1
|
Butler CD, Lloyd AL. How population control of pests is modulated by density dependence: The perspective of genetic biocontrol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622719. [PMID: 39605380 PMCID: PMC11601221 DOI: 10.1101/2024.11.08.622719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Managing pest species relies critically on mechanisms that regulate population dynamics, particularly those factors that change with population size. These density-dependent factors can help or hinder control efforts and are especially relevant considering recent advances in genetic techniques that allow for precise manipulation of the timing and sex-specificity of a control. Despite this importance, density dependence is often poorly characterized owing to limited data and an incomplete understanding of developmental ecology. To address this issue, we construct and analyze a mathematical model of a pest population with a general control under a wide range of density dependence scenarios. Using this model, we investigate how control performance is affected by the strength of density dependence. By modifying the timing and sex-specificity of the control, we tailor our analysis to simulate different pest control strategies, including conventional and genetic biocontrol methods. We pay particular attention to the latter as case studies by extending the baseline model to include genetic dynamics. Finally, we clarify past work on the dynamics of mechanistic models with density dependence. As expected, we find substantial differences in control performance for differing strengths of density dependence, with populations exhibiting strong density dependence being most resilient to suppression. However, these results change with the size and timing of the control load, as well as the target sex. Interestingly, we also find that population invasion by certain genetic biocontrol strategies is affected by the strength of density dependence. While the model is parameterized using the life history traits of the yellow fever mosquito, Aedes aegypti, the principles developed here apply to many pest species. We conclude by discussing what this means for pest population suppression moving forward.
Collapse
Affiliation(s)
- C D Butler
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27606
| | - A L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
2
|
Castellon JT, Birhanie SK, Macias A, Casas R, Hans J, Brown MQ. Optimizing and synchronizing Aedes aegypti colony for Sterile Insect Technique application: Egg hatching, larval development, and adult emergence rate. Acta Trop 2024; 259:107364. [PMID: 39179165 DOI: 10.1016/j.actatropica.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Mosquito Sterile Insect Technique (SIT) programs can be developed in smaller agencies through synchronization of the colony development to take advantage of the natural male early emergence. This paper examined key aspects of Ae. aegypti colony synchronization work, including egg hatching, larval development, and adult emergence to produce sufficient numbers of adult male mosquitoes within a specific timeframe for irradiation and release. Our data indicated that a relatively low percentage of males are required for colony propagation. Additional results highlighted that fresher Ae. aegypti eggs could yield as high as a 93 % hatching success than older eggs when placed under vacuum pressure in yeast infused water for 1.5 h. Eggs that were one-month old hatched (93 %) better than older eggs (0-32 %). A higher egg density in the hatching flask was correlated to a lower hatch rate, and higher larval density was related to unsynchronized pupae and delayed adult emergence. By keeping Ae. aegypti larvae at reasonable density, over 95 % of adults emerged on the first two days of emergence - indicating a high synchronicity. A standardized colony maintenance protocol therefore renders a synchronized larval development and adult male emergence which are critical in SIT programs.
Collapse
Affiliation(s)
| | - Solomon Kibret Birhanie
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA.
| | - Ale Macias
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Rubi Casas
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Jacob Hans
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| | - Michelle Q Brown
- West Valley Mosquito and Vector Control District, 1295 East Locust St, Ontario, California, USA
| |
Collapse
|
3
|
Mayilsamy M, Subramani S, Veeramanoharan R, Vijayakumar A, Asaithambi AT, Murugesan A, Selvaraj N, Balakrishnan V, Rajaiah P. Mating of unfed, engorged, and partially to fully gravid Aedes aegypti (Diptera: Culicidae) female mosquitoes in producing viable eggs. Parasit Vectors 2024; 17:362. [PMID: 39183365 PMCID: PMC11346051 DOI: 10.1186/s13071-024-06433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Understanding the relationship between blood-feeding and mating is important in effectively managing the most well-adapted vector insect, Aedes aegypti (Linnaeus). Although extensive studies have investigated the behavioural aspects of Aedes such as blood-feeding, mating, and their relationship, several knowledge gaps still exist. Therefore, the present study was undertaken to determine the possibility of successful mating by unfed, engorged, and partially to fully gravid (up to 5 days after blood-feeding with fully developed eggs) female Ae. aegypti mosquitoes and production of viable eggs. METHODS Mating of sexually mature adult Aedes aegypti was allowed in three different ways. In control 1, the females were allowed to mate before taking blood meal, and in control 2, the females were not at all allowed to mate. In the experiment, the females were separated into six categories, viz. D-0 to D-5. In D-0, the females were allowed to mate immediately after the bloodmeal and, in D-1, the females were allowed to mate on the first day of blood feeding, likewise, the females of D-2, D-3, D-4 and D-5 were allowed to mate on 2nd, 3rd, 4th and 5th day of blood feeding. Ovitrap was uniformly kept on the 4th day of blood feeding for the cages D-0 to D-3 for 1 h and then removed and for the cages D-4, and D-5, the ovitrap was kept on 4th and 5th day of blood feeding for 1h immediately after mating. The total number of eggs and the total number of hatching were counted. In the subsequent days, the entire experiment was replicated two times with different cohorts of mosquitoes, and the mean value of three experiments was used to draw Excel bars with 5% error bars and also for the statistical analysis. RESULTS It was found that mating just before oviposition was sufficient to produce 1581 eggs (70% compared with control) and fertilize 1369 eggs (85% compared with total eggs laid), which is far higher than the 676 non-hatching (unfertilized) eggs (30%) laid by unmated females. Although mating is not essential for producing eggs, our study shows that even brief exposure to the semen and seminal fluids greatly enhances the oviposition and hatching efficiency, even if the mating occurs just before oviposition. However, those females mating before blood-feeding and those mating after blood-feeding produced 2266 and 2128 eggs, with hatching rates of 96.78% and 95.54%, respectively. Hence, the retention time of seminal fluid in the female seems to influence the number of eggs laid and the number of eggs hatched. CONCLUSIONS In general, mating is possible in Ae. aegypti even minutes before oviposition and is sufficient to produce a greater number of viable eggs.
Collapse
Affiliation(s)
- Muniaraj Mayilsamy
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India.
| | - Surendiran Subramani
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India
| | - Rajamannar Veeramanoharan
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India
| | - Asifa Vijayakumar
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India
| | - Amuthalingam T Asaithambi
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India
| | - Arthi Murugesan
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India
| | - Nandhakumar Selvaraj
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India
| | - Vijayakumar Balakrishnan
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India
| | - Paramasivan Rajaiah
- ICMR-Vector Control Research Centre Field Station, No. 4 Sarojini Street, Chinna Chokkikulam, Madurai, 625002, Tamil Nadu, India
| |
Collapse
|
4
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
5
|
Amaro IA, Wohl MP, Pitcher S, Alfonso-Parra C, Avila FW, Paige AS, Helinski MEH, Duvall LB, Harrington LC, Wolfner MF, McMeniman CJ. Sex peptide receptor is not required for refractoriness to remating or induction of egg laying in Aedes aegypti. Genetics 2024; 227:iyae034. [PMID: 38551457 PMCID: PMC11075561 DOI: 10.1093/genetics/iyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 05/08/2024] Open
Abstract
Across diverse insect taxa, the behavior and physiology of females dramatically changes after mating-processes largely triggered by the transfer of seminal proteins from their mates. In the vinegar fly Drosophila melanogaster, the seminal protein sex peptide (SP) decreases the likelihood of female flies remating and causes additional behavioral and physiological changes that promote fertility including increasing egg production. Although SP is only found in the Drosophila genus, its receptor, sex peptide receptor (SPR), is the widely conserved myoinhibitory peptide (MIP) receptor. To test the functional role of SPR in mediating postmating responses in a non-Drosophila dipteran, we generated 2 independent Spr-knockout alleles in the yellow fever mosquito, Aedes aegypti. Although SPR is needed for postmating responses in Drosophila and the cotton bollworm Helicoverpa armigera, Spr mutant Ae. aegypti show completely normal postmating decreases in remating propensity and increases in egg laying. In addition, injection of synthetic SP or accessory gland homogenate from D. melanogaster into virgin female mosquitoes did not elicit these postmating responses. Our results demonstrate that Spr is not required for these canonical postmating responses in Ae. aegypti, indicating that other, as yet unknown, signaling pathways are likely responsible for these behavioral switches in this disease vector.
Collapse
Affiliation(s)
| | - Margot P Wohl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sylvie Pitcher
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Laura B Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Ramírez-Sánchez LF, Hernández BJ, Guzmán PA, Alfonso-Parra C, Avila FW. The effects of female age on blood-feeding, insemination, sperm storage, and fertility in the dengue vector mosquito Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT PHYSIOLOGY 2023; 150:104570. [PMID: 37806552 DOI: 10.1016/j.jinsphys.2023.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Mating induces behavioral and physiological changes in female insects-collectively referred to as the female post-mating response (PMR)-that facilitate the production of progeny. PMRs are elicited by transfer of male-derived seminal components during mating, but are altered by other factors, including adult age. Increased female age is often accompanied by declines in fertility. However, mating shortly after emergence also impacts fertility in the insect model Drosophila melanogaster. Here, we determined the age post-emergence when females of the vector mosquito Aedes aegypti can be inseminated and blood-feed. We next examined fecundity, fertility, and the storage of sperm in the female reproductive tract in "young" (30-41 hours-old) and "old" (2- and 3-week-old) females, finding that blood-feeding began at 14 hours, and mating at ∼24 hours post-emergence. Although young females consumed smaller blood quantities and stored fewer sperm, they were similarly fertile to 4-day-old controls. Old females, however, suffered significant declines in fecundity by 2 weeks of age. Our results show that female Ae. aegypti start to become sexually receptive 1 day after their emergence, but can ingest blood much sooner, suggesting that mating is not a prerequisite to blood-feeding, and that females can ingest an arbovirus infected blood-meal shortly after emergence.
Collapse
Affiliation(s)
| | - Brenda Juliana Hernández
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | | | - Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia; Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
7
|
Kulkarni A, Delgadillo FM, Gayathrinathan S, Grajeda BI, Roy S. Current Status of Omics Studies Elucidating the Features of Reproductive Biology in Blood-Feeding Insects. INSECTS 2023; 14:802. [PMID: 37887814 PMCID: PMC10607566 DOI: 10.3390/insects14100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Female insects belonging to the genera Anopheles, Aedes, Glossina, and Rhodnius account for the majority of global vector-borne disease mortality. In response to mating, these female insects undergo several molecular, physiological, and behavioral changes. Studying the dynamic post-mating molecular responses in these insects that transmit human diseases can lead to the identification of potential targets for the development of novel vector control methods. With the continued advancements in bioinformatics tools, we now have the capability to delve into various physiological processes in these insects. Here, we discuss the availability of multiple datasets describing the reproductive physiology of the common blood-feeding insects at the molecular level. Additionally, we compare the male-derived triggers transferred during mating to females, examining both shared and species-specific factors. These triggers initiate post-mating genetic responses in female vectors, affecting not only their reproductive success but also disease transmission.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Frida M. Delgadillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Environmental Science and Engineering Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian I. Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Biosciences Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
8
|
Williams AE, Sanchez-Vargas I, Martin LE, Martin-Martin I, Bennett S, Olson KE, Calvo E. Quantifying Fitness Costs in Transgenic Aedes aegypti Mosquitoes. J Vis Exp 2023:10.3791/65136. [PMID: 37782092 PMCID: PMC11531664 DOI: 10.3791/65136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Transgenic mosquitoes often display fitness costs compared to their wild-type counterparts. In this regard, fitness cost studies involve collecting life parameter data from genetically modified mosquitoes and comparing them to mosquitoes lacking transgenes from the same genetic background. This manuscript illustrates how to measure common life history traits in the mosquito Aedes aegypti, including fecundity, wing size and shape, fertility, sex ratio, viability, development times, male contribution, and adult longevity. These parameters were chosen because they reflect reproductive success, are simple to measure, and are commonly reported in the literature. The representative results quantify fitness costs associated with either a gene knock-out or a single insertion of a gene drive element. Standardizing how life parameter data are collected is important because such data may be used to compare the health of transgenic mosquitoes generated across studies or to model the transgene fixation rate in a simulated wild-type mosquito population. Although this protocol is specific for transgenic Aedes aegypti, the protocol may also be used for other mosquito species or other experimental treatment conditions, with the caveat that certain biological contexts may require special adaptations.
Collapse
Affiliation(s)
- Adeline E Williams
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health;
| | - Irma Sanchez-Vargas
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University
| | - Lindsay E Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Department of Biological Sciences, Vanderbilt University
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; National Center for Microbiology, Instituto de Salud Carlos III
| | - Susi Bennett
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University
| | - Ken E Olson
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University;
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health;
| |
Collapse
|
9
|
Osorio J, Villa-Arias S, Camargo C, Ramírez-Sánchez LF, Barrientos LM, Bedoya C, Rúa-Uribe G, Dorus S, Alfonso-Parra C, Avila FW. wMel Wolbachia alters female post-mating behaviors and physiology in the dengue vector mosquito Aedes aegypti. Commun Biol 2023; 6:865. [PMID: 37604924 PMCID: PMC10442437 DOI: 10.1038/s42003-023-05180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023] Open
Abstract
Globally invasive Aedes aegypti disseminate numerous arboviruses that impact human health. One promising method to control Ae. aegypti populations is transinfection with Wolbachia pipientis, which naturally infects ~40-52% of insects but not Ae. aegypti. Transinfection of Ae. aegypti with the wMel Wolbachia strain induces cytoplasmic incompatibility (CI), allows infected individuals to invade native populations, and inhibits transmission of medically relevant arboviruses by females. Female insects undergo post-mating physiological and behavioral changes-referred to as the female post-mating response (PMR)-required for optimal fertility. PMRs are typically elicited by male seminal fluid proteins (SFPs) transferred with sperm during mating but can be modified by other factors, including microbiome composition. Wolbachia has modest effects on Ae. aegypti fertility, but its influence on other PMRs is unknown. Here, we show that Wolbachia influences female fecundity, fertility, and re-mating incidence and significantly extends the longevity of virgin females. Using proteomic methods to examine the seminal proteome of infected males, we found that Wolbachia moderately affects SFP composition. However, we identified 125 paternally transferred Wolbachia proteins, but the CI factor proteins (Cifs) were not among them. Our findings indicate that Wolbachia infection of Ae. aegypti alters female PMRs, potentially influencing control programs that utilize Wolbachia-infected individuals.
Collapse
Affiliation(s)
- Jessica Osorio
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Sara Villa-Arias
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
| | - Carolina Camargo
- Centro de Investigación de la caña de azúcar CENICAÑA, Valle del Cauca, Colombia
| | | | - Luisa María Barrientos
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Bedoya
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | | | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, USA
| | - Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia.
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
10
|
Siddiqui A, Mishra G. Allocation of food resource by experimentally evolved lines of developmental variants of Propylea dissecta: a food exploitation strategy. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:212-219. [PMID: 36258273 DOI: 10.1017/s0007485322000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The effects of selection on developmental variants have not yet been rigorously investigated on variable prey quantities. We investigated the food exploitation strategy of first (F1) and fifteenth (F15) generation slow and fast developers of Propylea dissecta (Mulsant) in the presence of scarce and abundant quantities of pea aphid, Acyrthosiphon pisum (Harris), and its effect on adult body mass and reproductive attributes. Both selected slow developers and selected fast developers were higher in number than their counter unselected generation on scarce and abundant diets, respectively. Immature survivals of selected slow developers were depressed after the selection process while it was enhanced for selected fast developers on both diet regimes. On both diets, the total developmental duration was longer for selected slow developers and shorter for selected fast developers. Fecundity and percent egg viability were greater in selected fast developers with plentiful prey supply and lower in control slow developers with inadequate prey supply. More adult body mass was found for pre-selected slow developers than selected slow developers on a scarce diet but selected fast developers enhanced their body weight than unselected individuals of fast developers on an abundant diet. The present experimental evolution findings point to the presence and persistence of developmental variations with variability in their developmental and reproductive traits on allocating scarce and abundant prey supplies.
Collapse
Affiliation(s)
- Arshi Siddiqui
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
- Department of Bioscience, Integral University, Dasauli Kursi road, Lucknow, Uttar Pradesh 226026, India
| | - Geetanjali Mishra
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| |
Collapse
|
11
|
Facchinelli L, Badolo A, McCall PJ. Biology and Behaviour of Aedes aegypti in the Human Environment: Opportunities for Vector Control of Arbovirus Transmission. Viruses 2023; 15:636. [PMID: 36992346 PMCID: PMC10053764 DOI: 10.3390/v15030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Aedes aegypti is a ubiquitous vector of arboviruses mostly in urbanised areas throughout the tropics and subtropics and a growing threat beyond. Control of Ae. aegypti is difficult and costly, and no vaccines are available for most of the viruses it transmits. With practical control solutions our goal, ideally suitable for delivery by householders in affected communities, we reviewed the literature on adult Ae. aegypti biology and behaviour, within and close to the human home, the arena where such interventions must impact. We found that knowledge was vague or important details were missing for multiple events or activities in the mosquito life cycle, such as the duration or location of the many periods when females rest between blood feeding and oviposition. The existing body of literature, though substantial, is not wholly reliable, and evidence for commonly held "facts" range from untraceable to extensive. Source references of some basic information are poor or date back more than 60 years, while other information that today is accepted widely as "fact" is not supported by evidence in the literature. Many topics, e.g., sugar feeding, resting preferences (location and duration), and blood feeding, merit being revisited in new geographical regions and ecological contexts to identify vulnerabilities for exploitation in control.
Collapse
Affiliation(s)
- Luca Facchinelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
12
|
Gunathilaka RAKM, Jayatunga DPW, Ganehiarachchi GASM. Effect of delayed mating on reproductive performance and life-history parameters of dengue vector Aedes aegypti. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:126-132. [PMID: 36065760 DOI: 10.1017/s0007485322000396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dengue is a fast-spreading mosquito-borne viral disease in the world. The primary vector of the disease is Aedes aegypti of the family Culicidae. It is a container breeder. Since a vaccine or a drug has not been developed against dengue, vector control appears to be the best method so far to control dengue. The current study was conducted to determine the effect of delayed mating on fecundity, fertility, life-history parameters, and longevity of Ae. aegypti, because such information can help formulate integrated vector control strategies involving the release of sub-fertile males into the environment. During this study, mating was delayed by 0, 2, 5, and 8 days after emergence. Males and females were separated by hand at the pupal stage using the apparent size difference of the sexes. The separated pupae were kept in separate cages until emergence. When mating was delayed for 8 days, the number of eggs laid by the female declined by 38%, and the percentage number of eggs that hatched reduced by 24%. However, the percentage of larval mortality, duration of the larval and pupal periods, and adult longevity were not significantly affected. The current results indicate that delayed mating has a negative effect on the reproductive performance of vector mosquitoes.
Collapse
Affiliation(s)
- R A K M Gunathilaka
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya, Sri Lanka
| | - D P W Jayatunga
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya, Sri Lanka
| | - G A S M Ganehiarachchi
- Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya, Sri Lanka
| |
Collapse
|
13
|
Gutiérrez EHJ, Riehle MA, Walker KR, Ernst KC, Davidowitz G. Using body size as an indicator for age structure in field populations of Aedes aegypti (Diptera: Culicidae). Parasit Vectors 2022; 15:483. [PMID: 36550576 PMCID: PMC9773510 DOI: 10.1186/s13071-022-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Aedes aegypti mosquito is a vector of several viruses including dengue, chikungunya, zika, and yellow fever. Vector surveillance and control are the primary methods used for the control and prevention of disease transmission; however, public health institutions largely rely on measures of population abundance as a trigger for initiating control activities. Previous research found evidence that at the northern edge of Ae. aegypti's geographic range, survival, rather than abundance, is likely to be the factor limiting disease transmission. In this study, we sought to test the utility of using body size as an entomological index to surveil changes in the age structure of field-collected female Aedes aegypti. METHODS We collected female Ae. aegypti mosquitoes using BG sentinel traps in three cities at the northern edge of their geographic range. Collections took place during their active season over the course of 3 years. Female wing size was measured as an estimate of body size, and reproductive status was characterized by examining ovary tracheation. Chronological age was determined by measuring transcript abundance of an age-dependent gene. These data were then tested with female abundance at each site and weather data from the estimated larval development period and adulthood (1 week prior to capture). Two sources of weather data were tested to determine which was more appropriate for evaluating impacts on mosquito physiology. All variables were then used to parameterize structural equation models to predict age. RESULTS In comparing city-specific NOAA weather data and site-specific data from HOBO remote temperature and humidity loggers, we found that HOBO data were more tightly associated with body size. This information is useful for justifying the cost of more precise weather monitoring when studying intra-population heterogeneity of eco-physiological factors. We found that body size itself was not significantly associated with age. Of all the variables measured, we found that best fitting model for age included temperature during development, body size, female abundance, and relative humidity in the 1 week prior to capture . The strength of models improved drastically when testing one city at a time, with Hermosillo (the only study city with seasonal dengue transmission) having the best fitting model for age. Despite our finding that there was a bias in the body size of mosquitoes collected alive from the BG sentinel traps that favored large females, there was still sufficient variation in the size of females collected alive to show that inclusion of this entomological indicator improved the predictive capacity of our models. CONCLUSIONS Inclusion of body size data increased the strength of weather-based models for age. Importantly, we found that variation in age was greater within cities than between cities, suggesting that modeling of age must be made on a city-by-city basis. These results contribute to efforts to use weather forecasts to predict changes in the probability of disease transmission by mosquito vectors.
Collapse
Affiliation(s)
- Eileen H. Jeffrey Gutiérrez
- grid.134563.60000 0001 2168 186XGraduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, 1140 E South Campus Drive, Forbes 410, Tucson, AZ 85721-0036 USA ,grid.47840.3f0000 0001 2181 7878Dept. of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, 2121 Berkeley Way, 94720-7360 Berkeley, USA
| | - M. A. Riehle
- grid.134563.60000 0001 2168 186XGraduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, 1140 E South Campus Drive, Forbes 410, Tucson, AZ 85721-0036 USA
| | - K. R. Walker
- grid.134563.60000 0001 2168 186XGraduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, 1140 E South Campus Drive, Forbes 410, Tucson, AZ 85721-0036 USA
| | - K. C. Ernst
- grid.134563.60000 0001 2168 186XDept. of Epidemiology and Biostatistics, College of Public Health, University of Arizona, 1295 N. Martin Ave., PO Box 245210, Tucson, AZ 85724 USA
| | - G. Davidowitz
- grid.134563.60000 0001 2168 186XGraduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, 1140 E South Campus Drive, Forbes 410, Tucson, AZ 85721-0036 USA
| |
Collapse
|
14
|
Pimid M, Krishnan KT, Ahmad AH, Mohd Naim D, Chambers GK, Mohd Nor SA, Ab Majid AH. Parentage Assignment Using Microsatellites Reveals Multiple Mating in Aedes aegypti (Diptera: Culicidae): Implications for Mating Dynamics. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1525-1533. [PMID: 35733165 DOI: 10.1093/jme/tjac081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 06/15/2023]
Abstract
The mosquito Aedes aegypti is the primary vector of the dengue, yellow fever, and chikungunya viruses. Evidence shows that Ae. aegypti males are polyandrous whereas Ae. aegypti females are monandrous in mating. However, the degree to which Ae. aegypti males and females can mate with different partners has not been rigorously tested. Therefore, this study examined the rates of polyandry via parentage assignment in three sets of competitive mating experiments using wild-type male and female Ae. aegypti. Parentage assignment was monitored using nine microsatellite DNA markers. All Ae. aegypti offspring were successfully assigned to parents with 80% or 95% confidence using CERVUS software. The results showed that both male and female Ae. aegypti mated with up to 3-4 different partners. Adults contributed differentially to the emergent offspring, with reproductive outputs ranging from 1 to 25 viable progeny. This study demonstrates a new perspective on the capabilities of male and female Ae. aegypti in mating. These findings are significant because successful deployment of reproductive control methods using genetic modification or sterile Ae. aegypti must consider the following criteria regarding their mating fitness: 1) choosing Ae. aegypti males that can mate with many different females; 2) testing how transformed Ae. aegypti male perform with polyandrous females; and 3) prioritizing the selection of polyandrous males and/or females Ae. aegypti that have the most offspring.
Collapse
Affiliation(s)
- Marcela Pimid
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kumara Thevan Krishnan
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
| | - Abu Hassan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Darlina Mohd Naim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Geoffrey K Chambers
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, 6140 Wellington, New Zealand
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Abdul Hafiz Ab Majid
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
15
|
Parsana D, Nanfack-Minkeu F, Sirot LK. Insemination in Aedes aegypti and Aedes albopictus. Cold Spring Harb Protoc 2022; 2022:pdb.top107668. [PMID: 35902240 PMCID: PMC9883592 DOI: 10.1101/pdb.top107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aedes mosquitoes are the vectors of several arboviruses that cause human disease. A better understanding of their reproduction helps to improve their management and contributes insights into the fundamental biology of mosquitoes. During mating, inseminated mosquito females receive seminal fluids and sperm from males that they then store in the spermathecae. In Aedes aegypti and Aedes albopictus, most mated females become resistant to further insemination within 2 h of initial insemination. Although the male seminal fluids are known to be involved in initiating the resistance of inseminated females to further insemination, the mechanism underlying this resistance is not well-understood. The determination of insemination status is a key step in investigating the behavioral and molecular interactions between males and females and for exploring the proximate influences and evolutionary implications of interspecific copulations. Several methods exist for determining insemination status, as discussed here. The choice of method depends on the research question and the availability of resources.
Collapse
Affiliation(s)
- Dhwani Parsana
- Department of Biology, The College of Wooster, Wooster, Ohio 44691, USA
| | | | - Laura K. Sirot
- Department of Biology, The College of Wooster, Wooster, Ohio 44691, USA
| |
Collapse
|
16
|
Zengenene MP, Munhenga G, Okumu F, Koekemoer LL. Effect of larval density and additional anchoring surface on the life-history traits of a laboratory colonized Anopheles funestus strain. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:168-175. [PMID: 35015299 DOI: 10.1111/mve.12563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Optimal rearing conditions, inclusive of larval rearing density, are critical for sustained mosquito productivity. There is limited information on favourable conditions for the larval rearing of Anopheles funestus, the dominant malaria vector in east and southern Africa. This work investigated the effects of larval rearing densities and additional anchoring surface on An. funestus development using a life table approach. Larval cohorts were reared at four different larval densities using the same rearing surface area, larval food concentrations and temperature conditions. Rearing larvae at high densities extended the larval developmental time and reduced adult productivity. Adding an extra larval anchoring surface when rearing larvae at high density resulted in extended larval developmental time, increased larval survivorship and produced bigger adults. These findings improve our understanding of the relationship between larval density and developmental traits in An. funestus and provides baseline information for An. funestus rearing under laboratory conditions.
Collapse
Affiliation(s)
- Munyaradzi Prince Zengenene
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Fredros Okumu
- Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Lizette Leonie Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
17
|
Amaro IA, Ahmed-Braimah YH, League GP, Pitcher SA, Avila FW, Cruz PC, Harrington LC, Wolfner MF. Seminal fluid proteins induce transcriptome changes in the Aedes aegypti female lower reproductive tract. BMC Genomics 2021; 22:896. [PMID: 34906087 PMCID: PMC8672594 DOI: 10.1186/s12864-021-08201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mating induces behavioral and physiological changes in the arbovirus vector Aedes aegypti, including stimulation of egg development and oviposition, increased survival, and reluctance to re-mate with subsequent males. Transferred seminal fluid proteins and peptides derived from the male accessory glands induce these changes, though the mechanism by which they do this is not known. RESULTS To determine transcriptome changes induced by seminal proteins, we injected extract from male accessory glands and seminal vesicles (MAG extract) into females and examined female lower reproductive tract (LRT) transcriptomes 24 h later, relative to non-injected controls. MAG extract induced 87 transcript-level changes, 31 of which were also seen in a previous study of the LRT 24 h after a natural mating, including 15 genes with transcript-level changes similarly observed in the spermathecae of mated females. The differentially-regulated genes are involved in diverse molecular processes, including immunity, proteolysis, neuronal function, transcription control, or contain predicted small-molecule binding and transport domains. CONCLUSIONS Our results reveal that seminal fluid proteins, specifically, can induce gene expression responses after mating and identify gene targets to further investigate for roles in post-mating responses and potential use in vector control.
Collapse
Affiliation(s)
- I Alexandra Amaro
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Garrett P League
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Sylvie A Pitcher
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Priscilla C Cruz
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Díaz S, Camargo C, Avila FW. Characterization of the reproductive tract bacterial microbiota of virgin, mated, and blood-fed Aedes aegypti and Aedes albopictus females. Parasit Vectors 2021; 14:592. [PMID: 34852835 PMCID: PMC8638121 DOI: 10.1186/s13071-021-05093-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Aedes aegypti and Ae. albopictus are vectors of numerous arboviruses that adversely affect human health. In mosquito vectors of disease, the bacterial microbiota influence several physiological processes, including fertility and vector competence, making manipulation of the bacterial community a promising method to control mosquito vectors. In this study, we describe the reproductive tract tissue microbiota of lab-reared virgin Ae. aegypti and Ae. albopictus males, and virgin, mated, and mated + blood-fed females of each species, comparing the bacterial composition found there to the well-described gut microbiota. Methods We performed metabarcoding of the 16S rRNA isolated from the gut, upper reproductive tract (URT; testes or ovaries), and lower reproductive tract (LRT; males: seminal vesicles and accessory glands; females: oviduct, spermathecae, and bursa) for each species, and evaluated the influence of host species, tissue, nutritional status, and reproductive status on microbiota composition. Finally, based on the identified taxonomic profiles of the tissues assessed, bacterial metabolic pathway abundance was predicted. Results The community structure of the reproductive tract is unique compared to the gut. Asaia is the most prevalent OTU in the LRTs of both Ae. aegypti and Ae. albopictus. In the URT, we observed differences between species, with Wolbachia OTUs being dominant in the Ae. albopictus URT, while Enterobacter and Serratia were dominant in Ae. aegypti URT. Host species and tissue were the best predictors of the community composition compared to reproductive status (i.e., virgin or mated) and nutritional status (i.e., sugar or blood-fed). The predicted functional profile shows changes in the abundance of specific microbial pathways that are associated with mating and blood-feeding, like energy production in mated tissues and siderophore synthesis in blood-fed female tissues. Conclusions Aedes aegypti and Ae. albopictus have distinct differences in the composition of microbiota found in the reproductive tract. The distribution of the bacterial taxonomic groups indicates that some bacteria have tissue-specific tropism for reproductive tract tissue, such as Asaia and Wolbachia. No significant differences in the taxonomic composition were observed in the reproductive tract between virgin, mated, and mated + blood-fed females, but changes in the abundance of specific metabolic pathways were found in the predicted microbial functional profiles in mated and blood-fed females. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05093-7.
Collapse
Affiliation(s)
- Sebastián Díaz
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Carolina Camargo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia.
| |
Collapse
|
19
|
Panthawong A, Sukkanon C, Ngoen-Klan R, Hii J, Chareonviriyaphap T. Forced Egg Laying Method to Establish F1 Progeny from Field Populations and Laboratory Strains of Anopheles Mosquitoes (Diptera: Culicidae) in Thailand. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2107-2113. [PMID: 34104962 DOI: 10.1093/jme/tjab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Successful monitoring of physiological resistance of malaria vectors requires about 150 female mosquitoes for a single set of tests. In some situations, the sampling effort is insufficient due to the low number of field-caught mosquitoes. To address this challenge, we demonstrate the feasibility of using the forced oviposition method for producing F1 from field-caught Anopheles mosquitoes. A total of 430 and 598 gravid Anopheles females from four laboratory strains and five field populations, respectively, were tested. After blood feeding, gravid mosquitoes were individually introduced into transparent plastic vials, containing moistened cotton balls topped with a 4 cm2 piece of filter paper. The number of eggs, hatching larvae, pupation, and adult emergence were recorded daily. The mean number of eggs per female mosquito ranged from 39.3 for Anopheles cracens to 93.6 for Anopheles dirus in the laboratory strains, and from 36.3 for Anopheles harrisoni to 147.6 for Anopheles barbirostris s.l. in the field populations. A relatively high egg hatching rate was found in An. dirus (95.85%), Anopheles minimus (78.22%), and An. cracens (75.59%). Similarly, a relatively high pupation rate was found for almost all test species ranging from 66% for An. minimus to 98.7% for Anopheles maculatus, and lowest for An. harrisoni (43.9%). Highly successful adult emergence rate was observed among 85-100% of pupae that emerged in all tested mosquito populations. The in-tube forced oviposition method is a promising method for the production of sufficient F1 progeny for molecular identification, vector competence, insecticide resistance, and bioassay studies.
Collapse
Affiliation(s)
- Amonrat Panthawong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Chutipong Sukkanon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Ratchadawan Ngoen-Klan
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Jeffrey Hii
- Malaria Consortium Asia Regional Office, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- College of Public Health, Medical and Veterinary Sciences, James Cook University, North Queensland, QLD 4810, Australia
| | | |
Collapse
|
20
|
League GP, Degner EC, Pitcher SA, Hafezi Y, Tennant E, Cruz PC, Krishnan RS, Garcia Castillo SS, Alfonso-Parra C, Avila FW, Wolfner MF, Harrington LC. The impact of mating and sugar feeding on blood-feeding physiology and behavior in the arbovirus vector mosquito Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009815. [PMID: 34591860 PMCID: PMC8509887 DOI: 10.1371/journal.pntd.0009815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Aedes aegypti mosquitoes are globally distributed vectors of viruses that impact the health of hundreds of millions of people annually. Mating and blood feeding represent fundamental aspects of mosquito life history that carry important implications for vectorial capacity and for control strategies. Females transmit pathogens to vertebrate hosts and obtain essential nutrients for eggs during blood feeding. Further, because host-seeking Ae. aegypti females mate with males swarming near hosts, biological crosstalk between these behaviors could be important. Although mating influences nutritional intake in other insects, prior studies examining mating effects on mosquito blood feeding have yielded conflicting results. METHODOLOGY/PRINCIPAL FINDINGS To resolve these discrepancies, we examined blood-feeding physiology and behavior in virgin and mated females and in virgins injected with male accessory gland extracts (MAG), which induce post-mating changes in female behavior. We controlled adult nutritional status prior to blood feeding by using water- and sugar-fed controls. Our data show that neither mating nor injection with MAG affect Ae. aegypti blood intake, digestion, or feeding avidity for an initial blood meal. However, sugar feeding, a common supplement in laboratory settings but relatively rare in nature, significantly affected all aspects of feeding and may have contributed to conflicting results among previous studies. Further, mating, MAG injection, and sugar intake induced declines in subsequent feedings after an initial blood meal, correlating with egg production and laying. Taking our evaluation to the field, virgin and mated mosquitoes collected in Colombia were equally likely to contain blood at the time of collection. CONCLUSIONS/SIGNIFICANCE Mating, MAG, and sugar feeding impact a mosquito's estimated ability to transmit pathogens through both direct and indirect effects on multiple aspects of mosquito biology. Our results highlight the need to consider natural mosquito ecology, including diet, when assessing their physiology and behavior in the laboratory.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Ethan C. Degner
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Sylvie A. Pitcher
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Yassi Hafezi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Erica Tennant
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Priscilla C. Cruz
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Raksha S. Krishnan
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Stefano S. Garcia Castillo
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catalina Alfonso-Parra
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia, Colombia
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Frank W. Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
21
|
Zhang Y, Zhao C, Ma W, Cui S, Chen H, Ma C, Guo J, Wan F, Zhou Z. Larger males facilitate population expansion in Ophraella communa. J Anim Ecol 2021; 90:2782-2792. [PMID: 34448211 DOI: 10.1111/1365-2656.13579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
One of the most intriguing concepts in animal ecology is the reproductive advantages offered by larger body size, and the females prefer to mate with larger males to gain reproductive advantage. Currently, it is not clear how females recognize signs of male 'quality' and what mechanisms are involved in producing offspring with direct or indirect benefits. Our study aims to assess the preferences of females for males in Ophraella communa, determine the reproductive benefits and reveal the underlying mechanism behind this advantage. We demonstrate that male body size is an important determinant in the evolutionary process of O. communa, affecting female mate choice. Moreover, our study establishes that females prefer males with a larger body size, and this could further improve the developmental and reproductive fitness of their offspring. Finally, we focus on the seminal fluid proteins (SFPs) in O. communa, determine differentially expressed genes (i.e. OcACE, OcCBP and OcSFP) by analysing their proteomes and transcriptomes, and define the role of these SFPs-related genes through RNAi. Our study proved that the reproductive benefit of large males may be regulated by biased expression of crucial SFPs genes. The present study advances our understanding of the biological significance of preferential mating.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenchen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaowei Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
League GP, Harrington LC, Pitcher SA, Geyer JK, Baxter LL, Montijo J, Rowland JG, Johnson LM, Murdock CC, Cator LJ. Sexual selection theory meets disease vector control: Testing harmonic convergence as a "good genes" signal in Aedes aegypti mosquitoes. PLoS Negl Trop Dis 2021; 15:e0009540. [PMID: 34214096 PMCID: PMC8282061 DOI: 10.1371/journal.pntd.0009540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/15/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023] Open
Abstract
Background The mosquito Aedes aegypti is a medically important, globally distributed vector of the viruses that cause dengue, yellow fever, chikungunya, and Zika. Although reproduction and mate choice are key components of vector population dynamics and control, our understanding of the mechanisms of sexual selection in mosquitoes remains poor. In “good genes” models of sexual selection, females use male cues as an indicator of both mate and offspring genetic quality. Recent studies in Ae. aegypti provide evidence that male wingbeats may signal aspects of offspring quality and performance during mate selection in a process known as harmonic convergence. However, the extent to which harmonic convergence may signal overall inherent quality of mates and their offspring remains unknown. Methodology/Principal findings To examine this, we measured the relationship between acoustic signaling and a broad panel of parent and offspring fitness traits in two generations of field-derived Ae. aegypti originating from dengue-endemic field sites in Thailand. Our data show that in this population of mosquitoes, harmonic convergence does not signal male fertility, female fecundity, or male flight performance traits, which despite displaying robust variability in both parents and their offspring were only weakly heritable. Conclusions/Significance Together, our findings suggest that vector reproductive control programs should treat harmonic convergence as an indicator of some, but not all aspects of inherent quality, and that sexual selection likely affects Ae. aegypti in a trait-, population-, and environment-dependent manner. Mosquitoes transmit numerous pathogens that disproportionately impact developing countries. The mosquito Aedes aegypti, studied here, transmits viruses that cause neglected tropical diseases such as dengue, yellow fever, chikungunya, and Zika. Disease prevention programs rely heavily upon mosquito vector control. To successfully interrupt disease transmission, several control methods depend upon the ability of laboratory-modified male mosquitoes to successfully mate with wild females to suppress or replace natural populations. However, our understanding of what determines mating success in mosquitoes is far from complete. Our study addresses the question of whether female Ae. aegypti mosquitoes use male acoustic signals to select higher quality mates and improve their offspring’s fitness. We find that acoustic signals do not serve as universal indicators of fitness. Further, the fitness metrics we measured were only weakly heritable, suggesting that females that mate with high quality males do not necessarily produce fitter offspring. Our study provides a nuanced understanding of mate choice, mating acoustic signals, and parent and offspring reproductive fitness in a key disease-transmitting mosquito species. These discoveries improve our grasp of sexual selection in mosquitoes and can be leveraged by the vector control community to improve vitally important disease prevention programs.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Sylvie A. Pitcher
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Julie K. Geyer
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Lindsay L. Baxter
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Julian Montijo
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - John G. Rowland
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, United States of America
| | - Courtney C. Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Lauren J. Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Agudelo J, Alfonso-Parra C, Avila FW. Male Age Influences Re-mating Incidence and Sperm Use in Females of the Dengue Vector Aedes aegypti. Front Physiol 2021; 12:691221. [PMID: 34354600 PMCID: PMC8329734 DOI: 10.3389/fphys.2021.691221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Diseases transmitted by female Aedes aegypti mosquitoes are public health issues in countries in the tropics and sub-tropics. As in other insects, A. aegypti females undergo behavioral and physiological changes upon mating that principally act to facilitate the production of progeny. The primary effectors of A. aegypti female post-mating responses are male-derived seminal proteins that are transferred to females during mating. Increased male age reduces ejaculate function in numerous taxa and alters seminal protein composition in Drosophila melanogaster, but the impacts of male age on female A. aegypti post-mating responses are unknown. Here, we used "old" (21-22 days old) and "young" (4-5 days old) A. aegypti males to assess the influence of male age on oviposition, fertility, and re-mating incidence in their mates. We also examined how age influenced paternity share in females initially mated to young or old males that subsequently re-mated with a transgenic male that transferred RFP-labeled sperm and whose progeny inherited a larval-expressed GFP marker. We found that increased male age had no effect on female fecundity or fertility but significantly impacted their ability to prevent re-mating in their mates-more than half (54.5%) of the females mated to an old male re-mated, compared to 24% of females initially mated to a young male. Polyandrous A. aegypti females displayed first male precedence regardless of the age of their initial mate. However, young males were better able to compete with rival male sperm, siring significantly more progeny (77%) compared to old males (64%). Young males had significantly more sperm in their seminal vesicles than old males at the time of mating, although males of both age groups transferred similar numbers of sperm to their mates. Our results suggest that male senescence differentially impacts the induction of some post-mating changes in A. aegypti females. As the effect of age may be further exacerbated in the field, age-related declines in male ability to induce sexual refractoriness have implications for A. aegypti population control programs that release adults into the environment.
Collapse
Affiliation(s)
- Juliana Agudelo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| | - Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia.,Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
24
|
Camargo C, Alfonso-Parra C, Díaz S, Rincon DF, Ramírez-Sánchez LF, Agudelo J, Barrientos LM, Villa-Arias S, Avila FW. Spatial and temporal population dynamics of male and female Aedes albopictus at a local scale in Medellín, Colombia. Parasit Vectors 2021; 14:312. [PMID: 34103091 PMCID: PMC8188797 DOI: 10.1186/s13071-021-04806-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diseases transmitted by invasive Aedes aegypti and Aedes albopictus mosquitoes are public health issues in the tropics and subtropics. Understanding the ecology of mosquito vectors is essential for the development of effective disease mitigation programs and will allow for accurate predictions of vector occurrence and abundance. Studies that examine mosquito population dynamics are typically focused on female presence or total adult captures without discriminating the temporal and spatial distribution of both sexes. METHODS We collected immature and adult mosquitoes bimonthly for 2 years (2018-2019) in the Medellín Botanical Garden. Collection sites differed in proximity to buildings and nearby vegetation, and were classified by their overhead vegetation cover. We used linear mixed models (LMMs) and Spatial Analysis by Distance Indices (SADIE) to assess the spatial distribution of Ae. aegypti and Ae. albopictus. Using our Ae. albopictus captures exclusively, we assessed (1) the spatial and temporal distribution of males and females using SADIE and a generalized linear mixed model (GLMM), (2) the relationship between climatic variables/vegetation coverage and adult captures using GLMMs and LMMs, and (3) the correlation of male and female size in relation to climatic variables and vegetation coverage using LMMs. RESULTS Spatial analysis showed that Ae. aegypti and Ae. albopictus were distributed at different locations within the surveilled area. However, Ae. albopictus was the predominant species in the park during the study period. Adult Ae. albopictus captures were positively correlated with precipitation and relative humidity, and inversely correlated with temperature and wind speed. Moreover, we observed a spatial misalignment of Ae. albopictus males and females-the majority of males were located in the high vegetation coverage sites, while females were more evenly distributed. We observed significant associations of the size of our adult Ae. albopictus captures with precipitation, temperature, and wind speed for both sexes and found that overhead vegetation cover influenced male size, but observed no effect on female size. CONCLUSIONS Our work elucidates the differential dynamics of Ae. albopictus males and females, which is pivotal to develop accurate surveillance and the successful establishment of vector control programs based on the disruption of insect reproduction.
Collapse
Affiliation(s)
- Carolina Camargo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Antioquia, Colombia
| | - Catalina Alfonso-Parra
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Antioquia, Colombia
- Instituto Colombiano de Medicina Tropical, Universidad CES, 055450, Sabaneta, Antioquia, Colombia
| | - Sebastián Díaz
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Antioquia, Colombia
| | - Diego F Rincon
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), 250047, Mosquera, Cundinamarca, Colombia
| | - Luis Felipe Ramírez-Sánchez
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Antioquia, Colombia
| | - Juliana Agudelo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Antioquia, Colombia
| | - Luisa M Barrientos
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Antioquia, Colombia
| | - Sara Villa-Arias
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Antioquia, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Antioquia, Colombia.
| |
Collapse
|
25
|
Wanjiku C, Tchouassi DP, Sole CL, Pirk CWW, Torto B. Biological traits of wild-caught populations of Aedes aegypti in dengue endemic and non-endemic regions of Kenya. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:19-23. [PMID: 35229577 DOI: 10.52707/1081-1710-46.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/06/2020] [Indexed: 06/14/2023]
Abstract
Variation in vector traits can modulate local scale differences in pathogen transmission. Here, we compared seasonal variation in the wing length (proxy for body size) and energy reserves of adult wild-caught Aedes aegypti populations from a dengue endemic (Kilifi) and non-endemic (Isiolo) area of Kenya. Vector sampling in the dengue endemic site was conducted during the dry and wet seasons. In the non-endemic area, it was limited to the dry season which characterizes this ecology where sporadic or no rainfall is commonplace during the year. We found variation by site in the body size of both sexes, with an overall smaller size of Ae. aegypti populations collected from Isiolo than those from Kilifi. Our results show that although total carbohydrates and lipids levels were highest in both sexes during the dry season, they were two-fold higher in males than females. However, we found weak correlations between body size and energy reserves for both sexes, with body size being more sensitive in identifying differences at a population level. These results provide insights into the determinants of the vectoring potential of Ae. aegypti populations in dengue endemic and non-endemic ecologies in Kenya.
Collapse
Affiliation(s)
- Caroline Wanjiku
- Behavioural and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, Republic of South Africa
| | - David P Tchouassi
- Behavioural and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Catherine L Sole
- Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, Republic of South Africa
| | - Christian W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, Republic of South Africa
| | - Baldwyn Torto
- Behavioural and Chemical Ecology Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya,
- Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, Republic of South Africa
| |
Collapse
|
26
|
Yanchula KZ, Alto BW. Paternal and maternal effects in a mosquito: A bridge for life history transition. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104243. [PMID: 33845092 DOI: 10.1016/j.jinsphys.2021.104243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Parental (transgenerational) effects occur when the conditions experienced by a mother or father contribute to offspring phenotype. Here we show that parental larval diet in mosquitoes, Aedes aegypti, results in differential allocation of resources in offspring of parents depending on the nutritional condition (quality) of their mate. Maternal effects influenced the number of eggs produced by females as well as their lipid investment. Low nutrient females mated with high nutrient males laid eggs with significantly higher lipid content than those laid by high nutrient females. Paternal effects showed that when high nutrient males mated with low nutrient females, resulting eggs had higher lipid content than when low nutrient males mated with low nutrient females. Overall, our results are consistent with a pattern predicted by the differential allocation of resources hypothesis, when females experience nutritional deprivation, which asserts that mate quality directly influences reproductive allocation.
Collapse
Affiliation(s)
- Kylie Zirbel Yanchula
- Florida Medical Entomology Laboratory, Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA.
| | - Barry W Alto
- Florida Medical Entomology Laboratory, Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA.
| |
Collapse
|
27
|
Huck DT, Klein MS, Meuti ME. Determining the effects of nutrition on the reproductive physiology of male mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2021; 129:104191. [PMID: 33428881 DOI: 10.1016/j.jinsphys.2021.104191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Nutrition affects multiple aspects of insect physiology such as body size and fecundity, but we lack a detailed understanding of how nutrition influences the reproductive physiology of male insects such as mosquitoes. Given that female mosquitoes are vectors of many deadly diseases and can quickly proliferate, understanding how male nutrition impacts female fecundity could be of critical importance. To uncover the relationship between nutrition in adult male mosquitoes and its impacts on reproductive physiology, we reared larvae of the Northern house mosquito, Culex pipiens, on a standard lab diet and divided adult males among three different dietary treatments: low (3%), moderate (10%), and high (20%) sucrose. We found that although overall body size did not differ among treatments, one-week-old males raised on the 3% sucrose diet had significantly smaller male accessory glands (MAGs) compared to males that consumed the 10% and the 20% sucrose diets. Diet affected whole-body lipid content but did not affect whole-body protein content. Using nuclear magnetic resonance (NMR) spectroscopy, we found that diet altered the metabolic composition of the MAGs, including changes in lactic acid, formic acid, and glucose. We also observed changes in protein and lipid abundance and composition in MAGs. Females who mated with males on the 3% diet were found to produce significantly fewer larvae than females who had mated with males on the 10% diet. Taken together, our results demonstrate that the diet of adult male mosquitoes clearly affects male reproductive physiology and female fecundity.
Collapse
Affiliation(s)
- Derek T Huck
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, United States.
| | - Matthias S Klein
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, United States.
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, United States.
| |
Collapse
|
28
|
Kang DS, Cunningham JM, Lovin DD, Chadee DD, Severson DW. Mating Competitiveness of Transgenic Aedes aegypti (Diptera: Culicidae) Males Against Wild-Type Males Reared Under Simulated Field Conditions. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1775-1781. [PMID: 32556270 PMCID: PMC7899268 DOI: 10.1093/jme/tjaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 05/07/2023]
Abstract
Efforts directed at genetic modification of mosquitoes for population control or replacement are highly dependent on the initial mating success of transgenic male mosquitoes following their release into natural populations. Adult mosquito phenotypes are influenced by the environmental conditions experienced as larvae. Semifield studies conducted to date have not taken that under consideration when testing male mating fitness, and have compared mating success of males reared under identical environmental conditions. We performed pairwise mating challenges between males from a genetically modified laboratory strain (BF2) versus males from a recent Trinidad field isolate of Aedes aegypti (L.), a major vector of multiple arboviruses. We utilized larval density and nutrition to simulate environmental stress experienced by the Trinidad males and females. Our results indicated that environmental stress during larval development negatively influenced the competitiveness and reproductive success of males from the Trinidad population when paired with optimum reared BF2 males. Small (0.027 m3) and large (0.216 m3) trials were conducted wherein stressed or optimum Trinidad males competed with optimum BF2 males for mating with stressed Trinidad females. When competing with stress reared Trinidad males, optimum reared BF2 males were predominant in matings with stress reared Trinidad females, and large proportions of these females mated with males of both strains. When competing with optimum reared Trinidad males, no difference in mating success was observed between them and BF2 males, and frequencies of multiple matings were low. Our results indicate that future mating competition studies should incorporate appropriate environmental conditions when designing mating fitness trials of genetically modified males.
Collapse
Affiliation(s)
- David S Kang
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
| | | | - Diane D Lovin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
| | - Dave D Chadee
- Department of Life Sciences, University of the West Indies, Saint Augustine, Trinidad and Tobago
| | - David W Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN
- Department of Life Sciences, University of the West Indies, Saint Augustine, Trinidad and Tobago
- Corresponding author, e-mail:
| |
Collapse
|
29
|
Rojas-Araya D, Alto BW, Cummings DAT, Burkett-Cadena ND. Differentiation of Multiple Fluorescent Powders, Powder Transfer, and Effect on Mating in Aedes aegypti (Diptera: Culicidae). INSECTS 2020; 11:insects11110727. [PMID: 33114300 PMCID: PMC7690904 DOI: 10.3390/insects11110727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Five different fluorescent powders (orange, yellow, green, blue, and violet) were tested on Aedes aegypti adults to evaluate the differentiation of multiple fluorescent powder colors applied externally in the same female mosquito, their effect on coupling time, copulation time, insemination success, mate choice, and the extent of transference of powders between marked and unmarked individuals, either during copulation or same-sex interactions. Marking with multiple powders was evaluated after applying different powders in the same female at different times and combinations. The comparative effect of powders on mating was explored using different cross-combinations of marked/unmarked couples. Transference of powders between marked/unmarked individuals after copulation was checked in mated individuals, and between same-sex interactions by allowing them to interact under crowded and uncrowded conditions. Identification of the colors included in multiple markings in the same individual was possible when exploring almost all combinations (exception: green-yellow). No important effect of powder marking between cross-combinations was found on coupling time (overall 95% CI (Confidence Interval) 37.6-49.6 min), copulation time (overall 95% CI 17-20 s), insemination success, nor their mate choice. Transferred powder after copulation activity, concentrated in genitalia, legs, and the tip of wings, occurred in >80% of females and 100% of males. Powder transference in legs and genitalia, between same-sex individuals, occurred only in males (ranged between 23-35%) under both density conditions. The lack of important effects of these powders on the studied aspects of Ae. aegypti provides information about their usefulness and limitations, which should be recognized for future applications and to avoid bias.
Collapse
Affiliation(s)
- Diana Rojas-Araya
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, IFAS, University of Florida, Vero Beach, FL 32962, USA; (B.W.A.); (N.D.B.-C.)
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, IFAS, University of Florida, Vero Beach, FL 32962, USA; (B.W.A.); (N.D.B.-C.)
| | - Derek A. T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Nathan D. Burkett-Cadena
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, IFAS, University of Florida, Vero Beach, FL 32962, USA; (B.W.A.); (N.D.B.-C.)
| |
Collapse
|
30
|
Shandilya A, Singh P, Mishra G, Omkar O. Cost of mating in male
Menochilus sexmaculatus
(Fabricius) (Coleoptera: Coccinellidae). Ethology 2020. [DOI: 10.1111/eth.13099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Apoorva Shandilya
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| | - Priya Singh
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| | - Geetanjali Mishra
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| | - Omkar Omkar
- Ladybird Research Laboratory Department of Zoology University of Lucknow Lucknow India
| |
Collapse
|
31
|
Steinwascher K. Competition and growth among Aedes aegypti larvae: Effects of distributing food inputs over time. PLoS One 2020; 15:e0234676. [PMID: 33006964 PMCID: PMC7531853 DOI: 10.1371/journal.pone.0234676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Male and female mosquito larvae compete for different subsets of the yeast food resource in laboratory microcosms. Males compete more intensely with males, and females with females. The amount and timing of food inputs alters both growth and competition, but the effects are different between sexes. Increased density increases competition among males. Among females, density operates primarily by changing the food/larva or total food; this affects competition in some interactions and growth in others. Food added earlier in the life span contributes more to mass than the same quantity added later. After a period of starvation larvae appear to use some of the subsequent food input to rebuild physiological reserves in addition to building mass. The timing of pupation is affected by the independent factors and competition, but not in the same way for the two sexes, and not in the same way as mass at pupation for the two sexes. There is an effect of density on the timing of pupation for females independent of competition or changes in food/larva or total food. Male and female larvae have different larval life history strategies. Males grow quickly to a minimum size, then pupate, depending on the amount of food available. Males that do not grow quickly enough may delay pupation further to grow larger, resulting in a bimodal distribution of sizes and ages. Males appear to have a maximum size determined by the early food level. Females grow faster than males and grow larger than males on the same food inputs. Females affect the growth and competition among males by manipulating the number of particles in the microcosm through changes in feeding behavior. Mosquito larvae appear to have evolved to survive periods of starvation and take advantage of intermittent inputs of food into containers.
Collapse
Affiliation(s)
- Kurt Steinwascher
- Florida Medical Entomology Laboratory, Vero Beach, FL, United States of America
| |
Collapse
|
32
|
Jeffrey Gutiérrez EH, Walker KR, Ernst KC, Riehle MA, Davidowitz G. Size as a Proxy for Survival in Aedes aegypti (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1228-1238. [PMID: 32266939 PMCID: PMC7768678 DOI: 10.1093/jme/tjaa055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 06/11/2023]
Abstract
The Aedes aegypti mosquito is the primary vector of dengue, yellow fever, chikungunya, and Zika viruses. Infection with the dengue virus alone occurs in an estimated 400 million people each year. Likelihood of infection with a virus transmitted by Ae. aegypti is most commonly attributed to abundance of the mosquito. However, the Arizona-Sonora desert region has abundant Ae. aegypti in most urban areas, yet local transmission of these arboviruses has not been reported in many of these cities. Previous work examined the role of differential Ae. aegypti longevity as a potential explanation for these discrepancies in transmission. To determine factors that were associated with Ae. aegypti longevity in the region, we collected eggs from ovitraps in Tucson, AZ and reared them under multiple experimental conditions in the laboratory to examine the relative impact of temperature and crowding during development, body size, fecundity, and relative humidity during the adult stage. Of the variables studied, we found that the combination of temperature during development, relative humidity, and body size produced the best model to explain variation in age at death. El mosquito Aedes aegypti es el vector primario de los virus de dengue, fiebre amarilla, chikungunya y Zika. Solamente las infecciones con los virus de dengue ocurren en aproximadamente 400 millones de personas cada año. La probabilidad de infección con un virus transmitido por Ae. aegypti es frecuentemente atribuido a la abundancia del mosquito. No obstante, la región del desierto de Arizona-Sonora tiene una abundancia de Ae. aegypti en la mayoría de las áreas urbanas, pero la transmisión local de estos arbovirus no ha sido reportada en muchas de estas ciudades. Trabajos previos han examinado el rol de las diferencias de longevidad en Ae. aegypti como explicación potencial por estas discrepancias en la transmisión. Para determinar que factores fueron asociados con longevidad en Ae. aegypti en la región, colectamos huevos de ovitrampas en Tucson, Arizona y los criamos debajo de múltiples condiciones experimentales en el laboratorio para examinar el impacto relativo de temperatura y competencia para nutrición durante desarrollo, tamaño del cuerpo, capacidad reproductiva, y humedad relativa durante adultez. De las variables estudiados, encontramos que la combinación de temperatura durante desarrollo, humedad relativa, y tamaño del cuerpo produjo el mejor modelo para explicar variación en edad al tiempo de la muerte.
Collapse
Affiliation(s)
| | | | - Kacey C Ernst
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ
| | | | | |
Collapse
|
33
|
Rojas-Araya D, Alto BW, Burkett-Cadena ND, Cummings DAT. Impacts of fluorescent powders on survival of different age cohorts, blood-feeding success, and tethered flight speed of Aedes aegypti (Diptera: Culicidae) females. Acta Trop 2020; 207:105491. [PMID: 32283091 DOI: 10.1016/j.actatropica.2020.105491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
Fluorescent powders are one of the most common external markers used to study mosquito behavior and ecology. For their reliable and practical use, it is important to evaluate their effect on biological parameters such as survival, blood-feeding, and mobility. We evaluated the effect of five different fluorescent powders (Day-Glo ® ECO Series) on the survival of different age cohorts, blood-feeding success, and tethered flight speed on Aedes aegypti (Linnaeus) adult females. For survival analysis, three cohorts (2-5, 6-9 and 10-13 days old) were marked and mortality recorded until all died. To examine the effect of fluorescent powders on female response to blood-feeding, the proportions of unfed, partially fed, and fully engorged females, after being exposed to host blood under two different time sets (20 and 40 min.), were compared. Their impact on female tethered flight speed was evaluated recording their flight for 30 min. with a flight mill. Survival distributions between treatments were not significantly different within each cohort. Blood-feeding was not significantly different among marked or unmarked females at both times of blood exposure, with the exception of Signal Green-ECO 18 and Ultra Violet- ECO 20 (at 20 and 40 min.), in which a higher proportion of partially fed females was observed compared to control females. In relation to flight performance, no statistically significant difference in mean tethered flight speed (m/s), among marked and unmarked mosquito groups, was observed. Our results indicate that the tested powders and application method have few significant impacts on Ae. aegypti survival, blood-feeding success and flight performance, and are thus suitable for investigations of mosquito biology in the environment.
Collapse
|
34
|
Huo Z, Liu Y, Yang J, Xie W, Wang S, Wu Q, Zhou X, Pang B, Zhang Y. Transcriptomic Analysis of Mating Responses in Bemisia tabaci MED Females. INSECTS 2020; 11:insects11050308. [PMID: 32423081 PMCID: PMC7290661 DOI: 10.3390/insects11050308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Mating triggers substantial changes in gene expression and leads to subsequent physiological and behavioral modifications. However, postmating transcriptomic changes responding to mating have not yet been fully understood. Here, we carried out RNA sequencing (RNAseq) analysis in the sweet potato whitefly, Bemisia tabaci MED, to identify genes in females in response to mating. We compared mRNA expression in virgin and mated females at 24 h. As a result, 434 differentially expressed gene transcripts (DEGs) were identified between the mated and unmated groups, including 331 up- and 103 down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that many of these DEGs encode binding-related proteins and genes associated with longevity. An RT-qPCR validation study was consistent with our transcriptomic analysis (14/15). Specifically, expression of P450s (Cyp18a1 and Cyp4g68), ubiquitin-protein ligases (UBR5 and RNF123), Hsps (Hsp68 and Hsf), carboxylase (ACC-2), facilitated trehalose transporters (Tret1-2), transcription factor (phtf), and serine-protein kinase (TLK2) were significantly elevated in mated females throughout seven assay days. These combined results offer a glimpe of postmating molecular modifications to facilitate reproduction in B. tabaci females.
Collapse
Affiliation(s)
- Zhijia Huo
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China;
| | - Yating Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (J.Y.); (W.X.); (S.W.); (Q.W.)
| | - Jinjian Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (J.Y.); (W.X.); (S.W.); (Q.W.)
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (J.Y.); (W.X.); (S.W.); (Q.W.)
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (J.Y.); (W.X.); (S.W.); (Q.W.)
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (J.Y.); (W.X.); (S.W.); (Q.W.)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA;
| | - Baoping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China;
- Correspondence: (B.P.); (Y.Z.); Tel.: +86-471-4318472 (B.P.); +86-010-82109518 (Y.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (J.Y.); (W.X.); (S.W.); (Q.W.)
- Correspondence: (B.P.); (Y.Z.); Tel.: +86-471-4318472 (B.P.); +86-010-82109518 (Y.Z.)
| |
Collapse
|
35
|
Abraham S, Moyano A, Murillo Dasso S, Van Nieuwenhove G, Ovruski S, Pérez-Staples D. Male accessory gland depletion in a tephritid fly affects female fecundity independently of sperm depletion. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02835-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Mbande A, Tedder M, Chidawanyika F. Offspring diet supersedes the transgenerational effects of parental diet in a specialist herbivore Neolema abbreviata under manipulated foliar nitrogen variability. INSECT SCIENCE 2020; 27:361-374. [PMID: 30298557 DOI: 10.1111/1744-7917.12644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Diet quality influences organismal fitness within and across generations. For herbivorous insects, the transgenerational effects of diet remain relatively underexplored. Using a 3 × 3 × 2 factorial experiment, we evaluated how N enrichment in parental diets of Neolema abbreviata (Larcordaire) (Coleoptera: Chrysomelidae), a biological control agent for Tradescantia fluminensis Vell. (Commelinaceae), may influence life history and performance of F1 and F2 offspring under reciprocal experiments. We found limited transgenerational effects of foliar nitrogen variability among life-history traits in both larvae and adults. Larval weight gain and mortality were responsive to parental diet contrary to feeding damage, pupal weight and duration taken to pupate. There were significant parental diet × test interactions in larval feeding damage, weight gain, pupal weight and time to pupation. Generally, offspring from parents under high N plants performed better even under low N test plants. Adult traits including oviposition selection, feeding weight and longevity did not respond to the effects of parental diet nor its interaction with test diet as was the case in the larval stage. However, the main effects of test diet were more important in determining adult performance in both generations suggesting limited sensitivity to parental diet in the adult stage. Our results show conflicting responses to parental diet between larvae and adults of the same generation among an insect species with both actively feeding larval and adult life stages. These transgenerational effects, or lack thereof, may have implications on the field performance of N. abbrevita under heterogeneous nutritional landscapes.
Collapse
Affiliation(s)
- Abongile Mbande
- Weeds Division, Plant Protection Research Institute, Agricultural Research Council, Hilton, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Michelle Tedder
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Frank Chidawanyika
- Weeds Division, Plant Protection Research Institute, Agricultural Research Council, Hilton, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
37
|
Barredo E, DeGennaro M. Not Just from Blood: Mosquito Nutrient Acquisition from Nectar Sources. Trends Parasitol 2020; 36:473-484. [PMID: 32298634 DOI: 10.1016/j.pt.2020.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/01/2023]
Abstract
Anthropophilic female mosquitoes are well known for their strong attraction to human hosts, but plant nectar is a common energy source in their diets. When sugar sources are scarce, female mosquitoes of some species can compensate by taking larger and more frequent blood meals. Male mosquitoes are exclusively dependent on plant nectar or alternative sugar sources. Plant preference is likely driven by an innate attraction that may be enhanced by experience, as mosquitoes learn to recognize available sugar rewards. Nectar-seeking involves the integration of at least three sensory systems: olfaction, vision and taste. The prevention of vector-borne illnesses, the determination of the mosquitoes' ecological role, and the design of efficient sugar-baited traps will all benefit from understanding the molecular basis of nectar-seeking.
Collapse
Affiliation(s)
- Elina Barredo
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Matthew DeGennaro
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
38
|
Spence Beaulieu MR, Reiskind MH. Comparative Vector Efficiency of Two Prevalent Mosquito Species for Dog Heartworm in North Carolina. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:608-614. [PMID: 31687760 DOI: 10.1093/jme/tjz190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The dog heartworm, Dirofilaria immitis (Leidy) (Spirurida: Onchocercidae), is a devastating parasite of domestic and wild canines vectored by a multitude of mosquito species. Although many species are implicated as vectors, not all contribute equally to disease transmission, with demonstrated variation in vector efficiency between and within species. We investigated the vector efficiency of mosquitoes derived from wild-caught North Carolina populations of two known heartworm vectors: a native species, Aedes triseriatus (Say) (Diptera: Culicidae), and an invasive species, Aedes albopictus (Skuse). We compared the parasite developmental times within the mosquito, mosquito longevity and fecundity, and the vector efficiency index between the two species. We found that the tested composite North Carolina population of Ae. triseriatus was an efficient vector of D. immitis under laboratory conditions, whereas the local composite population of Ae. albopictus was a competent but relatively poor vector. Compared with Ae. triseriatus, Ae. albopictus showed a longer time for parasite development, lower infection rates, and lower vector efficiency. Additionally, Ae. albopictus was the sole species to exhibit significant parasite-induced mortality. These results are in contrast to prior studies of populations of Ae. albopictus from locations outside of North Carolina, which have implicated the species as a highly competent heartworm vector. The variation seen for different strains of the same species emphasizes the heritable nature of D. immitis vector competence and highlights the need for local infection studies for accurate transmission risk assessment in a particular locale.
Collapse
Affiliation(s)
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| |
Collapse
|
39
|
Felipe Ramírez-Sánchez L, Camargo C, Avila FW. Male sexual history influences female fertility and re-mating incidence in the mosquito vector Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104019. [PMID: 32032591 DOI: 10.1016/j.jinsphys.2020.104019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Aedes aegypti is the primary vector of several arboviruses that impact human health including the dengue, Zika, and yellow fever viruses. The potential of Ae. aegypti females to transmit viruses is enhanced by mating-induced behavioral and physiological changes that increase female host-seeking behaviors, blood-feeding frequency and longevity. The mating-induced changes are due to female receipt of male seminal fluid proteins (SFPs) during copulation. SFPs also inhibit female re-mating-re-mating incidence is significantly reduced in the initial hours after mating and nearly absent after 24 h. Males, however, are not limited in the number of females they can inseminate and are able to mate with multiple females in succession. As successive mating depletes SFPs, we examined parameters of fertility and re-mating incidence in females after mating with recently mated males. Males of two Ae. aegypti strains (Colombian and Thai) were mated five consecutive times and fecundity, resulting larvae and hatch percentage in each female of the mating sequence was assessed. In both strains, we found that males can mate three times in succession without impacting fertility in their mates. However, significant declines in fecundity, resulting larvae, and hatch percentage were observed after a third mating. Male size influenced female fecundity and fertility as mates of small males showed further reductions compared to mates of big males after mating consecutively. Seven days after the consecutive mating assays, the re-mating rate of females mated fifth in succession was significantly increased (Colombian strain: 33%; Thai strain: 48%) compared to females mated first (0% in both strains). Re-mating incidence was further increased in small, Thai strain males where 82% of fifth mated females re-mated compared to 0% of first mated females. Finally, we show that regardless of male size, mates of experimental males were similarly fertile to mates of control males when mated for a sixth time 48 h after the consecutive mating assays, showing that males recover fertility after 2 d. Our results show that male sexual history influences fertility and re-mating incidence of Ae. aegypti females.
Collapse
Affiliation(s)
- Luis Felipe Ramírez-Sánchez
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Antioquia 050010, Colombia
| | - Carolina Camargo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Antioquia 050010, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Antioquia 050010, Colombia.
| |
Collapse
|
40
|
Msaad Guerfali M, Chevrier C. Determinant factors for sperm transfer and sperm storage within Ceratitis capitata (Diptera: Tephritidae) and impact on Sterile Insect Technique. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1855901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Saingamsook J, Yanola J, Lumjuan N, Walton C, Somboon P. Investigation of Relative Development and Reproductivity Fitness Cost in Three Insecticide-Resistant Strains of Aedes aegypti from Thailand. INSECTS 2019; 10:insects10090265. [PMID: 31443487 PMCID: PMC6780153 DOI: 10.3390/insects10090265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 02/05/2023]
Abstract
Knockdown resistance (kdr) and detoxification enzymes are major resistance mechanisms in insecticide-resistant Aedes aegypti throughout the world. Persistence of the resistance phenotype is associated with high fitness of resistance alleles in the absence of insecticide pressure. This study determined the relative fitness cost of three insecticide-resistant strains of Aedes aegypti—PMD, PMD-R, and UPK-R—and a hybrid under similar laboratory conditions in the absence of insecticide. The PMD strain is resistant to DDT with no kdr alleles; the PMD-R is resistant to DDT and permethrin with 1534C homozygous kdr alleles; and UPK-R is resistant to DDT, permethrin, and deltamethrin with 989P + 1016G homozygous alleles. The DDT-resistant PMD strain had the highest fitness compared with the two DDT/pyrethroid-resistant strains (PMD-R and UPK-R) and hybrid. Consistent fitness costs were observed in the DDT/pyrethroid-resistant strains and hybrid, including shorter wing length, reduced egg hatchability, shorter female lifespan, and shorter viability of eggs after storage, whereas no effect was observed on blood feeding rate. In addition, reduced egg production was observed in the PMD-R strain and prolonged developmental time was seen in the UPK-R strain. The corresponding hybrid that is heterozygous for kdr alleles was fitter than either of the homozygous mutant genotypes. This is in accordance with the high frequency of heterozygous genotypes observed in natural populations of Ae. aegypti in Chiang Mai city.
Collapse
Affiliation(s)
- Jassada Saingamsook
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate PhD's Degree Program in Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jintana Yanola
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nongkran Lumjuan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Catherine Walton
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Pradya Somboon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
42
|
Bimbilé Somda NS, Maïga H, Mamai W, Yamada H, Ali A, Konczal A, Gnankiné O, Diabaté A, Sanon A, Dabiré KR, Gilles JRL, Bouyer J. Insects to feed insects - feeding Aedes mosquitoes with flies for laboratory rearing. Sci Rep 2019; 9:11403. [PMID: 31388041 PMCID: PMC6684809 DOI: 10.1038/s41598-019-47817-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/18/2019] [Indexed: 11/14/2022] Open
Abstract
The black soldier fly, yellow mealworm and house fly are known for their wide distribution, ease of breeding, and environmental and nutritional attributes. Diets based on these fly proteins for the rearing of mosquito larvae are more accessible and affordable when compared to the reference IAEA diet which consists largely of costly livestock products such as bovine liver powder. Following a step-by-step assessment, we developed diet mixtures based on insect meal for the optimal mass production of Aedes albopictus and Ae. aegypti. Based on the assessed parameters including mosquito egg hatch, body size, flight ability, longevity and diet cost reduction, two mixtures are recommended: 1/2 tuna meal (TM) + 7/20 black soldier fly (BSF) + 3/20 brewer’s yeast and 1/2 TM + 1/2 BSF. These findings, which could be adapted to other mosquito species, provide alternative protein sources for mass rearing insects for genetic control strategies.
Collapse
Affiliation(s)
- Nanwintoum Séverin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria.,Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 BP 545, Bobo-Dioulasso, Burkina Faso.,Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Hamidou Maïga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria.,Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria.,Institut de Recherche Agricole pour le Développement (IRAD), BP 2123, Yaoundé-Messa, Cameroon
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Adel Ali
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Anna Konczal
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Olivier Gnankiné
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Antoine Sanon
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021, Ouagadougou, Burkina Faso
| | - Kounbobr Roch Dabiré
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS/DRO), 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - Jérémie R L Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, A-1400, Vienna, Austria.
| |
Collapse
|
43
|
Pantoja-Sánchez H, Gomez S, Velez V, Avila FW, Alfonso-Parra C. Precopulatory acoustic interactions of the New World malaria vector Anopheles albimanus (Diptera: Culicidae). Parasit Vectors 2019; 12:386. [PMID: 31370863 PMCID: PMC6676525 DOI: 10.1186/s13071-019-3648-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/25/2019] [Indexed: 12/04/2022] Open
Abstract
Background Anopheles albimanus is a malaria vector in Central America, northern South America and the Caribbean. Although a public health threat, An. albimanus precopulatory mating behaviors are unknown. Acoustics play important roles in mosquito communication, where flight tones allow males to detect and attract potential mates. The importance of sound in precopulatory interactions has been demonstrated in Toxorhynchites brevipalpis, Aedes aegypti, Culex quinquefasciatus and Anopheles gambiae; convergence in a shared harmonic of the wing beat frequency (WBF) during courtship is thought to increase the chance of copulation. To our knowledge, An. albimanus precopulatory acoustic behaviors have not been described to date. Here, we characterized An. albimanus (i) male and female flight tones; (ii) male–female precopulatory acoustic interactions under tethered and free flight conditions; and (iii) male-male acoustic interactions during free flight. Results We found significant increases in the WBFs of both sexes in free flight compared to when tethered. We observed harmonic convergence between 79% of tethered couples. In free flight, we identified a female-specific behavior that predicts mate rejection during male mating attempts: females increase their WBFs significantly faster during mate rejection compared to a successful copulation. This behavior consistently occurred during mate rejection regardless of prior mating attempts (from the same or differing male). During group flight, males of An. albimanus displayed two distinct flying behaviors: random flight and a swarm-like, patterned flight, each associated with distinct acoustic characteristics. In the transition from random to patterned flight, males converged their WBFs and significantly decreased flight area, male-male proximity and the periodicity of their trajectories. Conclusions We show that tethering of An. albimanus results in major acoustic differences compared to free flight. We identify a female-specific behavior that predicts mate rejection during male mating attempts in this species and show that male groups in free flight display distinct flying patterns with unique audio and visual characteristics. This study shows that An. albimanus display acoustic features identified in other mosquito species, further suggesting that acoustic interactions provide worthwhile targets for mosquito intervention strategies. Our results provide compelling evidence for swarming in this species and suggests that acoustic signaling is important for this behavior. Electronic supplementary material The online version of this article (10.1186/s13071-019-3648-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hoover Pantoja-Sánchez
- Departamento de Ingeniería Electrónica, SISTEMIC, Universidad de Antioquia, Medellín, Antioquia, 050010, Colombia.,Programa de Estudio y Control de Enfermedades Tropicales, PECET, Universidad de Antioquia, Medellín, Antioquia, 050010, Colombia
| | - Sebastián Gomez
- Departamento de Ingeniería Electrónica, SISTEMIC, Universidad de Antioquia, Medellín, Antioquia, 050010, Colombia.,Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia, 055450, Colombia
| | - Viviana Velez
- Programa de Estudio y Control de Enfermedades Tropicales, PECET, Universidad de Antioquia, Medellín, Antioquia, 050010, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Antioquia, 050010, Colombia.
| | - Catalina Alfonso-Parra
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia, 055450, Colombia. .,Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, Antioquia, 050010, Colombia.
| |
Collapse
|
44
|
Aldersley A, Pongsiri A, Bunmee K, Kijchalao U, Chittham W, Fansiri T, Pathawong N, Qureshi A, Harrington LC, Ponlawat A, Cator LJ. Too "sexy" for the field? Paired measures of laboratory and semi-field performance highlight variability in the apparent mating fitness of Aedes aegypti transgenic strains. Parasit Vectors 2019; 12:357. [PMID: 31324262 PMCID: PMC6642483 DOI: 10.1186/s13071-019-3617-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Evaluating and improving mating success and competitive ability of laboratory-reared transgenic mosquito strains will enhance the effectiveness of proposed disease-control strategies that involve deployment of transgenic strains. Two components of the mosquito rearing process, larval diet quantity and aquatic environment - which are linked to physiological and behavioural differences in adults - are both relatively easy to manipulate. In mosquitoes, as for many other arthropod species, the quality of the juvenile habitat is strongly associated with adult fitness characteristics, such as longevity and fecundity. However, the influence of larval conditioning on mating performance is poorly understood. Here, we investigated the combined effects of larval diet amount and environmental water source on adult male mating success in a genetically modified strain of Aedes aegypti mosquitoes in competition with wild-type conspecifics. Importantly, this research was conducted in a field setting using low generation laboratory and wild-type lines. RESULTS By controlling larval diet (high and low) and rearing water source (field-collected and laboratory water), we generated four treatment lines of a genetically modified strain of Ae. aegypti tagged with fluorescent sperm. Laboratory reared mosquitoes were then competed against a low generation wild-type colony in a series of laboratory and semi-field mating experiments. While neither food quantity nor larval aquatic environment were found to affect male mating fitness, the transgenic lines consistently outperformed wild-types in laboratory competition assays, an advantage that was not conferred to semi-field tests. CONCLUSIONS Using a model transgenic system, our results indicate that differences in the experimental conditions of laboratory- and field-based measures of mating success can lead to variation in the perceived performance ability of modified strains if they are only tested in certain environments. While there are many potential sources of variation between laboratory and field lines, laboratory adaptation - which may occur over relatively few generations in this species - may directly impact mating ability depending on the context in which it is measured. We suggest that colony-hybridization with field material can potentially be used to mitigate these effects in a field setting. Release programs utilising mass-produced modified laboratory strains should incorporate comparative assessments of quality in candidate lines.
Collapse
Affiliation(s)
- Andrew Aldersley
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Arissara Pongsiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kamonchanok Bunmee
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Udom Kijchalao
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wachiraphan Chittham
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Thanyalak Fansiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nattaphol Pathawong
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | | | - Alongkot Ponlawat
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Lauren J. Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| |
Collapse
|
45
|
Vrech D, Oviedo-Diego M, Olivero P, Peretti A. Successive matings produce opposite patterns on ejaculate volume and spermatozoa number in an ancient arthropod model with indirect sperm transfer. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The production of spermatophore and ejaculate is energetically expensive for males. High mating rates may accelerate sperm depletion and progressively decrease the size of the ejaculates. Sperm competition can shape spermatozoon numbers according to different signals and cues such as number of potential rivals or female mating status. Factors influencing patterns of sperm allocation have been neglected in terrestrial arthropods that transfer sperm indirectly using a complex sclerotized spermatophore deposited on the soil. We used the Neotropical scorpion Bothriurus bonariensis (C.L. Koch, 1842) to examine ejaculate volume, spermatozoon number, and spermatophore’s trunk length along three successive matings and their relationship with body size of males. Males mated and deposited a pre-insemination spermatophore every 10 days. Ejaculate volume and trunk length decreased, whereas spermatozoon number increased over matings. Male body size positively influenced ejaculate volume and trunk length interacted with mating event. High mating rates may decrease ejaculate volume. Sperm competition may produce increased spermatozoon number. Ejaculates are more energetically expensive than spermatozoa and larger males may better face the energetic requirements. Larger spermatophore trunks contain bigger ejaculate volume in the first two mating events, but this relationship disappears at the third mating event. Our discussion focuses on the factors responsible for the observed patterns.
Collapse
Affiliation(s)
- D.E. Vrech
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba, Argentina
- Catedra de Diversidad Biológica II
| | - M.A. Oviedo-Diego
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba, Argentina
| | - P.A. Olivero
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba, Argentina
| | - A.V. Peretti
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba, Argentina
- Catedra de Diversidad Biológica II
| |
Collapse
|
46
|
Dieng H, The CC, Satho T, Miake F, Wydiamala E, Kassim NFA, Hashim NA, Morales Vargas RE, Morales NP. The electronic song "Scary Monsters and Nice Sprites" reduces host attack and mating success in the dengue vector Aedes aegypti. Acta Trop 2019; 194:93-99. [PMID: 30922800 DOI: 10.1016/j.actatropica.2019.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 10/27/2022]
Abstract
Sound and its reception are crucial for reproduction, survival, and population maintenance of many animals. In insects, low-frequency vibrations facilitate sexual interactions, whereas noise disrupts the perception of signals from conspecifics and hosts. Despite evidence that mosquitoes respond to sound frequencies beyond fundamental ranges, including songs, and that males and females need to struggle to harmonize their flight tones, the behavioral impacts of music as control targets remain unexplored. In this study, we examined the effects of electronic music (Scary Monsters and Nice Sprites by Skrillex) on foraging, host attack, and sexual activities of the dengue vector Aedes aegypti. Adults were presented with two sound environments (music-off or music-on). Discrepancies in visitation, blood feeding, and copulation patterns were compared between environments with and without music. Ae. aegypti females maintained in the music-off environment initiated host visits earlier than those in the music-on environment. They visited the host significantly less often in the music-on than the music-off condition. Females exposed to music attacked hosts much later than their non-exposed peers. The occurrence of blood feeding activity was lower when music was being played. Adults exposed to music copulated far less often than their counterparts kept in an environment where there was no music. In addition to providing insight into the auditory sensitivity of Ae. aegypti to sound, our results indicated the vulnerability of its key vectorial capacity traits to electronic music. The observation that such music can delay host attack, reduce blood feeding, and disrupt mating provides new avenues for the development of music-based personal protective and control measures against Aedes-borne diseases.
Collapse
|
47
|
Meuti ME, Short SM. Physiological and Environmental Factors Affecting the Composition of the Ejaculate in Mosquitoes and Other Insects. INSECTS 2019; 10:E74. [PMID: 30875967 PMCID: PMC6468485 DOI: 10.3390/insects10030074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/02/2023]
Abstract
In addition to transferring sperm, male mosquitoes deliver several proteins, hormones and other factors to females in their seminal fluid that inhibit remating, alter host-seeking behaviors and stimulate oviposition. Recently, bioinformatics, transcriptomics and proteomics have been used to characterize the genes transcribed in male reproductive tissues and the individual proteins that are delivered to females. Thanks to these foundational studies, we now understand the complexity of the ejaculate in several mosquito species. Building on this work, researchers have begun to identify the functions of various proteins and hormones in the male ejaculate, and how they mediate their effects on female mosquitoes. Here, we present an overview of these studies, followed by a discussion of an under-studied aspect of male reproductive physiology: the effects of biotic and abiotic factors on the composition of the ejaculate. We argue that future research in this area would improve our understanding of male reproductive biology from a physiological and ecological perspective, and that researchers may be able to leverage this information to study key components of the ejaculate. Furthermore, this work has the potential to improve mosquito control by allowing us to account for relevant factors when implementing vector control strategies involving male reproductive biology.
Collapse
Affiliation(s)
- Megan E Meuti
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH 43210, USA.
| | - Sarah M Short
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH 43210, USA.
| |
Collapse
|
48
|
Kittayapong P, Kaeothaisong NO, Ninphanomchai S, Limohpasmanee W. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasit Vectors 2018; 11:657. [PMID: 30583749 PMCID: PMC6304762 DOI: 10.1186/s13071-018-3214-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
Background The sterile insect technique (SIT), which is based on irradiation-induced sterility, and incompatible insect technique (IIT), which is based on Wolbachia-induced cytoplasmic incompatibility (a kind of male sterility), have been used as alternative methods to reduce mosquito vector populations. Both methods require the release of males to reduce fertile females and suppress the number of natural populations. Different techniques of sex separation to obtain only males have been investigated previously. Our work involves an application of mechanical larval-pupal glass separators to separate Wolbachia-infected Aedes aegypti males from females at the pupal stage, prior to irradiation, and for use in a pilot field release and to assess the quality of males and females before and after sex separation and sterilization. Results This study was the first to demonstrate the efficiency of mechanical glass separators in separating males for use in an Ae. aegypti suppression trial by a combined SIT/IIT approach. Our results indicated that male and female pupae of Wolbachia-infected Ae. aegypti mosquitoes were significantly different (p < 0.05) in weight, size, and emergence-time, which made it easier for sex separation by this mechanical method. During the pilot field release, the percentage of female contamination was detected to be quite low and significantly different between the first (0.10 ± 0.13) and the second (0.02 ± 0.02) twelve-week period. Both males and females were almost completely sterile after exposure to 70 Gy irradiation dose. We observed that both irradiated Wolbachia-infected males and females survived and lived longer than two weeks, but males could live longer than females (p < 0.05) when they were irradiated at the same irradiation dose. When comparing irradiated mosquitoes with non-irradiated ones, there was no significant difference in longevity and survival-rate between those males, but non-irradiated females lived longer than irradiated ones (p < 0.05). Conclusion Mechanical sex separation by using a larval-pupal glass separator was practically applied to obtain only males for further sterilization and open field release in a pilot population suppression trial of Ae. aegypti in Thailand. Female contamination was detected to be quite low, and skilled personnel can reduce the risk for female release. The irradiated Wolbachia-infected females accidentally released were found to be completely sterile, with shorter life span than males.
Collapse
Affiliation(s)
- Patttamaporn Kittayapong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, 73170, Thailand. .,Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Nuanla-Ong Kaeothaisong
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwannapa Ninphanomchai
- Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Nakhon Pathom, 73170, Thailand
| | - Wanitch Limohpasmanee
- Thailand Institute of Nuclear Technology, Ministry of Science and Technology, Nakhon Nayok, 26120, Thailand
| |
Collapse
|
49
|
Kim S, Trocke S, Sim C. Comparative studies of stenogamous behaviour in the mosquito Culex pipiens complex. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:427-435. [PMID: 29856079 DOI: 10.1111/mve.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Understanding the processes of reproductive behaviour in mosquitoes is crucial for improving mating competitiveness and mating specificity for sterile insect release programmes. The Culex pipiens (Linneaus) (Diptera: Culicidae) forms pipiens and molestus (Forskål), two biotypes of the Cx. pipiens complex, are vectors for West Nile virus, St Louis encephalitis virus and lymphatic filariases. Hybridization of these biotypes is known to occur in nature, although form pipiens mates above ground in large spaces (eurygamy) and form molestus preferentially mates in small spaces (stenogamy) such as sewage tunnels. Hybridization may allow gene flow of biotype-specific characteristics that are crucial in the disease transmission cycle. The present study examined and compared mating behaviours, insemination rates, fecundity and fertility in parental and F1 hybrids between Cx. pipiens f. pipiens and Cx. pipiens f. molestus in conditions of stenogamy. Unique mating behaviour sequences were identified in Cx. pipiens f. molestus, including tapping, mounting, co-flying and copulation. Despite the considerably high insemination rates in hybrid crosses, fertility and fecundity rates were varied. This observation could suggest reproductive isolation in the hybrid zone. The study also documents a failure of heterospecific males to produce fertile eggs in Cx. pipiens f. pipiens females, which may be attributable to gametic incompatibilities and may represent an additional barrier to gene exchange.
Collapse
Affiliation(s)
- S Kim
- Department of Biology, Baylor University, Waco, TX, U.S.A
| | - S Trocke
- Department of Biology, Baylor University, Waco, TX, U.S.A
| | - C Sim
- Department of Biology, Baylor University, Waco, TX, U.S.A
| |
Collapse
|
50
|
Abstract
Adult Aedes aegypti mosquitoes are important vectors of human disease. The size of the adult female affects her success, fitness, and ability to transmit diseases. The size of the adults is determined during the aquatic larval stage. Competition among larvae for food influences the size of the pupa and thus the adult. In these experiments, the food level (mg/larva) and the density (larvae/vial) both affect intraspecific competition, which shows up as the interaction of the two factors. Furthermore, the total food per vial affects the nature of competition among the larvae, also apparent in the interaction of food and density. Male larvae are affected by the percent of males in the vial, but females are not. Seven biologically significant dependent variables were examined, and the data analyzed by multivariate analysis of variance to gain insight into the relationships among the variables and the effects of these factors on the larvae as they grew in small containers. Male and female larvae compete differently from one another for the particulate yeast cells in this experiment; female larvae outcompete males through larger size and by retaining cells within their gut at low total food levels. Under conditions of more intense competition, the pupal masses of both males and females are smaller, so the effect of competition is a reduced apparent food level. The age at pupation is also affected by food and density. Across the twenty treatment combinations of food/larva and larvae/vial, female larvae grew as though there were six different ecological environments while male larvae grew as though there were only four different environments. No interference competition was observed. Eradication efforts aimed at adult populations of this mosquito may inadvertently increase the size and robustness of the next generation of larvae, resulting in a subsequent adult population increase in the second generation.
Collapse
Affiliation(s)
- Kurt Steinwascher
- Formerly of the Florida Medical Entomology Laboratory, FL, United States of America
| |
Collapse
|