1
|
Scroggs SLP, Swanson DA, Steele TD, Hudson AR, Reister-Hendricks LM, Gutierrez J, Shults P, McGregor BL, Taylor CE, Davis TM, Lamberski N, Phair KA, Howard LL, McConnell NE, Gurfield N, Drolet BS, Pelzel-McCluskey AM, Cohnstaedt LW. Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California. Viruses 2024; 16:1428. [PMID: 39339904 PMCID: PMC11437509 DOI: 10.3390/v16091428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Vesicular stomatitis (VS) is a viral disease that affects horses, cattle, and swine that is transmitted by direct contact and hematophagous insects. In 2023, a multi-state outbreak of vesicular stomatitis New Jersey virus (VSNJV) occurred in California, Nevada, and Texas, infecting horses, cattle, and rhinoceros. To identify possible insect vectors, we conducted insect surveillance at various locations in San Diego County, CA, including at a wildlife park. CO2 baited traps set from mid-May to mid-August 2023 collected 2357 Culicoides biting midges and 1215 Simulium black flies, which are insect genera implicated in VSNJV transmission. Insects were pooled by species, location, and date, then tested for viral RNA. Nine RNA-positive pools of Culicoides spp. and sixteen RNA-positive pools of Simulium spp were detected. Infectious virus was detected by cytopathic effect in 96% of the RNA-positive pools. This is the first report of VSNJV in wild-caught C. bergi, C. freeborni, C. occidentalis, S. argus, S. hippovorum, and S. tescorum. The vector competency of these species for VSNJV has yet to be determined but warrants examination. Active vector surveillance and testing during disease outbreaks increases our understanding of the ecology and epidemiology of VS and informs vector control efforts.
Collapse
Affiliation(s)
- Stacey L. P. Scroggs
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Dustin A. Swanson
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Taylor D. Steele
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Amy R. Hudson
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Lindsey M. Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Jessica Gutierrez
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Phillip Shults
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Bethany L. McGregor
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Caitlin E. Taylor
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Travis M. Davis
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Nadine Lamberski
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
| | - Kristen A. Phair
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
| | - Lauren L. Howard
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
- Peel Therapeutics, Salt Lake City, UT 84101, USA
| | | | - Nikos Gurfield
- San Diego County Vector Control, San Diego, CA 92123, USA; (N.E.M.); (N.G.)
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Angela M. Pelzel-McCluskey
- Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| |
Collapse
|
2
|
Velazquez-Salinas L, Medina GN, Valdez F, Zarate S, Collinson S, Zhu JJ, Rodriguez LL. Exploring the Molecular Basis of Vesicular Stomatitis Virus Pathogenesis in Swine: Insights from Expression Profiling of Primary Macrophages Infected with M51R Mutant Virus. Pathogens 2023; 12:896. [PMID: 37513744 PMCID: PMC10384765 DOI: 10.3390/pathogens12070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an emergent virus affecting livestock in the US. Previously, using a recombinant VSV carrying the M51R mutation in the matrix protein (rNJ0612NME6-M51R), we evaluated the pathogenesis of this virus in pigs. Our results indicated that rNJ0612NME6-M51R represented an attenuated phenotype in in-vivo and in ex-vivo in pig macrophages, resembling certain clinical features observed in field VSV isolates. In order to gain more insight into the molecular basis leading to the attenuation of rNJ0612NME6-M51R in pigs, we conducted a microarray analysis to assess the gene expression profiles of primary porcine macrophages infected with rNJ0612NME6-M51R compared to its parental virus (rNJ0612NME6). Our results showed an overall higher gene expression in macrophages infected with rNJ0612NME6-M51R. Specifically, we observed that the pathways related with immune cytokine signaling and interferon (IFN)-related responses (including activation, signaling, induction, and antiviral mechanisms) were the ones comprising most of the relevant genes identified during this study. Collectively, the results presented herein highlight the relevance of type I interferon during the pathogenesis of VSV in pigs. The information generated from this study may represent a framework for future studies intended to understand the molecular bases of the pathogenesis of field strains in livestock.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Federico Valdez
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE)-PIADC, Oak Ridge, TN 37831, USA
| | - Selene Zarate
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Ciudad de Mexico 04510, Mexico
| | - Shannon Collinson
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE)-PIADC, Oak Ridge, TN 37831, USA
| | - James J Zhu
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| | - Luis L Rodriguez
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, USDA, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
| |
Collapse
|
3
|
Drolet BS, Reeves WK, Bennett KE, Pauszek SJ, Bertram MR, Rodriguez LL. Identical Viral Genetic Sequence Found in Black Flies ( Simulium bivittatum) and the Equine Index Case of the 2006 U.S. Vesicular Stomatitis Outbreak. Pathogens 2021; 10:pathogens10080929. [PMID: 34451394 PMCID: PMC8398051 DOI: 10.3390/pathogens10080929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 01/25/2023] Open
Abstract
In 2006, vesicular stomatitis New Jersey virus (VSNJV) caused outbreaks in Wyoming (WY) horses and cattle after overwintering in 2004 and 2005. Within two weeks of the outbreak onset, 12,203 biting flies and 194 grasshoppers were collected near three equine-positive premises in Natrona County, WY. Insects were identified to the species level and tested by RT-qPCR for VSNJV polymerase (L) and phosphoprotein (P) gene RNA. Collected dipterans known to be competent for VSV transmission included Simulium black flies and Culicoides biting midges. VSNJV L and P RNA was detected in two pools of female Simulium bivittatum and subjected to partial genome sequencing. Phylogenetic analysis based on the hypervariable region of the P gene from black flies showed 100% identity to the isolate obtained from the index horse case on the same premises. This is the first report of VSNJV in S. bivittatum in WY and the first field evidence of possible VSV maintenance in black fly populations during an outbreak.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, Unites States Department of Agriculture, Manhattan, KS 66502, USA
- Correspondence:
| | - Will K. Reeves
- Biological Regulatory Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO 80526, USA;
| | | | - Steven J. Pauszek
- Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Orient Point, NY 11957, USA;
| | - Miranda R. Bertram
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, Unites States Department of Agriculture, Orient Point, NY 11957, USA; (M.R.B.); (L.L.R.)
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, Unites States Department of Agriculture, Orient Point, NY 11957, USA; (M.R.B.); (L.L.R.)
| |
Collapse
|
4
|
Xue X, Yu Z, Jin H, Liang L, Li J, Li X, Wang Y, Cui S, Li G. Recombinant adenovirus expressing vesicular stomatitis virus G proteins induce both humoral and cell-mediated immune responses in mice and goats. BMC Vet Res 2021; 17:36. [PMID: 33461549 PMCID: PMC7814712 DOI: 10.1186/s12917-020-02740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vesicular stomatitis (VS) is an acute, highly contagious and economically important zoonotic disease caused by the vesicular stomatitis virus (VSV). There is a need for effective and safe stable recombinant vaccine for the control of the disease. The human type 5 replication-defective adenovirus expression vector is a good way to construct recombinant vaccines. RESULTS Three recombinant adenoviruses (rAd) were successfully constructed that expressed the VSV Indiana serotype glycoprotein (VSV-IN-G), VSV New Jersey serotype glycoprotein (VSV-NJ-G), and the G fusion protein (both serotypes of G [VSV-IN-G-NJ-G]) with potentiality to induce protective immunity. G proteins were successfully expressed with good immunogenicity. The rAds could induce the production of VSV antibodies in mice, and VSV neutralizing antibodies in goats, respectively. The neutralizing antibody titers could reach 1:32 in mice and 1:64 in goats. The rAds induced strong lymphocyte proliferation in mice and goats, which was significantly higher compared to the negative control groups. CONCLUSIONS The three rAds constructed in the study expressed VSV-G proteins and induced both humoral and cellular immune responses in mice and goats. These results lay the foundation for further studies on the use of rAds in vaccines expressing VSV-G.
Collapse
Affiliation(s)
- Xiaojuan Xue
- Beijing Scientific Observation and Experiment Station for Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, China /Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaorong Yu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Hongyan Jin
- Beijing Scientific Observation and Experiment Station for Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, China /Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Tibet Vocational Technical College, Lhasa, 850000, China
| | - Lin Liang
- Beijing Scientific Observation and Experiment Station for Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, China /Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiayang Li
- Beijing Scientific Observation and Experiment Station for Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, China /Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolu Li
- Beijing Scientific Observation and Experiment Station for Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, China /Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong Wang
- Beijing Scientific Observation and Experiment Station for Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, China /Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Shangjin Cui
- Beijing Scientific Observation and Experiment Station for Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, China /Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gang Li
- Beijing Scientific Observation and Experiment Station for Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, China /Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Velazquez-Salinas L, Pauszek SJ, Holinka LG, Gladue DP, Rekant SI, Bishop EA, Stenfeldt C, Verdugo-Rodriguez A, Borca MV, Arzt J, Rodriguez LL. A Single Amino Acid Substitution in the Matrix Protein (M51R) of Vesicular Stomatitis New Jersey Virus Impairs Replication in Cultured Porcine Macrophages and Results in Significant Attenuation in Pigs. Front Microbiol 2020; 11:1123. [PMID: 32587580 PMCID: PMC7299242 DOI: 10.3389/fmicb.2020.01123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 12/05/2022] Open
Abstract
In this study, we explore the virulence of vesicular stomatitis New Jersey virus (VSNJV) in pigs and its potential relationship with the virus’s ability to modulate innate responses. For this purpose, we developed a mutant of the highly virulent strain NJ0612NME6, containing a single amino acid substitution in the matrix protein (M51R). The M51R mutant of NJ0612NME6 was unable to suppress the transcription of genes associated with the innate immune response both in primary fetal porcine kidney cells and porcine primary macrophage cultures. Impaired viral growth was observed only in porcine macrophage cultures, indicating that the M51 residue is required for efficient replication of VSNJV in these cells. Furthermore, when inoculated in pigs by intradermal scarification of the snout, M51R infection was characterized by decreased clinical signs including reduced fever and development of less and smaller secondary vesicular lesions. Pigs infected with M51R had decreased levels of viral shedding and absence of RNAemia compared to the parental virus. The ability of the mutant virus to infect pigs by direct contact remained intact, indicating that the M51R mutation resulted in a partially attenuated phenotype capable of causing primary lesions and transmitting to sentinel pigs. Collectively, our results show a positive correlation between the ability of VSNJV to counteract the innate immune response in swine macrophage cultures and the level of virulence in pigs, a natural host of this virus. More studies are encouraged to evaluate the interaction of VSNJV with macrophages and other components of the immune response in pigs.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States.,College of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Mexico City, Mexico.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Steven J Pauszek
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| | - Lauren G Holinka
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| | - Douglas P Gladue
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| | - Steven I Rekant
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Elizabeth A Bishop
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Antonio Verdugo-Rodriguez
- College of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Mexico City, Mexico
| | - Manuel V Borca
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| |
Collapse
|
6
|
Rozo-Lopez P, Drolet BS, Londoño-Renteria B. Vesicular Stomatitis Virus Transmission: A Comparison of Incriminated Vectors. INSECTS 2018; 9:insects9040190. [PMID: 30544935 PMCID: PMC6315612 DOI: 10.3390/insects9040190] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/30/2018] [Accepted: 12/08/2018] [Indexed: 11/28/2022]
Abstract
Vesicular stomatitis (VS) is a viral disease of veterinary importance, enzootic in tropical and subtropical regions of the Americas. In the U.S., VS produces devastating economic losses, particularly in the southwestern states where the outbreaks display an occurrence pattern of 10-year intervals. To date, the mechanisms of the geographic spread and maintenance cycles during epizootics remain unclear. This is due, in part, to the fact that VS epidemiology has a complex of variables to consider, including a broad range of vertebrate hosts, multiple routes of transmission, and an extensive diversity of suspected vector species acting as both mechanical and biological vectors. Infection and viral progression within vector species are highly influenced by virus serotype, as well as environmental factors, including temperature and seasonality; however, the mechanisms of viral transmission, including non-conventional pathways, are yet to be fully studied. Here, we review VS epidemiology and transmission mechanisms, with comparisons of transmission evidence for the four most incriminated hematophagous dipteran taxa: Aedes mosquitoes, Lutzomyia sand flies, Simulium black flies, and Culicoides biting midges.
Collapse
Affiliation(s)
- Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| | - Barbara S Drolet
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA.
| | - Berlin Londoño-Renteria
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS 66502, USA.
| |
Collapse
|
7
|
Velazquez-Salinas L, Pauszek SJ, Stenfeldt C, O'Hearn ES, Pacheco JM, Borca MV, Verdugo-Rodriguez A, Arzt J, Rodriguez LL. Increased Virulence of an Epidemic Strain of Vesicular Stomatitis Virus Is Associated With Interference of the Innate Response in Pigs. Front Microbiol 2018; 9:1891. [PMID: 30158915 PMCID: PMC6104175 DOI: 10.3389/fmicb.2018.01891] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Vesicular stomatitis virus (VSV) causes sporadic outbreaks of vesicular disease in the southwestern United States. The intrinsic characteristics of epidemic strains associated with these outbreaks are poorly understood. In this study, we report the distinctive genomic and biological characteristics of an epidemic (NJ0612NME6) strain of VSV compared with an endemic (NJ0806VCB) strain. Genomic comparisons between the two strains revealed a total of 111 nucleotide differences (23 non-synonymous) with potentially relevant replacements located in the P, G, and L proteins. When tested in experimentally infected pigs, a natural host of VSV, the epidemic strain caused higher fever and an increased number of vesicular lesions compared to pigs infected with the endemic strain. Pigs infected with the epidemic strain showed decreased systemic antiviral activity (type I - IFN), lower antibody levels, higher levels of interleukin 6, and lower levels of tumor necrosis factor during the acute phase of disease compared to pigs infected with the endemic strain. Furthermore, we document the existence of an RNAemia phase in pigs experimentally infected with VSV and explored the cause for the lack of recovery of infectious virus from blood. Finally, the epidemic strain was shown to be more efficient in down-regulating transcription of IRF-7 in primary porcine macrophages. Collectively, the data shows that the epidemic strain of VSV we tested has an enhanced ability to modulate the innate immune response of the vertebrate host. Further studies are needed to examine other epidemic strains and what contributions a phenotype of increased virulence might have on the transmission of VSV during epizootics.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States.,College of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Mexico City, Mexico.,Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Steven J Pauszek
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Emily S O'Hearn
- Foreign Animal Disease Diagnostic Laboratory, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Plum Island, NY, United States
| | - Juan M Pacheco
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States
| | - Manuel V Borca
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States
| | - Antonio Verdugo-Rodriguez
- College of Veterinary Medicine and Animal Science, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States
| |
Collapse
|
8
|
Urie N, Lombard J, Marshall K, Digianantonio R, Pelzel-McCluskey A, McCluskey B, Traub-Dargatz J, Kopral C, Swenson S, Schiltz J. Risk factors associated with clinical signs of vesicular stomatitis and seroconversion without clinical disease in Colorado horses during the 2014 outbreak. Prev Vet Med 2018; 156:28-37. [DOI: 10.1016/j.prevetmed.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/27/2022]
|
9
|
Mesquita LP, Diaz MH, Howerth EW, Stallknecht DE, Noblet R, Gray EW, Mead DG. Pathogenesis of Vesicular Stomatitis New Jersey Virus Infection in Deer Mice ( Peromyscus maniculatus) Transmitted by Black Flies ( Simulium vittatum). Vet Pathol 2016; 54:74-81. [PMID: 27312365 DOI: 10.1177/0300985816653172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The natural transmission of vesicular stomatitis New Jersey virus (VSNJV), an arthropod-borne virus, is not completely understood. Rodents may have a role as reservoir or amplifying hosts. In this study, juvenile and nestling deer mice ( Peromyscus maniculatus) were exposed to VSNJV-infected black fly ( Simulium vittatum) bites followed by a second exposure to naive black flies on the nestling mice. Severe neurological signs were observed in some juvenile mice by 6 to 8 days postinoculation (DPI); viremia was not detected in 25 juvenile deer mice following exposure to VSNJV-infected fly bites. Both juvenile and nestling mice had lesions and viral antigen in the central nervous system (CNS); in juveniles, their distribution suggested that the sensory pathway was the most likely route to the CNS. In contrast, a hematogenous route was probably involved in nestling mice, since all of these mice developed viremia and had widespread antigen distribution in the CNS and other tissues on 2 DPI. VSNJV was recovered from naive flies that fed on viremic nestling mice. This is the first report of viremia in a potential natural host following infection with VSNJV via insect bite and conversely of an insect becoming infected with VSNJV by feeding on a viremic host. These results, along with histopathology and immunohistochemistry, show that nestling mice have widespread dissemination of VSNJV following VSNJV-infected black fly bite and are a potential reservoir or amplifying host for VSNJV.
Collapse
Affiliation(s)
- L P Mesquita
- 1 Department of Pathology, University of Georgia, Athens, GA, USA.,2 Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - M H Diaz
- 3 Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,4 Centers for Disease Control and Prevention, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - E W Howerth
- 1 Department of Pathology, University of Georgia, Athens, GA, USA
| | - D E Stallknecht
- 3 Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - R Noblet
- 5 Department of Entomology, University of Georgia, Athens, GA, USA
| | - E W Gray
- 5 Department of Entomology, University of Georgia, Athens, GA, USA
| | - D G Mead
- 3 Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Charles J, Firth AE, Loroño-Pino MA, Garcia-Rejon JE, Farfan-Ale JA, Lipkin WI, Blitvich BJ, Briese T. Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico. J Gen Virol 2016; 97:977-987. [PMID: 26868915 DOI: 10.1099/jgv.0.000424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico.
Collapse
Affiliation(s)
- Jermilia Charles
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maria A Loroño-Pino
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julian E Garcia-Rejon
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Jose A Farfan-Ale
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Ding X, Liu N, Matsuo K, Sun M, Zhao X. Use of cell morphology as early bioindicator for viral infection. IET Nanobiotechnol 2014; 8:24-30. [DOI: 10.1049/iet-nbt.2013.0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Xianting Ding
- Med‐X Research InstituteSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Ningxia Liu
- Institute of Robotics & Automatic Information SystemNankai UniversityTianjinPeople's Republic of China
| | - Kyle Matsuo
- Bioengineering DepartmentUniversity of CaliforniaLos AngelesUSA
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information SystemNankai UniversityTianjinPeople's Republic of China
| | - Xin Zhao
- Institute of Robotics & Automatic Information SystemNankai UniversityTianjinPeople's Republic of China
| |
Collapse
|
12
|
Smith PF, Howerth EW, Carter D, Gray EW, Noblet R, Berghaus RD, Stallknecht DE, Mead DG. Host predilection and transmissibility of vesicular stomatitis New Jersey virus strains in domestic cattle (Bos taurus) and swine (Sus scrofa). BMC Vet Res 2012; 8:183. [PMID: 23034141 PMCID: PMC3514395 DOI: 10.1186/1746-6148-8-183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 09/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiologic data collected during epidemics in the western United States combined with limited experimental studies involving swine and cattle suggest that host predilection of epidemic vesicular stomatitis New Jersey virus (VSNJV) strains results in variations in clinical response, extent and duration of virus shedding and transmissibility following infection in different hosts. Laboratory challenge of livestock with heterologous VSNJV strains to investigate potential viral predilections for these hosts has not been thoroughly investigated. In separate trials, homologous VSNJV strains (NJ82COB and NJ82AZB), and heterologous strains (NJ06WYE and NJOSF [Ossabaw Island, sand fly]) were inoculated into cattle via infected black fly bite. NJ82AZB and NJ06WYE were similarly inoculated into swine. RESULTS Clinical scores among viruses infecting cattle were significantly different and indicated that infection with a homologous virus resulted in more severe clinical presentation and greater extent and duration of viral shedding. No differences in clinical severity or extent and duration of viral shedding were detected in swine. CONCLUSIONS Differences in clinical presentation and extent and duration of viral shedding may have direct impacts on viral spread during epidemics. Viral transmission via animal-to-animal contact and insect vectored transmission are likely to occur at higher rates when affected animals are presenting severe clinical signs and shedding high concentrations of virus. More virulent viral strains resulting in more severe disease in livestock hosts are expected to spread more rapidly and greater distances during epidemics than those causing mild or inapparent signs.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Entomology, College of Agriculture and Environmental Sciences, University of Georgia, 120 Cedar Street, 413 Biological Sciences Building, Athens, GA, 30602, USA
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Deborah Carter
- Department of Pathology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Elmer W Gray
- Department of Entomology, College of Agriculture and Environmental Sciences, University of Georgia, 120 Cedar Street, 413 Biological Sciences Building, Athens, GA, 30602, USA
| | - Raymond Noblet
- Department of Entomology, College of Agriculture and Environmental Sciences, University of Georgia, 120 Cedar Street, 413 Biological Sciences Building, Athens, GA, 30602, USA
| | - Roy D Berghaus
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Road, Athens, GA, 30605, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Wildlife Health Building, Athens, GA, 30602, USA
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D.W. Brooks Drive, Wildlife Health Building, Athens, GA, 30602, USA
| |
Collapse
|
13
|
Smith PF, Howerth EW, Carter D, Gray EW, Noblet R, Smoliga G, Rodriguez LL, Mead DG. Domestic cattle as a non-conventional amplifying host of vesicular stomatitis New Jersey virus. MEDICAL AND VETERINARY ENTOMOLOGY 2011; 25:184-191. [PMID: 21133963 DOI: 10.1111/j.1365-2915.2010.00932.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The role of vertebrates as amplifying and maintenance hosts for vesicular stomatitis New Jersey virus (VSNJV) remains unclear. Livestock have been considered dead-end hosts because detectable viraemia is absent in VSNJV-infected animals. This study demonstrated two situations in which cattle can represent a source of VSNJV to Simulium vittatum Zetterstedt (Diptera: Simuliidae) by serving: (a) as a substrate for horizontal transmission among co-feeding black flies, and (b) as a source of infection to uninfected black flies feeding on sites where VSNJV-infected black flies have previously fed. Observed co-feeding transmission rates ranged from 0% to 67%. Uninfected flies physically separated from infected flies by a distance of up to 11 cm were able to acquire virus during feeding although the rate of transmission decreased as the distance between infected and uninfected flies increased. Acquisition of VSNJV by uninfected flies feeding on initial inoculation sites at 24 h, 48 h and 72 h post-infection, in both the presence and absence of vesicular lesions, was detected.
Collapse
Affiliation(s)
- P F Smith
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Among members of the order Mononegavirales, RNA splicing events have been found only in the family Bornaviridae. Here, we report that a new rhabdovirus isolated from the mosquito Culex tritaeniorhynchus replicates in the nuclei of infected cells and requires RNA splicing for viral mRNA maturation. The virus, designated Culex tritaeniorhynchus rhabdovirus (CTRV), shares a similar genome organization with other rhabdoviruses, except for the presence of a putative intron in the coding region for the L protein. Molecular phylogenetic studies indicated that CTRV belongs to the family Rhabdoviridae, but it is yet to be assigned a genus. Electron microscopic analysis revealed that the CTRV virion is extremely elongated, unlike virions of rhabdoviruses, which are generally bullet shaped. Northern hybridization confirmed that a large transcript (approximately 6,500 nucleotides [nt]) from the CTRV L gene was present in the infected cells. Strand-specific reverse transcription-PCR (RT-PCR) analyses identified the intron-exon boundaries and the 76-nt intron sequence, which contains the typical motif for eukaryotic spliceosomal intron-splice donor/acceptor sites (GU-AG), a predicted branch point, and a polypyrimidine tract. In situ hybridization exhibited that viral RNAs are primarily localized in the nucleus of infected cells, indicating that CTRV replicates in the nucleus and is allowed to utilize the host's nuclear splicing machinery. This is the first report of RNA splicing among the members of the family Rhabdoviridae.
Collapse
|
15
|
Reis JL, Rodriguez LL, Mead DG, Smoliga G, Brown CC. Lesion development and replication kinetics during early infection in cattle inoculated with Vesicular stomatitis New Jersey virus via scarification and black fly (Simulium vittatum) bite. Vet Pathol 2010; 48:547-57. [PMID: 20858740 DOI: 10.1177/0300985810381247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vesicular stomatitis viruses are the causative agents of vesicular stomatitis, an economically important contagious disease of livestock that occurs in North, Central, and South America. Little is known regarding the early stages of infection in natural hosts. Twelve adult Holstein steers were inoculated with Vesicular stomatitis New Jersey virus (VSNJV) on the coronary bands (CB) of the feet via scarification (SC) or by VSNJV-infected black fly (Simulium vittatum) bite (FB). Three additional animals were inoculated on the neck skin using FB. Clinical disease and lesion development were assessed daily, and animals were euthanatized from 12 hours post inoculation (HPI) through 120 HPI. The animals inoculated in the neck failed to develop any clinical signs or gross lesions, and VSNJV was detected neither by in situ hybridization (ISH) nor by immunohistochemistry (IHC). Lesions on the CB were more severe in the animals infected by FB than by SC. In both groups, peak VSNJV replication occurred between 24 and 48 HPI in keratinocytes of the CB, as evidenced by ISH and IHC. There was evidence of viral replication limited to the first 24 HPI in the local draining lymph nodes, as seen through ISH. Successful infection via FB required logarithmically less virus than with the SC technique, suggesting that components in black fly saliva may facilitate VSNJV transmission and infection in cattle. The lack of lesion development in the neck with the same method of inoculation used in the CB suggests that specific characteristics of the CB epithelium may facilitate VSNJV infection.
Collapse
Affiliation(s)
- J L Reis
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | | | | |
Collapse
|
16
|
Smith PF, Howerth EW, Carter D, Gray EW, Noblet R, Mead DG. Mechanical transmission of vesicular stomatitis New Jersey virus by Simulium vittatum (Diptera: Simuliidae) to domestic swine (Sus scrofa). JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:1537-1540. [PMID: 19960709 DOI: 10.1603/033.046.0643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biting flies have been suggested as mechanical vectors of vesicular stomatitis New Jersey Virus (family Rhabdoviridae, genus Vesiculovirus, VSNJV) in livestock populations during epidemic outbreaks in the western United States. We conducted a proof-of-concept study to determine whether biting flies could mechanically transmit VSNJV to livestock by using a black fly, Simulium vittatum Zetterstedt (Diptera: Simuliidae), domestic swine, Sus scrofa L., model. Black flies mechanically transmitted VSNJV to a naive host after interrupted feeding on a vesicular lesion on a previously infected host. Transmission resulted in clinical disease in the naïve host. This is the first demonstration of mechanical transmission of VSNJV to livestock by insects.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Entomology, 413 Biological Sciences, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|