1
|
Li H, Jiang Z, Zhou J, Liu X, Zhang Y, Chu D. Ecological Factors Associated with the Distribution of Bemisia tabaci Cryptic Species and Their Facultative Endosymbionts. INSECTS 2023; 14:252. [PMID: 36975937 PMCID: PMC10053707 DOI: 10.3390/insects14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The sweetpotato whitefly, Bemisia tabaci species complex, comprises at least 44 morphologically indistinguishable cryptic species, whose endosymbiont infection patterns often varied at the spatial and temporal dimension. However, the effects of ecological factors (e.g., climatic or geographical factors) on the distribution of whitefly and the infection frequencies of their endosymbionts have not been fully elucidated. We, here, analyzed the associations between ecological factors and the distribution of whitefly and their three facultative endosymbionts (Candidatus Cardinium hertigii, Candidatus Hamiltonella defensa, and Rickettsia sp.) by screening 665 individuals collected from 29 geographical localities across China. The study identified eight B. tabaci species via mitochondrial cytochrome oxidase I (mtCOI) gene sequence alignment: two invasive species, MED (66.9%) and MEAM1 (12.2%), and six native cryptic species (20.9%), which differed in distribution patterns, ecological niches, and high suitability areas. The infection frequencies of the three endosymbionts in different cryptic species were distinct and multiple infections were relatively common in B. tabaci MED populations. Furthermore, the annual mean temperature positively affected Cardinium sp. and Rickettsia sp. infection frequencies in B. tabaci MED but negatively affected the quantitative distribution of B. tabaci MED, which indicates that Cardinium sp. and Rickettsia sp. maybe play a crucial role in the thermotolerance of B. tabaci MED, although the host whitefly per se exhibits no resistance to high temperature. Our findings revealed the complex effects of ecological factors on the expansion of the invasive whitefly.
Collapse
Affiliation(s)
- Hongran Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 515100, China
| | - Zhihui Jiang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jincheng Zhou
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Zheng HY, Qin PH, Yang K, Liu TX, Zhang YJ, Chu D. Genome-Wide Identification and Analysis of the Heat-Shock Protein Gene Superfamily in Bemisia tabaci and Expression Pattern Analysis under Heat Shock. INSECTS 2022; 13:insects13070570. [PMID: 35886746 PMCID: PMC9319060 DOI: 10.3390/insects13070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Bemisia tabaci MED is an invasive pest that had caused considerable economic damage in the past decades. Its successful colonization is closely related to heat-shock proteins (HSPs), which are related to heat resistance. In this study, 33 BtaHsps were identified based on the sequenced genome of B. tabaci MED belonging to six HSP families, among which 22 BtaHsps were newly identified. Analysis of the secondary structure and evolutionary relationship showed that they were all closely related. In addition, BtaHsp90A3 of the HSP90 family was screened by analyzing the expression level changes of these genes under 42 °C heat shock and RNAi was performed on the BtaHsp90A3. The results showed that the silencing of BtaHsp90A3 is closely related to the heat resistance of B. tabaci MED. Taken together, this study conducted an in-depth identification of BtaHsps that clarifies their evolutionary relationships and their response to thermal stress in B. tabaci MED. Abstract The thermal tolerance of Bemisia tabaci MED, an invasive whitefly species with worldwide distribution, plays an important role in its ecological adaptation during the invasion process. Heat-shock proteins (HSPs) are closely related to heat resistance. In this study, 33 Hsps (BtaHsps) were identified based on sequenced genome of B. tabaci MED belonging to six HSP families, among which 22 Hsps were newly identified. The secondary structures of a further 22 BtaHsps were also predicted. The results of RT-qPCR showed that heat shock could affect the expression of 14 of the 22 Hsps newly identified in this study. Among them, the expression level of six Hsps increased under 42 °C treatment. As the unstudied gene, BtaHsp90A3 had the highest increase rate. Therefore, BtaHsp90A3 was chosen for the RNAi test, and silencing BtaHsp90A3 by RNAi decreased the survival rate of adult B. tabaci at 42 °C. The results indicated that only a few Hsps were involved in the thermal tolerance of host whitefly although many Hsps would response under heat stress. This study conducted a more in-depth and comprehensive identification that demonstrates the evolutionary relationship of BtaHsps and illustrates the response of BtaHsps under the influence of thermal stress in B. tabaci MED.
Collapse
Affiliation(s)
- Hao-Yuan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
| | - Peng-Hao Qin
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
| | - Kun Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
| | - Tong-Xian Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (H.-Y.Z.); (P.-H.Q.); (K.Y.); (T.-X.L.)
- Correspondence: ; Tel.: +86-58957712
| |
Collapse
|
3
|
Yang K, Yuan MY, Liu Y, Guo CL, Liu TX, Zhang YJ, Chu D. First evidence for thermal tolerance benefits of the bacterial symbiont Cardinium in an invasive whitefly, Bemisia tabaci. PEST MANAGEMENT SCIENCE 2021; 77:5021-5031. [PMID: 34216527 DOI: 10.1002/ps.6543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUD Cardinium symbiont is a maternally inherited bacterial endosymbiont and widely spreads in arthropods including Bemisia tabaci (Hemiptera: Aleyrodidae). However, the potential role of Cardinium played in the biology of their hosts is largely unknown. In two genetic lines (i.e. LS and SG lines) of B. tabaci MED, collected from different locations in China, we tested the effects of Cardinium on the performance of the host whitefly under a constant high temperature (31 °C) using the age-stage two-sex life table method, and explored the genes influenced by Cardinium-infection by RNA-sequencing. RESULTS We found that Cardinium did provide protection of B. tabaci against heat stress under 31 °C. However, there was a significant connection between Cardinium-infection and whitefly genetic backgrounds. Performance revealed that Cardinium infection can increase the longevity of both female and male adults and oviposition periods in both lines, but it also conferred benefits of fecundity and pre-adult period to LS line. Additionally, the population parameters such as intrinsic rate of increase (r), finite rate of increase (λ) and mean generation time (T) demonstrated that Cardinium infection conferred fitness benefits to LS line but not to SG line. Transcriptome analysis indicated that several genes related to homeostasis and metamorphosis such as ubiquitin-related genes were highly expressed in Cardinium-infected B. tabaci. CONCLUSION The research provided the first evidence that Cardinium can increase the thermal tolerance of whitefly, which may be associated with host genetic background.
Collapse
Affiliation(s)
- Kun Yang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Meng-Ying Yuan
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ying Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chen-Liang Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, |Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Yue H, Huang LP, Lu DYH, Zhang ZH, Zhang Z, Zhang DY, Zheng LM, Gao Y, Tan XQ, Zhou XG, Shi XB, Liu Y. Integrated Analysis of microRNA and mRNA Transcriptome Reveals the Molecular Mechanism of Solanum lycopersicum Response to Bemisia tabaci and Tomato chlorosis virus. Front Microbiol 2021; 12:693574. [PMID: 34239512 PMCID: PMC8258350 DOI: 10.3389/fmicb.2021.693574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tomato chlorosis virus (ToCV), is one of the most devastating cultivated tomato viruses, seriously threatened the growth of crops worldwide. As the vector of ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread of ToCV. The current understanding of tomato plant responses to this virus and B. tabaci is very limited. To understand the molecular mechanism of the interaction between tomato, ToCV and B. tabaci, we adopted a next-generation sequencing approach to decipher miRNAs and mRNAs that are differentially expressed under the infection of B. tabaci and ToCV in tomato plants. Our data revealed that 6199 mRNAs were significantly regulated, and the differentially expressed genes were most significantly associated with the plant-pathogen interaction, the MAPK signaling pathway, the glyoxylate, and the carbon fixation in photosynthetic organisms and photosynthesis related proteins. Concomitantly, 242 differentially expressed miRNAs were detected, including novel putative miRNAs. Sly-miR159, sly-miR9471b-3p, and sly-miR162 were the most expressed miRNAs in each sample compare to control group. Moreover, we compared the similarities and differences of gene expression in tomato plant caused by infection or co-infection of B. tabaci and ToCV. Taken together, the analysis reported in this article lays a solid foundation for further research on the interaction between tomato, ToCV and B. tabaci, and provide evidence for the identification of potential key genes that influences virus transmission in tomato plants.
Collapse
Affiliation(s)
- Hao Yue
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Ping Huang
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Ding-Yi-Hui Lu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Zhan-Hong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - De-Yong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Li-Min Zheng
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yang Gao
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xin-Qiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Xiao-Bin Shi
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| | - Yong Liu
- Subcollege of Longping, Graduate School of Hunan University, Changsha, China
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, China
| |
Collapse
|
5
|
Li J, Wang JC, Ding TB, Chu D. Synergistic Effects of a Tomato chlorosis virus and Tomato yellow leaf curl virus Mixed Infection on Host Tomato Plants and the Whitefly Vector. FRONTIERS IN PLANT SCIENCE 2021; 12:672400. [PMID: 34135928 PMCID: PMC8201402 DOI: 10.3389/fpls.2021.672400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
In China, Tomato chlorosis virus (ToCV) and Tomato yellow leaf curl virus (TYLCV) are widely present in tomato plants. The epidemiology of these viruses is intimately associated with their vector, the whitefly (Bemisia tabaci MED). However, how a ToCV+TYLCV mixed infection affects viral acquisition by their vector remains unknown. In this study, we examined the growth parameters of tomato seedlings, including disease symptoms and the heights and weights of non-infected, singly infected and mixed infected tomato plants. Additionally, the spatio-temporal dynamics of the viruses in tomato plants, and the viral acquisition and transmission by B. tabaci MED, were determined. The results demonstrated that: (i) ToCV+TYLCV mixed infections induced tomato disease synergism, resulting in a high disease severity index and decreased stem heights and weights; (ii) as the disease progressed, TYLCV accumulated more in upper leaves of TYLCV-infected tomato plants than in lower leaves, whereas ToCV accumulated less in upper leaves of ToCV-infected tomato plants than in lower leaves; (iii) viral accumulation in ToCV+TYLCV mixed infected plants was greater than in singly infected plants; and (iv) B. tabaci MED appeared to have a greater TYLCV, but a lower ToCV, acquisition rate from mixed infected plants compared with singly infected plants. However, mixed infections did not affect transmission by whiteflies. Thus, ToCV+TYLCV mixed infections may induce synergistic disease effects in tomato plants.
Collapse
|
6
|
Ding TB, Li J, Chen EH, Niu JZ, Chu D. Transcriptome Profiling of the Whitefly Bemisia tabaci MED in Response to Single Infection of Tomato yellow leaf curl virus, Tomato chlorosis virus, and Their Co-infection. Front Physiol 2019; 10:302. [PMID: 31001125 PMCID: PMC6457337 DOI: 10.3389/fphys.2019.00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) and Tomato chlorosis virus (ToCV) are two of the most devastating cultivated tomato viruses, causing significant crop losses worldwide. As the vector of both TYLCV and ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread and mixed infection of TYLCV and ToCV in China. However, little is known concerning B. tabaci MED's molecular response to TYLCV and ToCV infection or their co-infection. We determined the transcriptional responses of the whitefly MED to TYLCV infection, ToCV infection, and TYLCV&ToCV co-infection using Illumina sequencing. In all, 78, 221, and 60 differentially expressed genes (DEGs) were identified in TYLCV-infected, ToCV-infected, and TYLCV&ToCV co-infected whiteflies, respectively, compared with non-viruliferous whiteflies. Differentially regulated genes were sorted according to their roles in detoxification, stress response, immune response, transport, primary metabolism, cell function, and total fitness in whiteflies after feeding on virus-infected tomato plants. Alterations in the transcription profiles of genes involved in transport and energy metabolism occurred between TYLCV&ToCV co-infection and single infection with TYLCV or ToCV; this may be associated with the adaptation of the insect vector upon co-infection of the two viruses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses demonstrated that the single infection with TYLCV or ToCV and the TYLCV&ToCV co-infection could perturb metabolic processes and metabolic pathways. Taken together, our results provide basis for further exploration of the molecular mechanisms of the response to TYLCV, ToCV single infection, and TYLCV&ToCV co-infection in B. tabaci MED, which will add to our knowledge of the interactions between plant viruses and insect vectors.
Collapse
Affiliation(s)
- Tian-Bo Ding
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Vyskočilová S, Tay WT, van Brunschot S, Seal S, Colvin J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci Rep 2018; 8:10886. [PMID: 30022040 PMCID: PMC6052153 DOI: 10.1038/s41598-018-29305-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
Abstract
Bemisia tabaci is a cryptic whitefly-species complex that includes some of the most damaging pests and plant-virus vectors of a diverse range of food and fibre crops worldwide. We combine experimental evidence of: (i) differences in reproductive compatibility, (ii) hybrid verification using a specific nuclear DNA marker and hybrid fertility confirmation and (iii) high-throughput sequencing-derived mitogenomes, to show that the "Mediterranean" (MED) B. tabaci comprises at least two distinct biological species; the globally invasive MED from the Mediterranean Basin and the "African silver-leafing" (ASL) from sub-Saharan Africa, which has no associated invasion records. We demonstrate that, contrary to its common name, the "ASL" does not induce squash silver-leafing symptoms and show that species delimitation based on the widely applied 3.5% partial mtCOI gene sequence divergence threshold produces discordant results, depending on the mtCOI region selected. Of the 292 published mtCOI sequences from MED/ASL groups, 158 (54%) are low quality and/or potential pseudogenes. We demonstrate fundamental deficiencies in delimiting cryptic B. tabaci species, based solely on partial sequences of a mitochondrial barcoding gene. We advocate an integrative approach to reveal the true species richness within cryptic species complexes, which is integral to the deployment of effective pest and disease management strategies.
Collapse
Affiliation(s)
- Soňa Vyskočilová
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom.
| | - Wee Tek Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Canberra, Australia
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
| |
Collapse
|
8
|
Romba R, Gnankine O, Drabo SF, Tiendrebeogo F, Henri H, Mouton L, Vavre F. Abundance of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) and its parasitoids on vegetables and cassava plants in Burkina Faso (West Africa). Ecol Evol 2018; 8:6091-6103. [PMID: 29988460 PMCID: PMC6024141 DOI: 10.1002/ece3.4078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/09/2018] [Accepted: 03/24/2018] [Indexed: 02/02/2023] Open
Abstract
The whitefly Bemisia tabaci is a pest of many agricultural and ornamental crops worldwide and particularly in Africa. It is a complex of cryptic species, which is extremely polyphagous with hundreds of host plants identified around the world. Previous surveys in western Africa indicated the presence of two biotypes of the invasive MED species (MED-Q1 and MED-Q3) living in sympatry with the African species SSA and ASL. This situation constitutes one of the rare cases of local coexistence of various genetic entities within the B. tabaci complex. In order to study the dynamics of the distribution and abundance of genetic entities within this community and to identify potential factors that could contribute to coexistence, we sampled B. tabaci populations in Burkina Faso in 2015 and 2016 on various plants, and also their parasitoids. All four genetic entities were still recorded, indicating no exclusion of local species by the MED species. While B. tabaci individuals were found on 55 plant species belonging to eighteen (18) families showing the high polyphagy of this pest, some species/biotypes exhibited higher specificity. Two parasitoid species (Eretmocerus mundus and Encarsia vandrieschei) were also recorded with E. mundus being predominant in most localities and on most plants. Our data indicated that whitefly abundance, diversity, and rate of parasitism varied according to areas, plants, and years, but that parasitism rate was globally highly correlated with whitefly abundance suggesting density dependence. Our results also suggest dynamic variation in the local diversity of B. tabaci species/biotypes from 1 year to the other, specifically with MED-Q1 and ASL species. This work provides relevant information on the nature of plant-B. tabaci-parasitoid interactions in West Africa and identifies that coexistence might be stabilized by niche differentiation for some genetic entities. However, MED-Q1 and ASL show extensive niche overlap, which could ultimately lead to competitive exclusion.
Collapse
Affiliation(s)
- Rahim Romba
- Laboratoire d'Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre (UFR‐SVT)Université Ouaga I Pr Joseph Ki ZerboOuagadougouBurkina Faso
| | - Olivier Gnankine
- Laboratoire d'Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre (UFR‐SVT)Université Ouaga I Pr Joseph Ki ZerboOuagadougouBurkina Faso
| | - Samuel Fogné Drabo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Unité de Formation et de Recherche en Sciences de la Vie et de la Terre (UFR‐SVT)Université Ouaga I Pr Joseph Ki ZerboOuagadougouBurkina Faso
| | | | - Hélène Henri
- Université de LyonUniversité Lyon 1CNRSLaboratoire de Biométrie et Biologie EvolutiveUMR5558VilleurbanneFrance
| | - Laurence Mouton
- Université de LyonUniversité Lyon 1CNRSLaboratoire de Biométrie et Biologie EvolutiveUMR5558VilleurbanneFrance
| | - Fabrice Vavre
- Université de LyonUniversité Lyon 1CNRSLaboratoire de Biométrie et Biologie EvolutiveUMR5558VilleurbanneFrance
| |
Collapse
|
9
|
Lv ZH, Wei XY, Tao YL, Chu D. Differential susceptibility of whitefly-associated bacteria to antibiotic as revealed by metagenomics analysis. INFECTION GENETICS AND EVOLUTION 2018; 63:24-29. [PMID: 29702243 DOI: 10.1016/j.meegid.2018.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recent reports have suggested that different symbionts of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) have differential susceptibility to antibiotic treatment. Changes in the community structure of B. tabaci-associated bacterial microbiota (BABM) following antibiotic treatment, however, remain poorly understood, although increasing numbers of B. tabaci-associated bacteria have been reported in recent years. METHODOLOGY AND RESULTS The BABM of male or female B. tabaci Q (also known as B. tabaci MED species) were analyzed after being fed on artificial diet containing the antibiotic rifampicin and compared with untreated controls. The bacterial 16S rDNA gene amplicon metagenomic sequencing method was used in the analyses. The results showed that the BABM in male and female adults have different characteristics, and that the community structure of the BABM changes drastically following antibiotic treatment. Further analysis of the endosymbionts in B. tabaci showed that the relative abundance of the primary endosymbiont, Portiera, increased in females but was unchanged in male whiteflies, while that of the secondary endosymbiont, Hamiltonella, significantly decreased in both male and female whiteflies. The secondary endosymbionts, Cardinium and Rickettsia, were apparently not affected in either male or female whiteflies. CONCLUSIONS The community structure of BABM can be drastically altered following treatment with the antibiotic, rifampicin. This may be due to different antibiotic susceptibilities among the bacterial species. These results provide valuable insights into the innate differences in the BABM of male and female whiteflies, as well as structural changes that occur in the BABM in response to exposure to an antibiotic.
Collapse
Affiliation(s)
- Zhen-Hong Lv
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Ying Wei
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yun-Li Tao
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Xie W, Chen C, Yang Z, Guo L, Yang X, Wang D, Chen M, Huang J, Wen Y, Zeng Y, Liu Y, Xia J, Tian L, Cui H, Wu Q, Wang S, Xu B, Li X, Tan X, Ghanim M, Qiu B, Pan H, Chu D, Delatte H, Maruthi MN, Ge F, Zhou X, Wang X, Wan F, Du Y, Luo C, Yan F, Preisser EL, Jiao X, Coates BS, Zhao J, Gao Q, Xia J, Yin Y, Liu Y, Brown JK, Zhou XJ, Zhang Y. Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q. Gigascience 2018; 6:1-7. [PMID: 28327996 PMCID: PMC5467035 DOI: 10.1093/gigascience/gix018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 03/10/2017] [Indexed: 11/15/2022] Open
Abstract
The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future 'pan-genomic' comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management.
Collapse
Affiliation(s)
- Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | | | - Zezhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Litao Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Xin Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Dan Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ming Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yanan Wen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yang Zeng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yating Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Jixing Xia
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Lixia Tian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Hongying Cui
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Baoyun Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Xianchun Li
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan 5025001, Israel
| | - Baoli Qiu
- Key Lab of Bio-pesticide Creation and Application, South China Agricultural University, Guangzhou 510642, China
| | - Huipeng Pan
- Key Lab of Bio-pesticide Creation and Application, South China Agricultural University, Guangzhou 510642, China
| | - Dong Chu
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China
| | | | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Feng Ge
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueping Zhou
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaowei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fanghao Wan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuzhou Du
- School of Horticulture and Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Fengming Yan
- Collaborative Innovation Center of Henan Grain Crops, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Xiaoguo Jiao
- College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, USA
| | | | - Qiang Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Ye Yin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Xuguo Joe Zhou
- Department of Entomology, S-225 Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing 100081, China
| |
Collapse
|
11
|
Karut K, Mete Karaca M, Döker I, Kazak C. Analysis of Species, Subgroups, and Endosymbionts of Bemisia tabaci (Hemiptera: Aleyrodidae) From Southwestern Cotton Fields in Turkey. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1035-1040. [PMID: 28505238 DOI: 10.1093/ee/nvx093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Indexed: 06/07/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important insect pests worldwide including Turkey. Although there are substantial data regarding species composition of Turkish B. tabaci populations, the situation is still not clear and further investigations are needed. Therefore, in this study, species and subgroups of B. tabaci collected from cotton fields in southwestern part of Turkey (Antalya, Aydın, Denizli, and Muğla) were determined using microsatellite analysis, AluI-based mtCOI polymerase chain reaction-random length polymorphism, and sequencing. Secondary endosymbionts were also determined using diagnostic species-specific PCR. Middle East Asia Minor 1 (MEAM1), Mediterranean (MED) Q1, and MED Q2 were the species and subgroups found in this study. The MED species (85.3%) were found to be more dominant than MEAM1. Species status of B. tabaci varied depending on the location. Although all samples collected from Aydın were found to be Q1, three species and subgroups were found in Muğla. Secondary endosymbionts varied according to species and subgroups. Arsenophonus was found only from Q2, while Hamiltonella was detected in MEAM1 and Q1. In addition, high Rickettsia and low Wolbachia infections were detected in MEAM1 and Q1 populations, respectively. In conclusion, for the first time, we report the presence and symbiotic communities of Q1 from Turkey. We also found that the symbiont complement of the Q1 is more congruent with Q1 from Greece than other regions of the world, which may have some interesting implications for movement of this invasive subgroup.
Collapse
Affiliation(s)
- Kamil Karut
- Agricultural Faculty, Department of Plant Protection, Laboratory of Insect Molecular Genetics and Biotechnology, Çukurova University, 01330 Adana, Turkey
| | - M Mete Karaca
- Agricultural Faculty, Department of Plant Protection, Laboratory of Insect Molecular Genetics and Biotechnology, Çukurova University, 01330 Adana, Turkey
| | - Ismail Döker
- Agricultural Faculty, Department of Plant Protection, Laboratory of Acarology, Çukurova University, 01330 Adana, Turkey
| | - Cengiz Kazak
- Agricultural Faculty, Department of Plant Protection, Laboratory of Acarology, Çukurova University, 01330 Adana, Turkey
| |
Collapse
|
12
|
Baek JH, Lee HJ, Kim YH, Lim KJ, Lee SH, Kim BJ. Development of an antibody-based diagnostic method for the identification of Bemisia tabaci biotype B. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 131:18-23. [PMID: 27265822 DOI: 10.1016/j.pestbp.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/21/2015] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
The whitefly Bemisia tabaci is a very destructive pest. B. tabaci is composed of various morphologically undistinguishable biotypes, among which biotypes B and Q, in particular, draw attention because of their wide distribution in Korea and differential potentials for insecticide resistance development. To develop a biotype-specific protein marker that can readily distinguishes biotypes B from other biotypes in the field, we established an ELISA protocol based on carboxylesterase 2 (COE2), which is more abundantly expressed in biotypes B compared with Q. Recombinant COE2 was expressed, purified and used for antibody construction. Polyclonal antibodies specific to B. tabaci COE2 [anti-COE2 pAb and deglycosylated anti-COE2 pAb (DG anti-COE2 pAb)] revealed a 3-9-fold higher reactivity to biotype B COE2 than biotype Q COE2 by Western blot and ELISA analyses. DG anti-COE2 pAb exhibited low non-specific activity, demonstrating its compatibility in diagnosing biotypes. Western blot and ELISA analyses determined that one of the 11 field populations examined was biotype B and the others were biotype Q, suggesting the saturation of biotype Q in Korea. DG anti-COE2 pAb discriminates B. tabaci biotypes B and Q with high specificity and accuracy and could be useful for the development of a B. tabaci biotype diagnosis kit for on-site field applications.
Collapse
Affiliation(s)
- Ji Hyeong Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Republic of Korea
| | - Hye Jung Lee
- Graduate Program for Nanomedical Science, Yonsei University, 134 Shinchon-dong, Seodaemun-Gu, Seoul 120-110, Republic of Korea
| | - Young Ho Kim
- Department of Entomology, Kansas State University, Manhattan, 66506, KS, USA
| | - Kook Jin Lim
- Proteometech Inc., 15-1 Yonhee-dong, Seodaemun-gu, Seoul 120-110, Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Bum Joon Kim
- Proteometech Inc., 15-1 Yonhee-dong, Seodaemun-gu, Seoul 120-110, Republic of Korea.
| |
Collapse
|
13
|
Su MM, Guo L, Tao YL, Zhang YJ, Wan FH, Chu D. Effects of Host Plant Factors on the Bacterial Communities Associated with Two Whitefly Sibling Species. PLoS One 2016; 11:e0152183. [PMID: 27008327 PMCID: PMC4805303 DOI: 10.1371/journal.pone.0152183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 03/10/2016] [Indexed: 12/13/2022] Open
Abstract
Background Although discrepancy in the specific traits and ecological characteristics of Bemisia tabaci between species are partially attributed to the B. tabaci-associated bacteria, the factors that affect the diversity of B. tabaci-associated bacteria are not well-understood. We used the metagenomic approach to characterize the B. tabaci-associated bacterial community because the approach is an effective tool to identify the bacteria. Methodology and Results To investigate the effects of the host plant and a virus, tomato yellow leaf curl virus (TYLCV), on the bacterial communities of B. tabaci sibling species B and Q, we analyzed the bacterial communities associated with whitefly B and Q collected from healthy cotton, healthy tomato, and TYLCV-infected tomato. The analysis used miseq-based sequencing of a variable region of the bacterial 16S rDNA gene. For the bacteria associated with B. tabaci, we found that the influence of the host plant species was greater than that of the whitefly cryptic species. With further analysis of host plants infected with the TYLCV, the virus had no significant effects on the B. tabaci-associated bacterial community. Conclusions The effects of different plant hosts and TYLCV-infection on the diversity of B. tabaci-associated bacterial communities were successfully analyzed in this study. To explain why B. tabaci sibling species with different host ranges differ in performance, the analysis of the bacterial community may be essential to the explanation.
Collapse
Affiliation(s)
- Ming-Ming Su
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Lei Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - Yun-Li Tao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
| | - You-Jun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Fang-Hao Wan
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, P.R. China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, 266109, P. R. China
- * E-mail:
| |
Collapse
|
14
|
Sequence variation of Bemisia tabaci Chemosensory Protein 2 in cryptic species B and Q: New DNA markers for whitefly recognition. Gene 2015; 576:284-91. [PMID: 26481237 DOI: 10.1016/j.gene.2015.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022]
Abstract
Bemisia tabaci Gennadius biotypes B and Q are two of the most important worldwide agricultural insect pests. Genomic sequences of Type-2 B. tabaci chemosensory protein (BtabCSP2) were cloned and sequenced in B and Q biotypes, revealing key biotype-specific variations in the intron sequence. A Q260 sequence was found specifically in Q-BtabCSP2 and Cucumis melo LN692399, suggesting ancestral horizontal transfer of gene between the insect and the plant through bacteria. A cleaved amplified polymorphic sequences (CAPS) method was then developed to differentiate B and Q based on the sequence variation in exon of BtabCSP2 gene. The performances of CSP2-based CAPS for whitefly recognition were assessed using B. tabaci field collections from Shandong Province (P.R. China). Our SacII based CAPS method led to the same result compared to mitochondrial cytochrome oxidase-based CAPS method in the field collections. We therefore propose an explanation for CSP origin and a new rapid simple molecular method based on genomic DNA and chemosensory gene to differentiate accurately the B and Q whiteflies of the Bemisia complex around the world.
Collapse
|
15
|
Pan H, Preisser EL, Chu D, Wang S, Wu Q, Carriére Y, Zhou X, Zhang Y. Insecticides promote viral outbreaks by altering herbivore competition. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1585-95. [PMID: 26552266 DOI: 10.1890/14-0752.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
While the management of biological invasions is often characterized by a series of single-specieg decisions, invasive species exist within larger food webs. These biotic interactions can alter the impact of control/eradication programs and may cause suppression efforts to inadvertently facilitate invasion spread and impact. We document the rapid replacement of the invasive Bemisia Middle East-Asia Minor I (MEAM1) cryptic biotype by the cryptic Mediterranean (MED) biotype throughout China and demonstrate that MED is more tolerant of insecticides and a better vector of tomato yellow leaf curl virus (TYLCV) than MEAMJ. While MEAM1 usually excludes MED under natural conditions, insecticide application reverses the MEAM1-MED competitive hierarchy and allows MED to exclude MEAMI. The insecticide-mediated success of MED has led to TYLCV outbreaks throughout China. Our work strongly supports the hypothesis that insecticide use in China reverses the MEAMl-MED competitive hierarchy and allows MED to displace MEAM1 in managed landscapes. By promoting the dominance of a Bemisia species that is a competent viral vector, insecticides thus increase the spread and impact of TYLCV in heterogeneous agroecosystems.
Collapse
|
16
|
Mouton L, Gnankiné O, Henri H, Terraz G, Ketoh G, Martin T, Fleury F, Vavre F. Detection of genetically isolated entities within the Mediterranean species of Bemisia tabaci: new insights into the systematics of this worldwide pest. PEST MANAGEMENT SCIENCE 2015; 71:452-458. [PMID: 24863547 DOI: 10.1002/ps.3834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The taxonomy of the species complex Bemisia tabaci, a serious agricultural pest worldwide, is not well resolved yet, even though species delimitation is critical for designing effective control strategies. Based on a threshold of 3.5% mitochondrial (mtCOI) sequence divergence, recent studies have identified 28 putative species. Among them, mitochondrial variability associated with particular symbiotic compositions (=cytotypes) can be observed, as in MED, which raises the question of whether it is a single or a complex of biological species. RESULTS Using microsatellites, an investigation was made of the genetic relatedness of Q1 and ASL cytotypes that belong to MED. Samples of the two cytotypes were collected in West Africa where they live in sympatry on the same hosts. Genotyping revealed a high level of differentiation, without evidence of gene flow. Moreover, they differed highly in frequencies of resistance alleles to insecticides, which were much higher in Q1 than in ASL. CONCLUSION Q1 and ASL are sufficiently reproductively isolated for the introgression of neutral alleles to be prevented, suggesting that they are actually different species. This indicates that nuclear genetic differentiation must be investigated within groups with less than 3.5% mtCOI divergence in order to elucidate the taxonomy of B. tabaci at a finer level. Overall, these data provide important information for pest management.
Collapse
Affiliation(s)
- Laurence Mouton
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ovalle TM, Parsa S, Hernández MP, Becerra Lopez-Lavalle LA. Reliable molecular identification of nine tropical whitefly species. Ecol Evol 2014; 4:3778-87. [PMID: 25614792 PMCID: PMC4301044 DOI: 10.1002/ece3.1204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/20/2014] [Accepted: 07/02/2014] [Indexed: 11/06/2022] Open
Abstract
The identification of whitefly species in adult stage is problematic. Morphological differentiation of pupae is one of the better methods for determining identity of species, but it may vary depending on the host plant on which they develop which can lead to misidentifications and erroneous naming of new species. Polymerase chain reaction (PCR) fragment amplified from the mitochondrial cytochrome oxidase I (COI) gene is often used for mitochondrial haplotype identification that can be associated with specific species. Our objective was to compare morphometric traits against DNA barcode sequences to develop and implement a diagnostic molecular kit based on a RFLP-PCR method using the COI gene for the rapid identification of whiteflies. This study will allow for the rapid diagnosis of the diverse community of whiteflies attacking plants of economic interest in Colombia. It also provides access to the COI sequence that can be used to develop predator conservation techniques by establishing which predators have a trophic linkage with the focal whitefly pest species.
Collapse
Affiliation(s)
- Tatiana M Ovalle
- Centro Internacional de Agricultura Tropical (CIAT)Km 17, Recta Cali-Palmira, Cali, Colombia
| | - Soroush Parsa
- Centro Internacional de Agricultura Tropical (CIAT)Km 17, Recta Cali-Palmira, Cali, Colombia
- CGIAR Research Program for Root Tubers and BananasLima, Peru
| | - Maria P Hernández
- Centro Internacional de Agricultura Tropical (CIAT)Km 17, Recta Cali-Palmira, Cali, Colombia
| | - Luis A Becerra Lopez-Lavalle
- Centro Internacional de Agricultura Tropical (CIAT)Km 17, Recta Cali-Palmira, Cali, Colombia
- CGIAR Research Program for Root Tubers and BananasLima, Peru
| |
Collapse
|
18
|
Terraz G, Gueguen G, Arnó J, Fleury F, Mouton L. Nuclear and cytoplasmic differentiation among Mediterranean populations of Bemisia tabaci: testing the biological relevance of cytotypes. PEST MANAGEMENT SCIENCE 2014; 70:1503-1513. [PMID: 24706597 DOI: 10.1002/ps.3792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/04/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The taxonomy of the species complex Bemisia tabaci is still an unresolved issue. Recently, phylogenetic analysis based on mtCOI identified 31 cryptic species. However, mitochondrial diversity is observed within these species, associated with distinct symbiotic bacterial communities forming associations, which here are called cytotypes. The authors investigated the biological significance of two cytotypes (Q1 and Q2) belonging to the Mediterranean species, which have only been found in allopatry in the Western Mediterranean to date. Sampling was done over a few years in Western Europe, and sympatric situations were found that allowed their reproductive compatibility to be tested in the field with the use of microsatellites. RESULTS The field survey indicated that, in spite of its recent introduction, Q2 is well established in France and Spain, where it coexists with Q1. Microsatellite data showed that, in allopatry, Q1 and Q2 are highly differentiated, while there is little or no genetic differentiation when they coexist in sympatry, suggesting a high rate of hybridisation. Crossing experiments in the lab confirmed their interfertility. CONCLUSION Q1 and Q2 hybridise, which confirms that they belong to the same species, in spite of the high degree of genetic differentiation at both the cytoplasmic and nuclear levels, and also suggests that their symbiotic bacteria do not prevent hybridisation.
Collapse
Affiliation(s)
- Gabriel Terraz
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | | | | | | | | |
Collapse
|
19
|
Competitive ability and fitness differences between two introduced populations of the invasive whitefly Bemisia tabaci Q in China. PLoS One 2014; 9:e100423. [PMID: 24945699 PMCID: PMC4063783 DOI: 10.1371/journal.pone.0100423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
Background Our long-term field survey revealed that the Cardinium infection rate in Bemisia tabaci Q (also known as biotype Q) population was low in Shandong, China over the past few years. We hypothesize that (1) the Cardinium-infected (C+) B. tabaci Q population cannot efficiently compete with the Cardinium-uninfected (C−) B. tabaci Q population; (2) no reproductive isolation may have occurred between C+ and C−; and (3) the C− population has higher fitness than the C+ population. Methodology and Results To reveal the differences in competitive ability and fitness between the two introduced populations (C+ and C−), competition between C+ and C− was examined over several generations. Subsequently, the reproductive isolation between C+ and C− was studied by crossing C+ with C− individuals, and the fitnesses of C+ and C− populations were compared using a two-sex life table method. Our results demonstrate that the competitive ability of the C+ whiteflies was weaker than that of C−. There is that no reproductive isolation occurred between the two populations and the C− population had higher fitness than the C+ population. Conclusion The competitive ability and fitness differences of two populations may explain why C− whitefly populations have been dominant during the past few years in Shandong, China. However, the potential role Cardinium plays in whitefly should be further explored.
Collapse
|
20
|
Sun DB, Li J, Liu YQ, Crowder DW, Liu SS. Effects of reproductive interference on the competitive displacement between two invasive whiteflies. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:334-46. [PMID: 24521733 DOI: 10.1017/s0007485314000108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Reproductive interference is one of the major factors mediating species exclusion among insects. The cryptic species Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) of the whitefly Bemisia tabaci complex have invaded many parts of the world and often exhibit niche overlap and reproductive interference. However, contrasting patterns of competitive displacement between the two invaders have been observed between regions such as those in USA and China. Understanding the roles of reproductive interference in competitive interactions between populations of the two species in different regions will help unravel other factors related to their invasion. We integrated laboratory population experiments, behavioural observations and simulation modelling to investigate the role of reproductive interference on species exclusion between MEAM1 and MED in China. In mixed cohorts of the two species MEAM1 always excluded MED in a few generations when the initial proportion of MEAM1 was ⩾0.25. Even when the initial proportion of MEAM1 was only 0.10, however, MEAM1 still had a higher probability of excluding MED than that for MED to exclude MEAM1. Importantly, we show that as MEAM1 increased in relative abundance, MED populations became increasingly male-biased. Detailed behavioural observations confirmed that MEAM1 showed a stronger reproductive interference than MED, leading to reduced frequency of copulation and female progeny production in MED. Using simulation modelling, we linked our behavioural observations with exclusion experiments to show that interspecific asymmetric reproductive interference predicts the rate of species exclusion of MED by MEAM1. These findings not only reveal the importance of reproductive interference in the competitive interactions between the two invasive whiteflies as well as the detailed behavioural mechanisms, but also provide a valuable framework against which the effects of other factors mediating species exclusion can be explored.
Collapse
Affiliation(s)
- Di-Bing Sun
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - David W Crowder
- Department of Entomology, Washington State University, 166 FSHN Building, PO Box 646382, Pullman, WA 99164, USA
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Chiel E, Kelly SE, Harris AM, Gebiola M, Li X, Zchori-Fein E, Hunter MS. Characteristics, phenotype, and transmission of Wolbachia in the sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), and its parasitoid Eretmocerus sp. nr. emiratus (Hymenoptera: Aphelinidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:353-362. [PMID: 24763092 DOI: 10.1603/en13286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Wolbachia is a common intracellular bacterial endosymbiont of insects, causing a variety of effects including reproductive manipulations such as cytoplasmic incompatibility (CI). In this study, we characterized Wolbachia in the whitefly Bemisia tabaci and in the whitefly parasitoid Eretmocerus sp. nr. emiratus. We also tested for horizontal transmission of Wolbachia between and within trophic levels, and we determined the phenotype of Wolbachia in E. sp. nr. emiratus. Using multilocus sequence typing and phylogenetic analyses, we found that B. tabaci and E. sp. nr. emiratus each harbor a different and unique strain of Wolbachia. Both strains belong to the phylogenetic supergroup B. No evidence for horizontal transmission of Wolbachia between and within trophic levels was found in our study system. Finally, crossing results were consistent with a CI phenotype; when Wolbachia-infected E. sp. nr. emiratus males mate with uninfected females, wasp progeny survival dropped significantly, and the number of females was halved. This is the first description of CI caused by Wolbachia in the economically important genus Eretmocerus. Our study underscores the expectation that horizontal transmission events occur rarely in the dynamics of secondary symbionts such as Wolbachia, and highlights the importance of understanding the effects of symbionts on the biology of natural enemies.
Collapse
Affiliation(s)
- Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, Tiv'on, Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Sun DB, Liu YQ, Qin L, Xu J, Li FF, Liu SS. Competitive displacement between two invasive whiteflies: insecticide application and host plant effects. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:344-53. [PMID: 23458717 DOI: 10.1017/s0007485312000788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The cryptic species Middle East-Asia Minor 1 (MEAM1), formerly referred to as 'B biotype', of the whitefly Bemisia tabaci complex entered China in the mid 1990s, and the Mediterranean (MED) cryptic species, formerly referred to as 'Q biotype', of the same whitefly complex entered China around 2003. Field surveys in China after 2003 indicate that in many regions MED has been replacing the earlier invader MEAM1. The factors underlying this displacement are unclear. We conducted laboratory experiments and field sampling to examine the effects of insecticide application on the competitive interactions between MEAM1 and MED. In the laboratory, on cotton, a plant showing similar levels of suitability to both whitefly species, MEAM1 displaced MED in five generations when initial populations of the two species were equal and no insecticide was applied. In contrast, MED displaced MEAM1 in seven and two generations, respectively, when 12.5 and 50.0 mg l⁻¹ imidacloprid was applied to the plants via soil drench. Field sampling indicated that in a single season MED displaced MEAM1 on crops heavily sprayed with neonicotinoid insecticides but the relative abundance of the two species changed little on crops without insecticide spray. We also examined the effects of host plants on the competitive interactions between the two species in the laboratory. When cohorts with equal abundance of MEAM1 and MED were set up on different host plants, MEAM1 displaced MED on cabbage and tomato in five and seven generations, respectively, but MED displaced MEAM1 on pepper in two generations. As field populations of MED have lower susceptibility than those of MEAM1 to nearly all commonly used insecticides including imidacloprid, insecticide application seems to have played a major role in shifting the species competitive interaction effects in favour of MED in the field across China. Host plants may also shape competition between the two species depending on the relative levels of plant suitability.
Collapse
Affiliation(s)
- Di-Bing Sun
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|