparum mixed-species samples for antimalarial resistance markers (although certain loci were untestable in some samples); identification of genetic polymorphisms associated with resistance to pyrimethamine were found in 108 (97.3%), to sulfadoxine in 77 (69.4%), to chloroquine in 38 (33.3%), to mefloquine in three (2.7%), and to atovaquone in three (2.7%); no specimens tested contained a marker for artemisinin resistance. The data completeness of key variables (species, country of acquisition, and resident status) was lower in 2017 (74.4%) than in 2016 (79.4%). INTERPRETATION The number of reported malaria cases in 2017 continued a decades-long increasing trend, and for the second year in a row the highest number of cases since 1971 have been reported. Despite progress in malaria control in recent years, the disease remains endemic in many areas globally. The importation of malaria reflects the overall increase in global travel to and from these areas. Fifty-six percent of all cases were among persons who had traveled from West Africa, and among U.S. civilians, visiting friends and relatives was the most common reason for travel (73.1%). Frequent international travel combined with the inadequate use of prevention measures by travelers resulted in the highest number of imported malaria cases detected in the United States in 4 decades. PUBLIC HEALTH ACTIONS The best way to prevent malaria is to take chemoprophylaxis medication during travel to a country where malaria is endemic. Adherence to recommended malaria prevention strategies among U.S. travelers would reduce the numbers of imported cases; reasons for nonadherence include prematurely stopping after leaving the area where malaria was endemic, forgetting to take the medication, and experiencing a side effect. Travelers might not understand the risk that malaria poses to them; thus, health care providers should incorporate risk education to motivate travelers to be adherent to chemoprophylaxis. Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age, medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Antimalarial use for chemoprophylaxis and treatment should be informed by the most recent guidelines, which are frequently updated. In 2018, two formulations of tafenoquine (i.e., Arakoda and Krintafel) were approved by the Food and Drug Administration (FDA) for use in the United States. Arakoda was approved for use by adults for chemoprophylaxis; the regimen requires a predeparture loading dose, taking the medication weekly during travel, and a short course posttravel. The Arakoda chemoprophylaxis regimen is shorter than alternative regimens, which could possibly improve adherence. This medication also might prevent relapses. Krintafel was approved for radical cure of P. vivax infections in those aged >16 years and should be co-administered with chloroquine (https://www.cdc.gov/malaria/new_info/2020/tafenoquine_2020.html). In April 2019, intravenous artesunate became the first-line medication for treatment of severe malaria in the United States. Artesunate was recently FDA approved but is not yet commercially available. The drug can be obtained from CDC under an investigational new drug protocol. Detailed recommendations for preventing malaria are available to the general public at the CDC website (https://www.cdc.gov/malaria/travelers/drugs.html). Health care providers should consult the CDC Guidelines for Treatment of Malaria in the United States and contact the CDC's Malaria Hotline for case management advice when needed. Malaria treatment recommendations are available online (https://www.cdc.gov/malaria/diagnosis_treatment) and from the Malaria Hotline (770-488-7788 or toll-free 855-856-4713). Persons submitting malaria case reports (care providers, laboratories, and state and local public health officials) should provide complete information because incomplete reporting compromises case investigations and efforts to prevent infections and examine trends in malaria cases. Molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) enables CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and internationally. More samples are needed to improve the completeness of antimalarial drug resistance analysis; therefore, CDC requests that blood specimens be submitted for any case of malaria diagnosed in the United States.
Collapse
Affiliation(s)
- Kimberly E. Mace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Kathrine R. Tan
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| |
Collapse
|
10
|
Dye-Braumuller KC, Kanyangarara M. Malaria in the USA: How Vulnerable Are We to Future Outbreaks? CURRENT TROPICAL MEDICINE REPORTS 2021; 8:43-51. [PMID: 33469475 PMCID: PMC7808401 DOI: 10.1007/s40475-020-00224-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
Purpose of Review Malaria poses a threat to nearly half of the world’s population, and recent literature in the USA is lacking regarding understanding risk for local outbreaks. This article aims to review Anopheles mosquito data, vector-borne disease outbreak preparedness, and human travel data from large international gateway cities in an effort to examine risk for localized outbreaks. Recent Findings The majority of vector control organizations are widely unprepared for a vector-borne disease outbreak, and multiple mosquito species capable of transmitting malaria continue to persist throughout the USA. Summary Despite the lack of recent autochthonous cases in the USA, multiple risk factors suggest that local malaria outbreaks in the USA will continue to pose a public health threat due to large numbers of international travelers from endemic areas, multiple Anopheles spp. capable of transmitting the parasite, and unsatisfactory vector-borne disease outbreak preparedness. Climate conditions and recent changes in travel patterns will influence malaria across the globe.
Collapse
Affiliation(s)
- Kyndall C Dye-Braumuller
- Laboratory of Vector-Borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
| | - Mufaro Kanyangarara
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC USA
| |
Collapse
|
11
|
Modeling host-feeding preference and molecular systematics of mosquitoes in different ecological niches in Canada. Acta Trop 2021; 213:105734. [PMID: 33159902 DOI: 10.1016/j.actatropica.2020.105734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 11/20/2022]
Abstract
Several mosquito-borne viruses (mobovirus) cause infections in Canada. Ecological data on mosquito species and host range in Canada remains elusive. The main aim of the current study is to determine the host range and molecular systematics of mosquito species in Canada. Mosquitoes were collected using BG-Sentinel traps and aspirators at 10 trapping sites in Canada during 2018 and 2019. Mosquitoes collected were identified via morphology and molecular techniques. Mosquito sequences were aligned by MUSCLE algorithm and evolutionary systematics were drawn using MEGA and SDT software. Moreover, the source of blood meals was identified using a DNA barcoding technique. A total of 5,708 female mosquitoes over 34 different taxa were collected. DNA barcodes and evolutionary tree analysis confirmed the identification of mosquito species in Canada. Of the total collected samples, 201 specimens were blood-fed female mosquitoes in 20 different taxa. Four mosquito species represented about half (51.47%) of all collected blood-fed specimens: Aede cinereus (39 specimens, 19.11%), Aedes triseriatus (23, 11.27%), Culex pipiens (22, 10.78%), and Anopheles punctipennis (21, 10.29%). The most common blood meal sources were humans (49 mosquito specimens, 24% of all blood-fed mosquito specimen), pigs (44, 21.5%), American red squirrels (28, 13.7%), white-tailed deers (28, 13.7%), and American crows (16, 7.8%). Here, we present the first analysis of the host-feeding preference of different mosquito species in Canada via molecular techniques. Our results on mosquito distribution and behavior will aid in the development of effective mitigation and control strategies to prevent or reduce human/animal health issues in regards to moboviruses.
Collapse
|
12
|
Morse W, Izenour K, McKenzie B, Lessard S, Zohdy S. Perceptions and practices of mosquito-borne diseases in Alabama - is concern where it should be? BMC Public Health 2019; 19:987. [PMID: 31337359 PMCID: PMC6652104 DOI: 10.1186/s12889-019-7308-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Gulf Coast of the United States is home to mosquito vectors that may spread disease causing pathogens, and environmental conditions that are ideal for the sustained transmission of mosquito-borne pathogens. Understanding public perceptions of mosquito-borne diseases and mosquito prevention strategies is critical for the development of effective vector control strategies and public health interventions. Here, we present a survey conducted in Mobile, Alabama along the Gulf Coast to better understand public perceptions of mosquito-borne diseases, mosquito control activities, and potential risk factors. METHODS Using Knowledge, Attitude, and Practice (KAPs) assessments, we surveyed populations living in 12 zip codes in Mobile, Alabama using a 7-point Likert scale and frequency assessments. Survey participants were asked about vector control efforts, knowledge of mosquito-borne diseases, and understanding of mosquito ecology and breeding habitats. RESULTS One hundred twenty-six surveys were completed in Mobile, Alabama, revealing that 73% of participants reported being bitten by a mosquito in the last 30 days and mosquitoes were frequently seen in their homes. Ninety-four percent of respondents had heard of Zika Virus at the time of the survey, and respondents reported being least familiar with dengue virus and chikungunya virus. CONCLUSIONS Chikungunya virus, dengue virus, malaria, West Nile virus, and Zika virus have been documented in the Gulf Coast of the United States. The mosquitoes which vector all of these diseases are presently in the Gulf Coast meaning all five diseases pose a potential risk to human health. The results of this survey emphasize knowledge gaps that public health officials can address to empower the population to reduce their risk of these mosquito-borne diseases. Each species of mosquito has specific preferences for breeding and feeding and there is no one size fits all prevention approach, educating people on the need for a variety of approaches in order to address all species will further empower them to control mosquitoes where they live and further reduce their risk of disease.
Collapse
Affiliation(s)
- Wayde Morse
- Auburn University School of Forestry and Wildlife Sciences, 602 Duncan Dr, Auburn, AL, 36849, USA.
| | - Katie Izenour
- Auburn University College of Veterinary Medicine, 166 Greene Hall, Pathobiology Rm 161, Auburn, AL, 36849, USA
| | - Benjamin McKenzie
- Auburn University School of Forestry and Wildlife Sciences, 602 Duncan Dr, Auburn, AL, 36849, USA
| | - Sarah Lessard
- Auburn University School of Forestry and Wildlife Sciences, 602 Duncan Dr, Auburn, AL, 36849, USA
| | - Sarah Zohdy
- Auburn University School of Forestry and Wildlife Sciences, 602 Duncan Dr, Auburn, AL, 36849, USA.,Auburn University College of Veterinary Medicine, 166 Greene Hall, Pathobiology Rm 161, Auburn, AL, 36849, USA
| |
Collapse
|
13
|
Mace KE, Arguin PM, Lucchi NW, Tan KR. Malaria Surveillance - United States, 2016. MMWR. SURVEILLANCE SUMMARIES : MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES 2019; 68:1-35. [PMID: 31099769 DOI: 10.15585/mmwr.ss6805a1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PROBLEM/CONDITION Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate transmission control measures if locally acquired cases are identified. PERIOD COVERED This report summarizes confirmed malaria cases in persons with onset of illness in 2016 and summarizes trends in previous years. DESCRIPTION OF SYSTEM Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all NMSS and NNDSS cases, CDC reference laboratory reports, and CDC clinical consultations. RESULTS CDC received reports of 2,078 confirmed malaria cases with onset of symptoms in 2016, including two congenital cases, three cryptic cases, and one case acquired through blood transfusion. The number of malaria cases diagnosed in the United States has been increasing since the mid-1970s. However, in 2015 a decrease occurred in the number of cases, specifically from the region of West Africa, likely due to altered travel related to the Ebola virus disease outbreak. The number of confirmed malaria cases in 2016 represents a 36% increase compared with 2015, and the 2016 total is 153 more cases than in 2011, which previously had the highest number of cases (1,925 cases). In 2016, a total of 1,729 cases originated from Africa, and 1,061 (61.4%) of these came from West Africa. P. falciparum accounted for the majority of the infections (1,419 [68.2%]), followed by P. vivax (251 [12.1%]). Fewer than 2% of patients were infected by two species (23 [1.1%]). The infecting species was not reported or was undetermined in 10.8% of cases. CDC provided diagnostic assistance for 12.1% of confirmed cases and tested 10.8% of specimens with P. falciparum infections for antimalarial resistance markers. Of the U.S. resident patients who reported reason for travel, 69.4% were travelers who were visiting friends and relatives. The proportion of U.S. residents with malaria who reported taking any chemoprophylaxis in 2016 (26.3%) was similar to that in 2015 (26.6%), and adherence was poor among those who took chemoprophylaxis. Among the 964 U.S. residents with malaria for whom information on chemoprophylaxis use and travel region were known, 94.0% of patients with malaria did not adhere to or did not take a CDC-recommended chemoprophylaxis regimen. Among 795 women with malaria, 50 were pregnant, and one had adhered to mefloquine chemoprophylaxis. Forty-one (2.0%) malaria cases occurred among U.S. military personnel in 2016, a comparable proportion to that in 2015 (23 cases [1.5%]). Among all reported cases in 2016, a total of 306 (14.7%) were classified as severe illnesses, and seven persons died. In 2016, CDC analyzed 144 P. falciparum-positive and nine P. falciparum mixed species samples for surveillance of antimalarial resistance markers (although certain loci were untestable in some samples); genetic polymorphisms associated with resistance to pyrimethamine were identified in 142 (97.9%), to sulfadoxine in 98 (70.5%), to chloroquine in 67 (44.7%), to mefloquine in six (4.3%), and to atovaquone in one (<1.0%). The completeness of key variables (e.g., species, country of acquisition, and resident status) was 79.4% in 2016 and 75.7% in 2015. INTERPRETATION The number of reported malaria cases in 2016 continued a decades-long increasing trend and is the highest since 1972. The importation of malaria reflects the overall increase in global travel trends to and from areas where malaria is endemic; a transient decrease in the acquisition of cases, predominantly from West Africa, occurred in 2015. In 2016, more cases (absolute number) originated from regions of the world with widespread malaria transmission. Since the early 2000s, worldwide interventions to reduce malaria have been successful; however, progress has plateaued in recent years, the disease remains endemic in many regions, and the use of appropriate prevention measures by travelers remains inadequate. PUBLIC HEALTH ACTIONS The best way to prevent malaria is to take chemoprophylaxis medication during travel to a country where malaria is endemic. Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. In 2018, two tafenoquine-based antimalarials were approved by the Food and Drug Administration (FDA) for use in the United States. Arakoda was approved for use by adults for chemoprophylaxis and is available as a weekly dosage that is convenient during travel, which might improve adherence and also can prevent relapses from P. vivax and P. ovale infections. Krintafel was approved for radical cure of P. vivax infections in those >16 years old. In April 2019, intravenous artesunate became the first-line medication for treatment of severe malaria in the United States. Because intravenous artesunate is not FDA approved, it is available from CDC under an investigational new drug protocol. Detailed recommendations for preventing malaria are available to the general public at the CDC website (https://www.cdc.gov/malaria/travelers/drugs.html). Health care providers should consult the CDC Guidelines for Treatment of Malaria in the United States and contact the CDC's Malaria Hotline for case management advice when needed. Malaria treatment recommendations are available online (https://www.cdc.gov/malaria/diagnosis_treatment) and from the Malaria Hotline (770-488-7788 or toll-free at 855-856-4713). Persons submitting malaria case reports (care providers, laboratories, and state and local public health officials) should provide complete information because incomplete reporting compromises case investigations and efforts to prevent infections and examine trends in malaria cases. Adherence to recommended malaria prevention strategies is low among U.S. travelers; reasons for nonadherence include prematurely stopping after leaving the area where malaria was endemic, forgetting to take the medication, and experiencing a side effect. Molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) enables CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and internationally. More samples are needed to improve the completeness of antimalarial drug resistance analysis; therefore, CDC requests that blood specimens be submitted for all cases of malaria diagnosed in the United States.
Collapse
Affiliation(s)
- Kimberly E Mace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Paul M Arguin
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| | - Kathrine R Tan
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, CDC
| |
Collapse
|
14
|
Brustolin M, Pujhari S, Henderson CA, Rasgon JL. Anopheles mosquitoes may drive invasion and transmission of Mayaro virus across geographically diverse regions. PLoS Negl Trop Dis 2018; 12:e0006895. [PMID: 30403665 PMCID: PMC6242690 DOI: 10.1371/journal.pntd.0006895] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/19/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
The Togavirus (Alphavirus) Mayaro virus (MAYV) was initially described in 1954 from Mayaro County (Trinidad) and has been responsible for outbreaks in South America and the Caribbean. Imported MAYV cases are on the rise, leading to invasion concerns similar to Chikungunya and Zika viruses. Little is known about the range of mosquito species that are competent MAYV vectors. We tested vector competence of 2 MAYV genotypes in laboratory strains of six mosquito species (Aedes aegypti, Anopheles freeborni, An. gambiae, An. quadrimaculatus, An. stephensi, Culex quinquefasciatus). Ae. aegypti and Cx. quinquefasciatus were poor MAYV vectors, and had either poor or null infection and transmission rates at the tested viral challenge titers. In contrast, all Anopheles species were able to transmit MAYV, and 3 of the 4 species transmitted both genotypes. The Anopheles species tested are divergent and native to widely separated geographic regions (Africa, Asia, North America), suggesting that Anopheles may be important in the invasion and spread of MAYV across diverse regions of the world. Mayaro virus (MAYV) is a mosquito-borne Alphavirus responsible for outbreaks in South America and the Caribbean. In this study we infected different species of mosquito (belonging to the genera Aedes, Anopheles and Culex) with MAYV and tested their capacity to transmit the virus at different time points. Results show that Anopheles mosquitoes were competent vectors for 2 genotypes of MAYV, while Aedes and Culex were poor vectors. The capacity of Anopheles mosquitoes to transmit MAYV highlights their importance as neglected vectors of arboviruses. These data suggest that Anopheles mosquitoes have the potential to sustain transmission cycles of neglected pathogens in naïve regions, including the United States.
Collapse
Affiliation(s)
- Marco Brustolin
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Sujit Pujhari
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Cory A. Henderson
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Dotseth EJ, Harrison BA. West Virginia Mosquitoes: Sequential List by Publication, Newly Found Species, Corrections, and Notes for Earlier Records. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2016; 32:240-243. [PMID: 27802407 DOI: 10.2987/16-6575.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A chronological list of species based on date of publication is provided for confirmed mosquito species in West Virginia. Five additional newly found species in the state are documented with collection data. Two previously misidentified or mislabeled published records are corrected. The number of confirmed species occurring in the state is now 35, and many more species are likely present, but undetected. Significant populations of 4 widely distributed known vector species, Aedes albopictus , Ae. japonicus japonicus, Ae. triseriatus, and Culex pipiens , in West Virginia signal an urgent need for additional studies, surveillance, and increased mosquito control efforts to help prevent future native and invasive arbovirus infections and outbreaks in local residents.
Collapse
|
16
|
Abiodun GJ, Maharaj R, Witbooi P, Okosun KO. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar J 2016; 15:364. [PMID: 27421769 PMCID: PMC4946230 DOI: 10.1186/s12936-016-1411-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria continues to be one of the most devastating diseases in the world, killing more humans than any other infectious disease. Malaria parasites are entirely dependent on Anopheles mosquitoes for transmission. For this reason, vector population dynamics is a crucial determinant of malaria risk. Consequently, it is important to understand the biology of malaria vector mosquitoes in the study of malaria transmission. Temperature and precipitation also play a significant role in both aquatic and adult stages of the Anopheles. METHODS In this study, a climate-based, ordinary-differential-equation model is developed to analyse how temperature and the availability of water affect mosquito population size. In the model, the influence of ambient temperature on the development and the mortality rate of Anopheles arabiensis is considered over a region in KwaZulu-Natal Province, South Africa. In particular, the model is used to examine the impact of climatic factors on the gonotrophic cycle and the dynamics of mosquito population over the study region. RESULTS The results fairly accurately quantify the seasonality of the population of An. arabiensis over the region and also demonstrate the influence of climatic factors on the vector population dynamics. The model simulates the population dynamics of both immature and adult An. arabiensis. The simulated larval density produces a curve which is similar to observed data obtained from another study. CONCLUSION The model is efficiently developed to predict An. arabiensis population dynamics, and to assess the efficiency of various control strategies. In addition, the model framework is built to accommodate human population dynamics with the ability to predict malaria incidence in future.
Collapse
Affiliation(s)
- Gbenga J Abiodun
- Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville, 7535, Republic of South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Durban, Republic of South Africa.
| | - Peter Witbooi
- Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville, 7535, Republic of South Africa
| | - Kazeem O Okosun
- Department of Mathematics, Vaal University of Technology, Private Bag X021, Andries Potgieter Blvrd, Vanderbijlpark, 1900, Republic of South Africa
| |
Collapse
|
17
|
Meyers MT, Bahnson CS, Hanlon M, Kopral C, Srisinlapaudom S, Cochrane ZN, Sabas CE, Saiyasombat R, Burrough ER, Plummer PJ, O'Connor AM, Marshall KL, Blitvich BJ. Management Factors Associated with Operation-Level Prevalence of Antibodies to Cache Valley Virus and Other Bunyamwera Serogroup Viruses in Sheep in the United States. Vector Borne Zoonotic Dis 2015; 15:683-93. [DOI: 10.1089/vbz.2015.1810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew T. Meyers
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Charlie S. Bahnson
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Michael Hanlon
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Christine Kopral
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, Colorado
| | - Saengchan Srisinlapaudom
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
- Veterinary Research and Development Center (Western Region), Ratchaburi, Thailand
| | - Zachary N. Cochrane
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Carlene E. Sabas
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Rungrat Saiyasombat
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Eric R. Burrough
- Veterinary and Diagnostic Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Paul J. Plummer
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
- Veterinary and Diagnostic Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Annette M. O'Connor
- Veterinary and Diagnostic Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Katherine L. Marshall
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, Colorado
| | - Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
18
|
Giordano BV, Gasparotto A, Hunter FF. A checklist of the 67 mosquito species of Ontario, Canada. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2015; 31:101-3. [PMID: 25843183 DOI: 10.2987/14-6456r.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We provide an updated checklist of 67 endemic mosquito species known from Ontario, Canada. Nine endemic species are added to the checklist found in Darsie and Ward (2005) : Aedes cantator, Ae. churchillensis, Ae. nigripes, Ae. pullatus, Anopheles perplexens, An. crucians, An. smaragdinus, Culex erraticus, and Cx. salinarius. Only 4 specimens of Ae. albopictus have been recorded in Ontario since 2001 despite concerted efforts to find this species; therefore, it is considered an "accidental" species and is excluded from the checklist.
Collapse
Affiliation(s)
- Bryan V Giordano
- 1 Centre for Biotechnology, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1 Canada
| | | | | |
Collapse
|
19
|
Andraca-Gómez G, Ordano M, Boege K, Domínguez CA, Piñero D, Pérez-Ishiwara R, Pérez-Camacho J, Cañizares M, Fornoni J. A potential invasion route of Cactoblastis cactorum within the Caribbean region matches historical hurricane trajectories. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0802-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Epidemiology of malaria in endemic areas. Mediterr J Hematol Infect Dis 2012; 4:e2012060. [PMID: 23170189 PMCID: PMC3499992 DOI: 10.4084/mjhid.2012.060] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/21/2012] [Indexed: 11/08/2022] Open
Abstract
Malaria infection is still to be considered a major public health problem in those 106 countries where the risk of contracting the infection with one or more of the Plasmodium species exists. According to estimates from the World Health Organization, over 200 million cases and about 655.000 deaths have occurred in 2010. Estimating the real health and social burden of the disease is a difficult task, because many of the malaria endemic countries have limited diagnostic resources, especially in rural settings where conditions with similar clinical picture may coexist in the same geographical areas. Moreover, asymptomatic parasitaemia may occur in high transmission areas after childhood, when anti-malaria semi-immunity occurs. Malaria endemicity and control activities are very complex issues, that are influenced by factors related to the host, to the parasite, to the vector, to the environment and to the health system capacity to fully implement available anti-malaria weapons such as rapid diagnostic tests, artemisinin-based combination treatment, impregnated bed-nets and insecticide residual spraying while waiting for an effective vaccine to be made available.
Collapse
|
21
|
Stevens KB, Pfeiffer DU. Spatial modelling of disease using data- and knowledge-driven approaches. Spat Spatiotemporal Epidemiol 2011; 2:125-33. [PMID: 22748172 DOI: 10.1016/j.sste.2011.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of spatial modelling in animal and public health is three-fold: describing existing spatial patterns of risk, attempting to understand the biological mechanisms that lead to disease occurrence and predicting what will happen in the medium to long-term future (temporal prediction) or in different geographical areas (spatial prediction). Traditional methods for temporal and spatial predictions include general and generalized linear models (GLM), generalized additive models (GAM) and Bayesian estimation methods. However, such models require both disease presence and absence data which are not always easy to obtain. Novel spatial modelling methods such as maximum entropy (MAXENT) and the genetic algorithm for rule set production (GARP) require only disease presence data and have been used extensively in the fields of ecology and conservation, to model species distribution and habitat suitability. Other methods, such as multicriteria decision analysis (MCDA), use knowledge of the causal factors of disease occurrence to identify areas potentially suitable for disease. In addition to their less restrictive data requirements, some of these novel methods have been shown to outperform traditional statistical methods in predictive ability (Elith et al., 2006). This review paper provides details of some of these novel methods for mapping disease distribution, highlights their advantages and limitations, and identifies studies which have used the methods to model various aspects of disease distribution.
Collapse
Affiliation(s)
- Kim B Stevens
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK.
| | | |
Collapse
|
22
|
Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2010; 3:72. [PMID: 20712879 PMCID: PMC2936890 DOI: 10.1186/1756-3305-3-72] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. RESULTS A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. CONCLUSIONS The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence data assembled can be substantially improved) and (ii) documenting their contemporary bionomics (since intervention and control pressures can act to modify behavioural traits). This is the first in a series of three articles describing the distribution of the 41 global DVS worldwide. The remaining two publications will describe those vectors found in (i) Africa, Europe and the Middle East and (ii) in Asia. All geographic distribution maps are being made available in the public domain according to the open access principles of the Malaria Atlas Project.
Collapse
Affiliation(s)
- Marianne E Sinka
- Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Simon Hay and colleagues describe how the Malaria Atlas Project has collated anopheline occurrence data to map the geographic distributions of the dominant mosquito vectors of human malaria.
Collapse
|
24
|
Peterson AT. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect Dis 2009; 9:59. [PMID: 19426558 PMCID: PMC2694813 DOI: 10.1186/1471-2334-9-59] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 05/10/2009] [Indexed: 12/02/2022] Open
Abstract
Background Climates are changing rapidly, producing warm climate conditions globally not previously observed in modern history. Malaria is of great concern as a cause of human mortality and morbidity, particularly across Africa, thanks in large part to the presence there of a particularly competent suite of mosquito vector species. Methods I derive spatially explicit estimates of human populations living in regions newly suitable climatically for populations of two key Anopheles gambiae vector complex species in Africa over the coming 50 years, based on ecological niche model projections over two global climate models, two scenarios of climate change, and detailed spatial summaries of human population distributions. Results For both species, under all scenarios, given the changing spatial distribution of appropriate conditions and the current population distribution, the models predict a reduction of 11.3–30.2% in the percentage of the overall population living in areas climatically suitable for these vector species in coming decades, but reductions and increases are focused in different regions: malaria vector suitability is likely to decrease in West Africa, but increase in eastern and southern Africa. Conclusion Climate change effects on African malaria vectors shift their distributional potential from west to east and south, which has implications for overall numbers of people exposed to these vector species. Although the total is reduced, malaria is likely to pose novel public health problems in areas where it has not previously been common.
Collapse
Affiliation(s)
- A Townsend Peterson
- Biodiversity Research Center, The University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
25
|
Peterson AT. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect Dis 2009. [PMID: 19426558 DOI: 10.1186/1471–2334–9–59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Climates are changing rapidly, producing warm climate conditions globally not previously observed in modern history. Malaria is of great concern as a cause of human mortality and morbidity, particularly across Africa, thanks in large part to the presence there of a particularly competent suite of mosquito vector species. METHODS I derive spatially explicit estimates of human populations living in regions newly suitable climatically for populations of two key Anopheles gambiae vector complex species in Africa over the coming 50 years, based on ecological niche model projections over two global climate models, two scenarios of climate change, and detailed spatial summaries of human population distributions. RESULTS For both species, under all scenarios, given the changing spatial distribution of appropriate conditions and the current population distribution, the models predict a reduction of 11.3-30.2% in the percentage of the overall population living in areas climatically suitable for these vector species in coming decades, but reductions and increases are focused in different regions: malaria vector suitability is likely to decrease in West Africa, but increase in eastern and southern Africa. CONCLUSION Climate change effects on African malaria vectors shift their distributional potential from west to east and south, which has implications for overall numbers of people exposed to these vector species. Although the total is reduced, malaria is likely to pose novel public health problems in areas where it has not previously been common.
Collapse
Affiliation(s)
- A Townsend Peterson
- Biodiversity Research Center, The University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
26
|
Ibarra-Cerdeña CN, Sánchez-Cordero V, Townsend Peterson A, Ramsey JM. Ecology of North American Triatominae. Acta Trop 2009; 110:178-86. [PMID: 19084490 DOI: 10.1016/j.actatropica.2008.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/07/2008] [Accepted: 11/06/2008] [Indexed: 11/24/2022]
Abstract
In all, 40 native triatomine species and subspecies occur in NA, belonging to six genera from the Triatomini (Triatoma, Paratriatoma, Panstrongylus, Dipetalogaster, Belminus, Eratyrus), and one genus from the Rhodniini (represented by one non-native species Rhodnius prolixus, formerly occurring exclusively in domestic habitats); 28 species are found exclusively in Mexico (and/or Central America), eight are shared between the United States (US) and Mexico, and four occur exclusively in the US. The genus Triatoma is the most diverse with 26 species belonging to the species groups protracta, including the species complexes protracta and lecticularia, and rubrofasciata, which includes the species complexes rubida, phyllosoma and dimidiata. Triatomine species richness declined both at higher (south US) and lower (south of the Istmus of Tehuantepec, Mexico) latitudes. Triatoma species are found predominantly in cropland, grassland, wooded grassland and woodland landscapes. Land cover types were most similar among the lecticularia, protracta, and rubida complexes, in contrast to the phyllosoma and dimidiata species complexes. The land cover types having highest suitability for most species were wooded grassland, followed by woodland for the phyllosoma and dimidiata species complexes, and open and closed shrubland and cropland for the remaining three species complexes. A principal component analysis was used to demonstrate differences in the potential range for use of environmental conditions: protracta and phyllosoma complexes occupy the broadest niches. The present study represents a primary stratification of potential triatomine dispersal areas, based on species and species complexes, and based on predicted niche, a method which has already proven to be highly significant epidemiologically.
Collapse
|
27
|
Levine RS, Yorita KL, Walsh MC, Reynolds MG. A method for statistically comparing spatial distribution maps. Int J Health Geogr 2009; 8:7. [PMID: 19183487 PMCID: PMC2652433 DOI: 10.1186/1476-072x-8-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 01/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ecological niche modeling is a method for estimation of species distributions based on certain ecological parameters. Thus far, empirical determination of significant differences between independently generated distribution maps for a single species (maps which are created through equivalent processes, but with different ecological input parameters), has been challenging. RESULTS We describe a method for comparing model outcomes, which allows a statistical evaluation of whether the strength of prediction and breadth of predicted areas is measurably different between projected distributions. To create ecological niche models for statistical comparison, we utilized GARP (Genetic Algorithm for Rule-Set Production) software to generate ecological niche models of human monkeypox in Africa. We created several models, keeping constant the case location input records for each model but varying the ecological input data. In order to assess the relative importance of each ecological parameter included in the development of the individual predicted distributions, we performed pixel-to-pixel comparisons between model outcomes and calculated the mean difference in pixel scores. We used a two sample Student's t-test, (assuming as null hypothesis that both maps were identical to each other regardless of which input parameters were used) to examine whether the mean difference in corresponding pixel scores from one map to another was greater than would be expected by chance alone. We also utilized weighted kappa statistics, frequency distributions, and percent difference to look at the disparities in pixel scores. Multiple independent statistical tests indicated precipitation as the single most important independent ecological parameter in the niche model for human monkeypox disease. CONCLUSION In addition to improving our understanding of the natural factors influencing the distribution of human monkeypox disease, such pixel-to-pixel comparison tests afford users the ability to empirically distinguish the significance of each of the diverse environmental parameters included in the modeling process. This method will be particularly useful in situations where the outcomes (maps) appear similar upon visual inspection (as are generated with other modeling programs such as MAXENT), as it allows an investigator the capacity to explore subtle differences among ecological parameters and to demonstrate the individual importance of these factors within an overall model.
Collapse
Affiliation(s)
- Rebecca S Levine
- CDC/ORISE Poxvirus Program Research Fellow, Centers for Disease Control and Prevention, 1600 Clifton Road MS G-06, Atlanta, GA 30333, USA
| | - Krista L Yorita
- CDC/ORISE Office of the Director Research Fellow, Centers for Disease Control and Prevention, 1600 Clifton Road MS A-30, Atlanta, GA 30333, USA
| | - Matthew C Walsh
- CDC/ORISE Poxvirus Program Research Fellow, Centers for Disease Control and Prevention, 1600 Clifton Road MS G-06, Atlanta, GA 30333, USA
| | - Mary G Reynolds
- CDC/CCID/DVRD/Poxvirus Program Epidemiologist, Centers for Disease Control and Prevention, 1600 Clifton Road MS G-06, Atlanta, GA 30333, USA
| |
Collapse
|
28
|
Berrang-Ford L, MacLean JD, Gyorkos TW, Ford JD, Ogden NH. Climate change and malaria in Canada: a systems approach. Interdiscip Perspect Infect Dis 2009; 2009:385487. [PMID: 19277107 PMCID: PMC2648659 DOI: 10.1155/2009/385487] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 03/27/2008] [Indexed: 01/09/2023] Open
Abstract
This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change.
Collapse
Affiliation(s)
- L. Berrang-Ford
- Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
| | - J. D. MacLean
- McGill University Centre for Tropical Diseases, Montreal General Hospital, Department of Medicine, McGill University, Montreal, QC, Canada H3G 1A4
| | - Theresa W. Gyorkos
- McGill University Centre for Tropical Diseases, Montreal General Hospital, Department of Medicine, McGill University, Montreal, QC, Canada H3G 1A4
- Division of Clinical Epidemiology, McGill University Health Centre, Royal Victoria Hospital, V Building, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada H3A 1A2
| | - J. D. Ford
- Department of Geography, McGill University, 805 Sherbrooke Street West, Montreal, QC, Canada H3A 2K6
| | - N. H. Ogden
- Public Health Agency of Canada and Faculté de médecine vétérinaire, Université de Montréal, CP 5000, Saint Hyacinthe, QC, Canada J2S 7C6
| |
Collapse
|
29
|
Peterson AT, Robbins A, Restifo R, Howell J, Nasci R. Predictable ecology and geography of West Nile virus transmission in the central United States. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2008; 33:342-52. [PMID: 19263855 DOI: 10.3376/1081-1710-33.2.342] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
West Nile virus (WNV) arrived in North America and spread rapidly through the western hemisphere. We present a series of tests to determine whether ecological factors are consistently associated with WNV transmission to humans. We analyzed human WNV cases in the states of Illinois, Indiana, and Ohio in 2002 and 2003, building ecological niche models to associate WNV case occurrences with ecological and environmental parameters. In essentially all tests, both within states, among states, between years, and across the region, we found high predictivity of WNV case distributions, suggesting that one or more elements in the WNV transmission cycle has a strong ecological determination. Areas in the geographic region included in this study predicted as suitable for WNV transmission tended to have lower values of the vegetation indices in the summer months, pointing to consistent ecological differences between suitable and unsuitable areas.
Collapse
Affiliation(s)
- A Townsend Peterson
- Natural History Museum and Biodiversity Research Center, The University of Kansas, Lawrence, KS 66045 USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Climate change could significantly affect vectorborne disease in humans. Temperature, precipitation, humidity, and other climatic factors are known to affect the reproduction, development, behavior, and population dynamics of the arthropod vectors of these diseases. Climate also can affect the development of pathogens in vectors, as well as the population dynamics and ranges of the nonhuman vertebrate reservoirs of many vectorborne diseases. Whether climate changes increase or decrease the incidence of vectorborne diseases in humans will depend not only on the actual climatic conditions but also on local nonclimatic epidemiologic and ecologic factors. Predicting the relative impact of sustained climate change on vectorborne diseases is difficult and will require long-term studies that look not only at the effects of climate change but also at the contributions of other agents of global change such as increased trade and travel, demographic shifts, civil unrest, changes in land use, water availability, and other issues. Adapting to the effects of climate change will require the development of adequate response plans, enhancement of surveillance systems, and development of effective and locally appropriate strategies to control and prevent vectorborne diseases.
Collapse
|
31
|
Foley DH, Rueda LM, Peterson AT, Wilkerson RC. Potential distribution of two species in the medically important Anopheles minimus complex (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:852-860. [PMID: 18826026 DOI: 10.1603/0022-2585(2008)45[852:pdotsi]2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Anopheles minimus Theobald (=An. minimus A) and possibly Anopheles harrisoni Harbach & Manguin (=An. minimus C) are important malaria vector species in the Minimus Complex in Southeast Asia. The distributions of these species are poorly known, although detailed information could benefit malaria vector incrimination and control. We used published collection records of these species and environmental geospatial data to construct consensus ecological niche models (ENM) of each species' potential geographic distribution. The status of the Indian taxon An. fluviatilis S as a species distinct from An. harrisoni has been debated in the literature, so we tested for differentiation in ecological niche characteristics. The predicted potential distribution of An. minimus is more southerly than that of An. harrisoni: Southeast Asia is predicted to be more suitable for An. minimus, and China and India are predicted more suitable for An. harrisoni, so An. harrisoni seems to dominate under cooler conditions. The distribution of An. minimus is more continuous than that of An. harrisoni: disjunction in the potential distribution of the latter is suggested between India and Southeast Asia Anopheles fluviatilis S occurrences are predicted within the An. harrisoni ecological potential, so we do not document ecological differentiation that might reject conspecificity. Overall, model predictions offer a synthetic view of the distribution of this species complex across the landscapes of southern and eastern Asia.
Collapse
Affiliation(s)
- Desmond H Foley
- Department of Entomology, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|
32
|
Young CLE, Chaon BC, Shan QA, Lobo NF, Collins FH. A checklist of the mosquitoes of Indiana with notes on the cryptic species complexes Anopheles quadrimaculatus s.l. and Anopheles punctipennis. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2008; 24:450-452. [PMID: 18939701 DOI: 10.2987/5669.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The checklist of the mosquito species reported to occur in the state of Indiana is updated to include a number of new records and new classifications. Specimens of the cryptic species complex Anopheles quadrimaculatus s.1. are identified as An. quadrimaculatus s.s., and specimens of An. punctipennis are identified as the Eastern form of the species.
Collapse
Affiliation(s)
- Catherine L E Young
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556 USA
| | | | | | | | | |
Collapse
|
33
|
Moffett A, Shackelford N, Sarkar S. Malaria in Africa: vector species' niche models and relative risk maps. PLoS One 2007; 2:e824. [PMID: 17786196 PMCID: PMC1950570 DOI: 10.1371/journal.pone.0000824] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/06/2007] [Indexed: 11/19/2022] Open
Abstract
A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease.
Collapse
Affiliation(s)
- Alexander Moffett
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Nancy Shackelford
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Sahotra Sarkar
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Marrelli MT, Sallum MAM, Marinotti O. The second internal transcribed spacer of nuclear ribosomal DNA as a tool for Latin American anopheline taxonomy - a critical review. Mem Inst Oswaldo Cruz 2007; 101:817-32. [PMID: 17293975 DOI: 10.1590/s0074-02762006000800002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 11/01/2006] [Indexed: 11/21/2022] Open
Abstract
Among the molecular markers commonly used for mosquito taxonomy, the internal transcribed spacer 2 (ITS2) of the ribosomal DNA is useful for distinguishing among closely-related species. Here we review 178 GenBank accession numbers matching ITS2 sequences of Latin American anophelines. Among those, we found 105 unique sequences corresponding to 35 species. Overall the ITS2 sequences distinguish anopheline species, however, information on intraspecific and geographic variations is scarce. Intraspecific variations ranged from 0.2% to 19% and our analysis indicates that misidentification and/or sequencing errors could be responsible for some of the high values of divergence. Research in Latin American malaria vector taxonomy profited from molecular data provided by single or few field capture mosquitoes. However we propose that caution should be taken and minimum requirements considered in the design of additional studies. Future studies in this field should consider that: (1) voucher specimens, assigned to the DNA sequences, need to be deposited in collections, (2) intraspecific variations should be thoroughly evaluated, (3) ITS2 and other molecular markers, considered as a group, will provide more reliable information, (4) biological data about vector populations are missing and should be prioritized, (5) the molecular markers are most powerful when coupled with traditional taxonomic tools.
Collapse
Affiliation(s)
- Mauro Toledo Marrelli
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
35
|
Sweeney A, Beebe N, Cooper R. Analysis of environmental factors influencing the range of anopheline mosquitoes in northern Australia using a genetic algorithm and data mining methods. Ecol Modell 2007. [DOI: 10.1016/j.ecolmodel.2006.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Abstract
TOC Summary: This technique can be used to study the geography and ecology of disease transmission. Ecologic niche modeling (ENM) is a growing field with many potential applications to questions regarding the geography and ecology of disease transmission. Specifically, ENM has the potential to inform investigations concerned with the geography, or potential geography, of vectors, hosts, pathogens, or human cases, and it can achieve fine spatial resolution without the loss of information inherent in many other techniques. Potential applications and current frontiers and challenges are reviewed.
Collapse
|
37
|
Sweeney AW, Beebe NW, Cooper RD, Bauer JT, Peterson AT. Environmental factors associated with distribution and range limits of malaria vector Anopheles farauti in Australia. JOURNAL OF MEDICAL ENTOMOLOGY 2006; 43:1068-75. [PMID: 17017247 DOI: 10.1603/0022-2585(2006)43[1068:efawda]2.0.co;2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ecological factors associated with the narrow coastal distribution of Anopheles farauti Laveran s.s. were investigated using decision tree software and a recently developed software tool that permits analysis of environmental gradients across distributional boundaries. Significant variables identified by these procedures were then used to develop ecological niche models that permitted detailed--and improved--predictions of the species' overall distribution. These methods identified seven climatic factors (four of temperature factors and three atmospheric moisture factors) from among 40 environmental variables related to the range of this species. In addition, the gradient-analysis tool identified elevation as being particularly important. The distributional hypothesis predicted using ecological niche modeling of these factors included all of the record sites from which An. farauti s.s. was collected in northern Australia and successfully reconstructed its narrow limitation to coastal areas. Omission of elevation from analyses resulted in unrealistic predictions of potential distributional areas > 100 km inland, where the species has not been found.
Collapse
Affiliation(s)
- A W Sweeney
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, P.O. Box 123 Broadway, NSW 2007, Australia
| | | | | | | | | |
Collapse
|
38
|
Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans R Soc Trop Med Hyg 2005; 99:647-55. [PMID: 15979656 DOI: 10.1016/j.trstmh.2005.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 12/02/2004] [Accepted: 02/07/2005] [Indexed: 11/28/2022] Open
Abstract
Numerous human diseases-malaria, dengue, yellow fever and leishmaniasis, to name a few-are transmitted by insect vectors with brief life cycles and biting activity that varies in both space and time. Although the general geographic distributions of these epidemiologically important species are known, the spatiotemporal variation in their emergence and activity remains poorly understood. We used ecological niche modeling via a genetic algorithm to produce time-specific predictive models of monthly distributions of Aedes aegypti in Mexico in 1995. Significant predictions of monthly mosquito activity and distributions indicate that predicting spatiotemporal dynamics of disease vector species is feasible; significant coincidence with human cases of dengue indicate that these dynamics probably translate directly into transmission of dengue virus to humans. This approach provides new potential for optimizing use of resources for disease prevention and remediation via automated forecasting of disease transmission risk.
Collapse
Affiliation(s)
- A Townsend Peterson
- Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|