1
|
Traore MM, Junnila A, Traore SF, Doumbia S, Revay EE, Schlein Y, Yakovlev RV, Saldaitis A, Cui L, Petrányi G, Xue RD, Prozorov AM, Prozorova TA, Kone AS, Sogoba N, Diakite M, Vontas J, Beier JC, Müller GC. The efficacy of attractive targeted sugar baits in reducing malaria vector abundance in low-endemicity settings of northwest Mali. Malar J 2024; 23:319. [PMID: 39443969 PMCID: PMC11515541 DOI: 10.1186/s12936-024-05098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Attractive targeted sugar baits (ATSBs) have the potential to significantly reduce infective female Anopheles mosquitoes in arid areas, such as in Northern Mali. Malaria is epidemic in the north due to the limited viability of Anopheles species in the desert climate. The goal of this study was to determine of the effect of ATSB on the number of older female An. gambiae and on the number of sporozoite-positive females in villages in northern Mali. METHODS Villages were located in the north of Mali. In this study, 5677 ATSB stations were deployed, two on each home, in ten villages during late July and early August 2019. Ten villages served as controls. After a pre-treatment monitoring period in July, An. gambiae populations were monitored again from August to December using CDC-UV light traps, pyrethrum spray catches (PSC), and human landing catches (HLC). Mosquitoes were dissected to estimate their age, while ELISA detected sporozoite positivity. The monthly entomological inoculation rates (EIRs) were calculated for HLC indoors and outdoors. Data from villages were compared using t-tests, while bait station weighted density versus amount of collected females was checked with a Pearson's correlation. RESULTS A total of 2703 female An. gambiae were caught from treated villages, 4582 from control villages, a 41.0% difference. Dissection of 1759 females showed that ATSB significantly reduced the number of older females. The proportion of older females in treated villages was 0.93% compared to 9.4% in control villages. ELISA analysis of 7285 females showed that bait stations reduced the number of sporozoite-positive females. The infective females in treated villages was 0.30% compared to 2.73% in the controls. The greater the density of bait stations deployed, the fewer the older, infective females (P < 0.05). EIRs were low in control villages except in months when An. gambiae populations were high. EIRs in ATSB placement villages remained zero. Significant reductions (P < 0.0001) in An. gambiae males were observed. CONCLUSIONS Bait stations reduced all measures of vector populations in this study. In a low-transmission setting, ATSB has the potential to greatly reduce malaria.
Collapse
Affiliation(s)
- Mohamed M Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Amy Junnila
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Seydou Doumbia
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Edita E Revay
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Yosef Schlein
- Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, IMRIC, Hebrew University, Jerusalem, Israel
| | - Roman V Yakovlev
- Western Caspian University, 31 Istiglaliyyat Street, Baku, Azerbaijan
- Tomsk State University, Pr. Lenina 36, 634050, Tomsk, Russia
| | - Aidas Saldaitis
- Nature Research Centre, Akademijos Str. 2, 08412, Vilnius-21, Lithuania
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Rui-De Xue
- Anastasia Mosquito Control District, 120 EOC, St. Augustine, FL, 32092, USA
| | - Alexey M Prozorov
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
- Ludwig-Maximilians-University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Tatiana A Prozorova
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Aboubakr S Kone
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - Mahamadou Diakite
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Günter C Müller
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University of Sciences, Techniques and Technology of Bamako, BP 1805, Bamako, Mali.
| |
Collapse
|
2
|
Ntabi JDM, Lissom A, Djontu JC, Nkemngo FN, Diafouka-Kietela S, Mayela J, Missontsa G, Djogbenou L, Ndo C, Wondji C, Adegnika AA, Lenga A, Borrmann S, Ntoumi F. Entomological indicators of Plasmodium species transmission in Goma Tsé-Tsé and Madibou districts, in the Republic of Congo. Malar J 2024; 23:21. [PMID: 38229020 DOI: 10.1186/s12936-023-04823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/16/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Malaria remains a major public health problem in the Republic of Congo, with Plasmodium falciparum being the deadliest species of Plasmodium in humans. Vector transmission of malaria is poorly studied in the country and no previous report compared rural and urban data. This study aimed to determine the Anopheles fauna and the entomological indices of malaria transmission in the rural and urban areas in the south of Brazzaville, and beyond. METHODS Indoor household mosquitoes capture using electric aspirator was performed in rural and urban areas during raining and dry seasons in 2021. The identification of Anopheles species was done using binocular magnifier and nested-PCR. TaqMan and nested-PCR were used to detect the Plasmodium species in the head/thorax and abdomens of Anopheles. Some entomological indices including the sporozoite infection rate, the entomological inoculation rate and the man biting rate were estimated. RESULTS A total of 699 Anopheles mosquitoes were collected: Anopheles gambiae sensu lato (s.l.) (90.7%), Anopheles funestus s.l. (6.9%), and Anopheles moucheti (2.4%). Three species of An. gambiae s.l. were identified including Anopheles gambiae sensu stricto (78.9%), Anopheles coluzzii (15.4%) and Anopheles arabiensis (5.7%). The overall sporozoite infection rate was 22.3% with a predominance of Plasmodium falciparum, followed by Plasmodium malariae and Plasmodium ovale. Anopheles aggressiveness rate was higher in households from rural area (1.1 bites/night) compared to that from urban area (0.8 ib/p/n). The overall entomological inoculation rate was 0.13 ib/p/n. This index was 0.17 ib/p/n and 0.092 ib/p/n in rural and in urban area, respectively, and was similar during the dry (0.18 ib/p/n) and rainy (0.14 ib/p/n) seasons. CONCLUSION These findings highlight that malaria transmission remains high in rural and urban area in the south of Republic of Congo despite the ongoing control efforts, thereby indicating the need for more robust interventions.
Collapse
Affiliation(s)
- Jacques Dollon Mbama Ntabi
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo.
- Faculté Des Sciences Et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo.
| | - Abel Lissom
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Biological Science, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Jean Claude Djontu
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
| | - Francis N Nkemngo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Centre Region, Yaounde, Cameroon
| | | | - Jolivet Mayela
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
| | - Georges Missontsa
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo
| | - Luc Djogbenou
- Tropical Infectious Deseases Research Center (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Cyrille Ndo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Centre Region, Yaounde, Cameroon
- Department of Parasitology and Microbiology, Center for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Charles Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroun
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center of Infection Research (DZIF), Tübingen, Germany
| | - Arsène Lenga
- Faculté Des Sciences Et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo
| | - Steffen Borrmann
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center of Infection Research (DZIF), Tübingen, Germany
| | - Francine Ntoumi
- Fondation Congolaise Pour La Recherche Médicale, Brazzaville, Republic of the Congo.
- Faculté Des Sciences Et Techniques, Université Marien Ngouabi, Brazzaville, Republic of the Congo.
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Mwima R, Hui TYJ, Nanteza A, Burt A, Kayondo JK. Potential persistence mechanisms of the major Anopheles gambiae species complex malaria vectors in sub-Saharan Africa: a narrative review. Malar J 2023; 22:336. [PMID: 37936194 PMCID: PMC10631165 DOI: 10.1186/s12936-023-04775-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined various studies done on vector survival via these hypotheses; aestivation, local refugia, local or long-distance migration across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anopheles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasizing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertainties that influence the different malaria vector persistence mechanisms and provides recommendations for future studies.
Collapse
Affiliation(s)
- Rita Mwima
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Tin-Yu J Hui
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Ann Nanteza
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Austin Burt
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda.
| |
Collapse
|
4
|
Faiman R, Yaro AS, Dao A, Sanogo ZL, Diallo M, Samake D, Yossi O, Veru LM, Graber LC, Conte AR, Kouam C, Krajacich BJ, Lehmann T. Isotopic evidence that aestivation allows malaria mosquitoes to persist through the dry season in the Sahel. Nat Ecol Evol 2022; 6:1687-1699. [PMID: 36216903 DOI: 10.1038/s41559-022-01886-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Data suggest that the malaria vector mosquito Anopheles coluzzii persists during the dry season in the Sahel through a dormancy mechanism known as aestivation; however, the contribution of aestivation compared with alternative strategies such as migration is unknown. Here we marked larval Anopheles mosquitoes in two Sahelian villages in Mali using deuterium (2H) to assess the contribution of aestivation to persistence of mosquitoes through the seven-month dry season. After an initial enrichment period, 33% of An. coluzzii mosquitoes were strongly marked. Seven months following enrichment, multiple analysis methods supported the ongoing presence of marked mosquitoes, compatible with the prediction that the fraction of marked mosquitoes should remain stable throughout the dry season if local aestivation is occurring. The results suggest that aestivation is a major persistence mechanism of An. coluzzii in the Sahel, contributing at least 20% of the adults at the onset of rains. This persistence strategy could influence mosquito control and malaria elimination campaigns.
Collapse
Affiliation(s)
- Roy Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA.
| | - Alpha S Yaro
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dao
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Zana L Sanogo
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Djibril Samake
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ousmane Yossi
- Malaria Research and Training Center (MRTC)/Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Laura M Veru
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Leland C Graber
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Abigail R Conte
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Cedric Kouam
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | | | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| |
Collapse
|
5
|
Munisi DZ, Mathania MM. Adult Anopheles Mosquito Distribution at a Low and High Malaria Transmission Site in Tanzania. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6098536. [PMID: 35047638 PMCID: PMC8763487 DOI: 10.1155/2022/6098536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022]
Abstract
Malaria parasites are only transmitted by female mosquitoes of the genus Anopheles; hence, the disease's distribution is linked to that of the vector mosquitoes. As such, the goal of this study was to find out the spatial and temporal distribution of Anopheles mosquito adults in the research sites. This was a repeated cross-sectional ecological study that took place in Morogoro and Dodoma, Tanzania. Vacuum aspiration was used to collect mosquitoes both outside and inside human dwellings. All mosquito-related data was collected and entered into appropriate data collection forms. Female mosquitoes were recognized morphologically using Gillies and Coetzee morphological criteria, followed by PCR. In total, about 2742 Anopheles mosquitoes with an average collection of 18.21 ± 1.12 per day were collected outside human houses of which 1717 (10.51 ± 1.17) and 1025 (8.42 ± 1.41) were collected from Morogoro and Dodoma, respectively. Of the captured mosquitoes, 89.0%, 10.0%, and 1.0% were recognized as Anopheles arabiensis, Anopheles gambiae s.s., and Anopheles quadrianulatus, respectively. The distribution varied significantly with seasons, whereby 302 (4.72 ± 1.04) and 2440 (12.96 ± 1.52) mosquitoes were captured in the cold-dry and warm-wet season, respectively (p < 0.0001). Of the captured mosquitoes, 42.33%, 16.33%, 14.96%, and 4.27 were found on the ceiling, stored junks, verandas, and barks/tree, respectively. In malaria-endemic countries, vector control forms an important component of the malaria control efforts. This study found significant variation of Anopheles mosquito abundance in time and space with Anopheles arabiensis being the most predominant malaria vector. This signifies the need to introduce mosquito control methods that will target the less anthropophilic Anopheles arabiensis or the immature aquatic stages. The study further found that underbeds, store room/piled bags, and undisturbed curtains were the most preferred resting places by mosquitoes signifying to be the most effective strategic sites for spraying insecticides during the implementation of indoor residual spraying (IRS).
Collapse
Affiliation(s)
- David Zadock Munisi
- Department of Microbiology and Parasitology, School of Medicine and Dentistry, The University of Dodoma, P.O. Box 259, Dodoma, Tanzania
| | - Mary Mathew Mathania
- Department of Basic and Behavioral Sciences, School of Nursing, Saint John's University of Tanzania, Dodoma, Tanzania
| |
Collapse
|
6
|
Couper LI, Farner JE, Caldwell JM, Childs ML, Harris MJ, Kirk DG, Nova N, Shocket M, Skinner EB, Uricchio LH, Exposito-Alonso M, Mordecai EA. How will mosquitoes adapt to climate warming? eLife 2021; 10:69630. [PMID: 34402424 PMCID: PMC8370766 DOI: 10.7554/elife.69630] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, United States
| | | | - Jamie M Caldwell
- Department of Biology, Stanford University, Stanford, United States.,Department of Biology, University of Hawaii at Manoa, Honolulu, United States
| | - Marissa L Childs
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, United States
| | - Mallory J Harris
- Department of Biology, Stanford University, Stanford, United States
| | - Devin G Kirk
- Department of Biology, Stanford University, Stanford, United States.,Department of Zoology, University of Toronto, Toronto, Canada
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, United States
| | - Marta Shocket
- Department of Biology, Stanford University, Stanford, United States.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, United States
| | - Eloise B Skinner
- Department of Biology, Stanford University, Stanford, United States.,Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Moises Exposito-Alonso
- Department of Biology, Stanford University, Stanford, United States.,Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
7
|
Lymphatic filariasis, infection status in Culex quinquefasciatus and Anopheles species after six rounds of mass drug administration in Masasi District, Tanzania. Infect Dis Poverty 2021; 10:20. [PMID: 33648600 PMCID: PMC7919328 DOI: 10.1186/s40249-021-00808-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Lymphatic filariasis (LF) elimination program in Tanzania started in 2000 in response to the Global program for the elimination of LF by 2020. Evidence shows a persistent LF transmission despite more than a decade of mass drug administration (MDA). It is advocated that, regular monitoring should be conducted in endemic areas to evaluate the progress towards elimination and detect resurgence of the disease timely. This study was therefore designed to assess the status of Wuchereria bancrofti infection in Culex quinqefasciatus and Anopheles species after six rounds of MDA in Masasi District, South Eastern Tanzania. Methods Mosquitoes were collected between June and July 2019 using Center for Diseases Control (CDC) light traps and gravid traps for indoor and outdoor respectively. The collected mosquitoes were morphologically identified into respective species. Dissections and PCR were carried out to detect W. bancrofti infection. Questionnaire survey and checklist were used to assess vector control interventions and household environment respectively. A Poisson regression model was run to determine the effects of household environment on filarial vector density. Results Overall, 12 452 mosquitoes were collected of which 10 545 (84.7%) were filarial vectors. Of these, Anopheles gambiae complex, An. funestus group and Cx. quinquefasciatus accounted for 0.1%, 0.7% and 99.2% respectively. A total of 365 pools of Cx. quinquefasciatus (each with 20 mosquitoes) and 46 individual samples of Anopheles species were analyzed by PCR. For Cx. quinquefasciatus pools, 33 were positive for W. bancrofti, giving an infection rate of 0.5%, while the 46 samples of Anopheles species were all negative. All 1859 dissected mosquitoes analyzed by microscopy were also negative. Households with modern latrines had less mosquitoes than those with pit latrines [odds ratio (OR) = 0.407, P < 0.05]. Houses with unscreened windows had more mosquitoes as compared to those with screened windows (OR = 2.125, P < 0.05). More than 80% of the participants own bednets while 16.5% had no protection. Conclusions LF low transmission is still ongoing in Masasi District after six rounds of MDA and vector control interventions. The findings also suggest that molecular tools may be essential for xenomonitoring LF transmission during elimination phase. ![]()
Collapse
|
8
|
Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, Ousman Y, Linton YM, Krishna A, Veru L, Krajacich BJ, Faiman R, Florio J, Chapman JW, Reynolds DR, Weetman D, Mitchell R, Donnelly MJ, Talamas E, Chamorro L, Strobach E, Lehmann T. Windborne long-distance migration of malaria mosquitoes in the Sahel. Nature 2019; 574:404-408. [PMID: 31578527 PMCID: PMC11095661 DOI: 10.1038/s41586-019-1622-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/06/2019] [Indexed: 11/09/2022]
Abstract
Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa1,2. Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3-8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration3. Here we confirm this hypothesis through aerial sampling of mosquitoes at 40-290 m above ground level and provide-to our knowledge-the first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled.
Collapse
Affiliation(s)
- Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Adama Dao
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Zana L Sanogo
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Djibril Samake
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Alpha S Yaro
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
- Faculte des Sciences et Techniques, Universite des Sciences des Techniques et des Technologies de Bamako (FSTUSTTB), Bamako, Mali
| | - Yossi Ousman
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Bamako, Bamako, Mali
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Asha Krishna
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Laura Veru
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | | | - Roy Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Jenna Florio
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Jason W Chapman
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, UK
- Rothamsted Research, Harpenden, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Reed Mitchell
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, Suitland, MD, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elijah Talamas
- Systematic Entomology Laboratory - ARS, USDA, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
- Florida Department of Agriculture and Consumer Services, Department of Plant Industry, Gainesville, FL, USA
| | - Lourdes Chamorro
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
- Systematic Entomology Laboratory - ARS, USDA, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Ehud Strobach
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
- Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, MD, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA.
| |
Collapse
|
9
|
Krajacich BJ, Huestis DL, Dao A, Yaro AS, Diallo M, Krishna A, Xu J, Lehmann T. Investigation of the seasonal microbiome of Anopheles coluzzii mosquitoes in Mali. PLoS One 2018; 13:e0194899. [PMID: 29596468 PMCID: PMC5875798 DOI: 10.1371/journal.pone.0194899] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
The poorly understood mechanisms of dry season persistence of Anopheles spp. mosquitoes through the dry season in Africa remain a critical gap in our knowledge of Plasmodium disease transmission. While it is thought that adult mosquitoes remain in a dormant state throughout this seven-month dry season, the nature of this state remains unknown and has largely not been recapitulated in laboratory settings. To elucidate possible connections of this state with microbial composition, the whole body microbiomes of adult mosquitoes in the dry and wet seasons in two locations of Mali with varying water availability were compared by sequencing the 16S ribosomal RNA gene. These locations were a village near the Niger River with year-round water sources (N’Gabakoro, “riparian”), and a typical Sahelian area with highly seasonal breeding sites (Thierola Area, “Sahelian”). The 16S bacterial data consisted of 2057 sequence variants in 426 genera across 184 families. From these data, we found several compositional differences that were seasonally and spatially linked. Counter to our initial hypothesis, there were more pronounced seasonal differences in the bacterial microbiome of riparian, rather than Sahelian areas. These seasonal shifts were primarily in Ralstonia, Sphingorhabdus, and Duganella spp. bacteria that are usually soil and water-associated, indicating these changes may be from bacteria acquired in the larval environment, rather than adulthood. In Sahelian dry season mosquitoes, there was a unique intracellular bacteria, Anaplasma, which likely was acquired through non-human blood feeding. Cytochrome B analysis of blood meals showed greater heterogeneity in host choice of An. coluzzii independent of season in the Thierola area compared to N’Gabakoro (77.5% vs. 94.6% human-origin blood meal, respectively), indicating a relaxation of anthropophily. Overall, this exploratory study provides valuable indications of spatial and seasonal differences in bacterial composition which help refine this difficult to study state.
Collapse
Affiliation(s)
- Benjamin J. Krajacich
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, Maryland, United States of America
- * E-mail: (BJK); (TL)
| | - Diana L. Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, Maryland, United States of America
| | - Adama Dao
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Alpha S. Yaro
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Pharmacy and Odonto-stomatology, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Asha Krishna
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, Maryland, United States of America
| | - Jiannong Xu
- Biology Department, New Mexico State University, Las Cruces, New Mexico, United states of America
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, Maryland, United States of America
- * E-mail: (BJK); (TL)
| |
Collapse
|
10
|
Huestis DL, Artis ML, Armbruster PA, Lehmann T. Photoperiodic responses of Sahelian malaria mosquitoes Anopheles coluzzii and An. arabiensis. Parasit Vectors 2017; 10:621. [PMID: 29282150 PMCID: PMC5745990 DOI: 10.1186/s13071-017-2556-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/26/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Throughout large parts of sub-Saharan Africa, seasonal malaria transmission follows mosquito density, approaching zero during the dry season and peaking during the wet season. The mechanisms by which malaria mosquitoes survive the long dry season, when no larval sites are available remain largely unknown, despite being long recognized as a critical target for vector control. Previous work in the West African Sahel has led to the hypothesis that Anopheles coluzzii (formerly M-form Anopheles gambiae) undergoes aestivation (dry-season diapause), while Anopheles gambiae (s.s.) (formerly S-form An. gambiae) and Anopheles arabiensis repopulate each wet season via long-distance migration. The environmental cues used by these species to signal the oncoming dry season have not been determined; however, studies, mostly addressing mosquitoes from temperate zones, have highlighted photoperiod and temperature as the most common token stimuli for diapause initiation. We subjected newly established colonies of An. coluzzii and An. arabiensis from the Sahel to changes in photoperiod to assess and compare their responses in terms of longevity and other relevant phenotypes. RESULTS Our results showed that short photoperiod alone and to a lesser extent, lower nightly temperature (representing the early dry season), significantly increased longevity of An. coluzzii (by ~30%, P < 0.001) but not of An. arabiensis. Further, dry season conditions increased body size but not relative lipid content of An. coluzzii, whereas body size of An. arabiensis decreased under these conditions. CONCLUSIONS These species-specific responses underscore the capacity of tropical anophelines to detect mild changes (~1 h) in photoperiod and thus support the role of photoperiod as a token stimulus for An. coluzzii in induction of aestivation, although, these responses fall short of a complete recapitulation of aestivation under laboratory conditions.
Collapse
Affiliation(s)
- Diana L. Huestis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD USA
| | - Monica L. Artis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD USA
| | | | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD USA
| |
Collapse
|
11
|
Cohen JE, Rodríguez-Planes LI, Gaspe MS, Cecere MC, Cardinal MV, Gürtler RE. Chagas disease vector control and Taylor's law. PLoS Negl Trop Dis 2017; 11:e0006092. [PMID: 29190728 PMCID: PMC5734788 DOI: 10.1371/journal.pntd.0006092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/18/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Large spatial and temporal fluctuations in the population density of living organisms have profound consequences for biodiversity conservation, food production, pest control and disease control, especially vector-borne disease control. Chagas disease vector control based on insecticide spraying could benefit from improved concepts and methods to deal with spatial variations in vector population density. METHODOLOGY/PRINCIPAL FINDINGS We show that Taylor's law (TL) of fluctuation scaling describes accurately the mean and variance over space of relative abundance, by habitat, of four insect vectors of Chagas disease (Triatoma infestans, Triatoma guasayana, Triatoma garciabesi and Triatoma sordida) in 33,908 searches of people's dwellings and associated habitats in 79 field surveys in four districts in the Argentine Chaco region, before and after insecticide spraying. As TL predicts, the logarithm of the sample variance of bug relative abundance closely approximates a linear function of the logarithm of the sample mean of abundance in different habitats. Slopes of TL indicate spatial aggregation or variation in habitat suitability. Predictions of new mathematical models of the effect of vector control measures on TL agree overall with field data before and after community-wide spraying of insecticide. CONCLUSIONS/SIGNIFICANCE A spatial Taylor's law identifies key habitats with high average infestation and spatially highly variable infestation, providing a new instrument for the control and elimination of the vectors of a major human disease.
Collapse
Affiliation(s)
- Joel E. Cohen
- Laboratory of Populations, Rockefeller University, New York, NY, United States of America
- Earth Institute and Department of Statistics, Columbia University, New York, NY, United States of America
- Department of Statistics, University of Chicago, Chicago, IL, United States of America
| | - Lucía I. Rodríguez-Planes
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - María S. Gaspe
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - María C. Cecere
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Marta V. Cardinal
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Ricardo E. Gürtler
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratory of Eco-Epidemiology, Ciudad Universitaria, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
12
|
Beaghton A, Beaghton PJ, Burt A. Vector control with driving Y chromosomes: modelling the evolution of resistance. Malar J 2017; 16:286. [PMID: 28705249 PMCID: PMC5513332 DOI: 10.1186/s12936-017-1932-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The introduction of new malaria control interventions has often led to the evolution of resistance, both of the parasite to new drugs and of the mosquito vector to new insecticides, compromising the efficacy of the interventions. Recent progress in molecular and population biology raises the possibility of new genetic-based interventions, and the potential for resistance to evolve against these should be considered. Here, population modelling is used to determine the main factors affecting the likelihood that resistance will evolve against a synthetic, nuclease-based driving Y chromosome that produces a male-biased sex ratio. METHODS A combination of deterministic differential equation models and stochastic analyses involving branching processes and Gillespie simulations is utilized to assess the probability that resistance evolves against a driving Y that otherwise is strong enough to eliminate the target population. The model considers resistance due to changes at the target site such that they are no longer cleaved by the nuclease, and due to trans-acting autosomal suppressor alleles. RESULTS The probability that resistance evolves increases with the mutation rate and the intrinsic rate of increase of the population, and decreases with the strength of drive and any pleiotropic fitness costs of the resistant allele. In seasonally varying environments, the time of release can also affect the probability of resistance evolving. Trans-acting suppressor alleles are more likely to suffer stochastic loss at low frequencies than target site resistant alleles. CONCLUSIONS As with any other intervention, there is a risk that resistance will evolve to new genetic approaches to vector control, and steps should be taken to minimize this probability. Two design features that should help in this regard are to reduce the rate at which resistant mutations arise, and to target sequences such that if they do arise, they impose a significant fitness cost on the mosquito.
Collapse
Affiliation(s)
- Andrea Beaghton
- Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK
| | | | - Austin Burt
- Life Sciences, Imperial College, Silwood Park, Ascot, Berkshire, SL5 7PY UK
| |
Collapse
|
13
|
Lehmann T, Weetman D, Huestis DL, Yaro AS, Kassogue Y, Diallo M, Donnelly MJ, Dao A. Tracing the origin of the early wet-season Anopheles coluzzii in the Sahel. Evol Appl 2017; 10:704-717. [PMID: 28717390 PMCID: PMC5511357 DOI: 10.1111/eva.12486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
In arid environments, the source of the malaria mosquito populations that re‐establish soon after first rains remains a puzzle and alternative explanations have been proposed. Using genetic data, we evaluated whether the early rainy season (RS) population of Anopheles coluzzii is descended from the preceding late RS generation at the same locality, consistent with dry season (DS) dormancy (aestivation), or from migrants from distant locations. Distinct predictions derived from these two hypotheses were assessed, based on variation in 738 SNPs in eleven A. coluzzii samples, including seven samples spanning 2 years in a Sahelian village. As predicted by the “local origin under aestivation hypothesis,” temporal samples from the late RS and those collected after the first rain of the following RS were clustered together, while larger genetic distances were found among samples spanning the RS. Likewise, multilocus genotype composition of samples from the end of the RS was similar across samples until the following RS, unlike samples that spanned the RS. Consistent with reproductive arrest during the DS, no genetic drift was detected between samples taken over that period, despite encompassing extreme population minima, whereas it was detected between samples spanning the RS. Accordingly, the variance in allele frequency increased with time over the RS, but not over the DS. However, not all the results agreed with aestivation. Large genetic distances separated samples taken a year apart, and during the first year, within‐sample genetic diversity declined and increased back during the late RS, suggesting a bottleneck followed by migration. The decline of genetic diversity followed by a mass distribution of insecticide‐treated nets was accompanied by a reduced mosquito density and a rise in the mutation conferring resistance to pyrethroids, indicating a bottleneck due to insecticidal selection. Overall, our results support aestivation in A. coluzzii during the DS that is accompanied by long‐distance migration in the late RS.
Collapse
Affiliation(s)
- Tovi Lehmann
- Laboratory of Malaria and Vector Research NIAID, NIH Rockville MD USA
| | - David Weetman
- Department of Vector Biology Liverpool School of Tropical Medicine Liverpool UK
| | - Diana L Huestis
- Laboratory of Malaria and Vector Research NIAID, NIH Rockville MD USA
| | - Alpha S Yaro
- Malaria Research and Training Center (MRTC) Faculty of Medicine, Pharmacy and Odonto-stomatology Bamako Mali
| | - Yaya Kassogue
- Malaria Research and Training Center (MRTC) Faculty of Medicine, Pharmacy and Odonto-stomatology Bamako Mali
| | - Moussa Diallo
- Malaria Research and Training Center (MRTC) Faculty of Medicine, Pharmacy and Odonto-stomatology Bamako Mali
| | - Martin J Donnelly
- Department of Vector Biology Liverpool School of Tropical Medicine Liverpool UK
| | - Adama Dao
- Malaria Research and Training Center (MRTC) Faculty of Medicine, Pharmacy and Odonto-stomatology Bamako Mali
| |
Collapse
|
14
|
Faiman R, Solon-Biet S, Sullivan M, Huestis DL, Lehmann T. The contribution of dietary restriction to extended longevity in the malaria vector Anopheles coluzzii. Parasit Vectors 2017; 10:156. [PMID: 28340627 PMCID: PMC5366120 DOI: 10.1186/s13071-017-2088-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Variation in longevity has long been of interest in vector biology because of its implication in disease transmission through vectorial capacity. Recent studies suggest that Anopheles coluzzii adults persist during the ~7 month dry season via aestivation. Recently there has been a growing body of evidence linking dietary restriction and low ratio of dietary protein to carbohydrate with extended longevity of animals. Here, we evaluated the effects of dietary restriction and the protein : carbohydrate ratio on longevity of An. coluzzii. RESULTS In our experiment, we combined dietary regimes with temperature and relative humidity to assess their effects on An. coluzzii longevity, in an attempt to simulate aestivation under laboratory conditions. Our results showed significant effects of both the physical and the dietary variables on longevity, but that diet regimen had a considerably greater effect than those of the physical conditions. Higher temperature and lower humidity reduced longevity. At 22 °C dietary protein (blood) shortened longevity when sugar was not restricted (RH = 85%), but extended longevity when sugar was restricted (RH = 50%). CONCLUSIONS Dietary restriction extended longevity in accord with predictions, but protein : carbohydrate ratio had a negligible effect. We identified conditions that significantly extend longevity in malaria vectors, however, the extent of increase in longevity was insufficient to simulate aestivation.
Collapse
Affiliation(s)
- Roy Faiman
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA.
| | | | - Margery Sullivan
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA
| | - Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA.,Office of Global Health Diplomacy, U.S. Department of State, 1800 G Street NW, Suite 10300, Washington, DC, 20006, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
15
|
Mamai W, Simard F, Couret D, Ouedraogo GA, Renault D, Dabiré KR, Mouline K. Monitoring Dry Season Persistence of Anopheles gambiae s.l. Populations in a Contained Semi-Field System in Southwestern Burkina Faso, West Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:130-138. [PMID: 26576935 DOI: 10.1093/jme/tjv174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To gain insight into the dry season survival strategies of Anopheles gambiae s.l., a new contained semi-field system was developed and used for the first time in Burkina Faso, West Africa. The system consisted of a screened greenhouse within which the local environment was reproduced, including all ecological requirements for mosquito development cycle completion. The system was seeded with the progenies of female Anopheles gambiae, Anopheles coluzzii, and Anopheles arabiensis collected in the vicinity of the greenhouse during the rainy season. After successful establishment in the semi-field system, mosquito populations were monitored over a 1-yr period by regular surveys of larval and adult specimens. We provided evidence for the persistence of adult mosquitoes throughout the dry season, in the absence of any suitable larval development site. During the hot and dry periods, adult insects were observed in artificial shelters (clay pots, building blocks, and dark corners). The mosquito population rapidly built up with the return of the rainy season in the area, when artificial breeding sites were refilled in the enclosure. However, only An. coluzzii and, later, An. arabiensis were detected in the subsequent rainy season, whereas no An. gambiae specimen was found. Our findings suggest that An. coluzzii and An. arabiensis may be able to aestivate throughout the dry season in Southwestern Burkina Faso, whereas An. gambiae might adopt a different dry-season survival strategy, such as long-distance re-colonization from distant locations. These results may have important implications for malaria control through targeted vector control interventions.
Collapse
|
16
|
Hidalgo K, Mouline K, Mamai W, Foucreau N, Dabiré KR, Bouchereau A, Simard F, Renault D. Combining two-dimensional gel electrophoresis and metabolomic data in support of dry-season survival in the two main species of the malarial mosquito Anopheles gambiae. Data Brief 2015; 5:255-68. [PMID: 26543889 PMCID: PMC4589799 DOI: 10.1016/j.dib.2015.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/04/2022] Open
Abstract
In dry savannahs of West-Africa, the malarial mosquitoes of the Anopheles gambiae sensu stricto complex annually survive the harsh desiccating conditions of the dry season. However, the physiological and biochemical mechanisms underlying how these mosquitoes survive such desiccating conditions are still undefined, and controversial. In this context, we provide the first work examining both proteomic and metabolomic changes in the two molecular forms of A. gambiae s.s (M and S forms) experimentally exposed to the rainy and dry season conditions as they experience in the field. Protein abundances of the mosquitoes were measured using a two-dimensional fluorescence difference gel electrophoresis (2D DIGE) coupled with a matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) and tandem mass spectrometry (MS) for protein identification. These assays were conducted by Applied Biomics (http://www.appliedbiomics.com, Applied Biomics, Inc. Hayward, CA, USA), and the mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000294. The metabolomic analysis was conducted using both Acquity UPLC® system (for amino acid identification), and a gas-chromatography-mass spectrometry platform (for sugars identification). Metabolomic fingerprintings were assessed in the University of Rennes 1, UMR CNRS 6553 EcoBio (France). A detailed interpretation of the obtained data can be found in Hidalgo et al. (2014) [1] (Journal of Insect Physiology (2014)).
Collapse
Affiliation(s)
- K Hidalgo
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus de Beaulieu, 263 Avenue du Général Leclerc, CS 74205 35042 Rennes Cedex, France ; Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - K Mouline
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France ; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté 01, BP 545 Bobo-Dioulasso, Burkina Faso
| | - W Mamai
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France ; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté 01, BP 545 Bobo-Dioulasso, Burkina Faso
| | - N Foucreau
- Université Claude Bernard Lyon 1, UMR CNRS 5023 LEHNA, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - K R Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté 01, BP 545 Bobo-Dioulasso, Burkina Faso
| | - A Bouchereau
- Université de Rennes 1, UMR INRA IGEPP, Campus de Beaulieu, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - F Simard
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - D Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus de Beaulieu, 263 Avenue du Général Leclerc, CS 74205 35042 Rennes Cedex, France
| |
Collapse
|
17
|
Hidalgo K, Dujardin JP, Mouline K, Dabiré RK, Renault D, Simard F. Seasonal variation in wing size and shape between geographic populations of the malaria vector, Anopheles coluzzii in Burkina Faso (West Africa). Acta Trop 2015; 143:79-88. [PMID: 25579425 DOI: 10.1016/j.actatropica.2014.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/16/2014] [Accepted: 12/26/2014] [Indexed: 11/24/2022]
Abstract
The mosquito, Anopheles coluzzii is a major vector of human malaria in Africa with widespread distribution throughout the continent. The species hence populates a wide range of environments in contrasted ecological settings often exposed to strong seasonal fluctuations. In the dry savannahs of West Africa, this mosquito population dynamics closely follows the pace of surface water availability: the species pullulates during the rainy season and is able to reproduce throughout the dry season in areas where permanent water bodies are available for breeding. The impact of such environmental fluctuation on mosquito development and the phenotypic quality of emerging adults has however not been addressed in details. Here, we examined and compared phenotypic changes in the duration of pre-imaginal development, body dry mass at emergence and wing size, shape and surface area in young adult females An. coluzzii originated from five distinct geographic locations when they are reared in two contrasting conditions mimicking those experienced by mosquitoes during the rainy season (RS) and at the onset of the dry season (ODS) in Burkina Faso (West Africa). Our results demonstrated strong phenotypic plasticity in all traits, with differences in the magnitude and direction of changes between RS and ODS depending upon the geographic origin, hence the genetic background of the mosquito populations. Highest heterogeneity within population was observed in Bama, where large irrigation schemes allow year-round mosquito breeding. Further studies are needed to explore the adaptive value of such phenotypic plasticity and its relevance for local adaptation in An. coluzzii.
Collapse
|
18
|
Aboud M, Makhawi A, Verardi A, El Raba’a F, Elnaiem DE, Townson H. A genotypically distinct, melanic variant of Anopheles arabiensis in Sudan is associated with arid environments. Malar J 2014; 13:492. [PMID: 25496059 PMCID: PMC4301653 DOI: 10.1186/1475-2875-13-492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 12/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles arabiensis, an important malaria vector in Sudan and other countries in sub-Saharan Africa, exhibits considerable ecological and behavioural plasticity allowing it to survive in the harsh conditions of arid regions. It has been shown that adult populations of An. arabiensis in the semi-desert habitat of western Khartoum State survive through the long dry season in a state of partial aestivation, characterized by limited feeding activity and a degree of arrested ovarian development. Anopheles arabiensis in these sites occurs in two phenotypic forms. One is large and heavily melanized, the other has the typical characteristics of An. arabiensis as found elsewhere in Africa. The extent of genetic variation in these forms was examined in widely separated locations in Sudan, including Kassala, Gedaref and the Northern States between 1998 and 1999 and 2004 and 2006. METHODS Each mosquito specimen was identified using standard morphological keys and a species-specific PCR test. Sequence variation in a 660 bp fragment of the mtDNA ND5 coding region was examined and the extent of genetic divergence between the forms was estimated from FST values using DNASP version 4.9. TCS 1.13 software was used to determine the genealogical relationships and to reflect clustering among mtDNA haplotypes. RESULTS The melanic and normal forms were found in sympatry in Kassala, Gedaref and Khartoum states, with the melanic form commonest in the hottest and most arid areas. Both forms were encountered in the periods of study: 1998-1999, and 2004-2006. Only ten specimens of An. arabiensis were collected from the Northern State in February 2006, all of which were of the normal form.Based on the ND5 analysis, there was a marked subdivision between the normal and melanic forms (FST = 0.59). Furthermore, the melanic form showed more genetic variability, as measured by haplotype diversity (0.95) compared with the normal form (0.57), suggesting larger effective population. CONCLUSIONS This is the first demonstration of correspondent phenotypic and genetic structuring in An. arabiensis. The high level of genetic differentiation shown by the mtDNA ND5 locus suggests that the two forms may represent separate species. It is hypothesized that the melanic form is better adapted to hot and arid environments.
Collapse
Affiliation(s)
- Mariam Aboud
- />Department of Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Abdelrafie Makhawi
- />Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan
| | - Andrea Verardi
- />Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Fathi El Raba’a
- />Department of Zoology, University of Khartoum, P.O. Box 321, Khartoum, Sudan
| | - Dia-Eldin Elnaiem
- />Department of Natural Sciences, University of Maryland Eastern Shore, 1 Backbone Rd, Princess Anne, MD 20851 USA
| | - Harold Townson
- />Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
19
|
Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature 2014; 516:387-90. [PMID: 25470038 PMCID: PMC4306333 DOI: 10.1038/nature13987] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/22/2014] [Indexed: 11/08/2022]
Abstract
During the long Sahelian dry season, mosquito vectors of malaria are expected to perish when no larval sites are available; yet, days after the first rains, mosquitoes reappear in large numbers. How these vectors persist over the 3-6-month long dry season has not been resolved, despite extensive research for over a century. Hypotheses for vector persistence include dry-season diapause (aestivation) and long-distance migration (LDM); both are facets of vector biology that have been highly controversial owing to lack of concrete evidence. Here we show that certain species persist by a form of aestivation, while others engage in LDM. Using time-series analyses, the seasonal cycles of Anopheles coluzzii, Anopheles gambiae sensu stricto (s.s.), and Anopheles arabiensis were estimated, and their effects were found to be significant, stable and highly species-specific. Contrary to all expectations, the most complex dynamics occurred during the dry season, when the density of A. coluzzii fluctuated markedly, peaking when migration would seem highly unlikely, whereas A. gambiae s.s. was undetected. The population growth of A. coluzzii followed the first rains closely, consistent with aestivation, whereas the growth phase of both A. gambiae s.s. and A. arabiensis lagged by two months. Such a delay is incompatible with local persistence, but fits LDM. Surviving the long dry season in situ allows A. coluzzii to predominate and form the primary force of malaria transmission. Our results reveal profound ecological divergence between A. coluzzii and A. gambiae s.s., whose standing as distinct species has been challenged, and suggest that climate is one of the selective pressures that led to their speciation. Incorporating vector dormancy and LDM is key to predicting shifts in the range of malaria due to global climate change, and to the elimination of malaria from Africa.
Collapse
|
20
|
Nie H, Liu C, Zhang Y, Zhou M, Huang X, Peng L, Xia Q. Transcriptome analysis of neonatal larvae after hyperthermia-induced seizures in the contractile silkworm, Bombyx mori. PLoS One 2014; 9:e113214. [PMID: 25423472 PMCID: PMC4244138 DOI: 10.1371/journal.pone.0113214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
The ability to respond quickly and efficiently to transient extreme environmental conditions is an important property of all biota. However, the physiological basis of thermotolerance in different species is still unclear. Here, we found that the cot mutant showed a seizure phenotype including contraction of the body, rolling, vomiting gut juice and a momentary cessation of movement, and the heartbeat rhythm of the dorsal vessel significantly increases after hyperthermia. To comprehensively understand this process at the molecular level, the transcriptomic profile of cot mutant, which is a behavior mutant that exhibits a seizure phenotype, was investigated after hyperthermia (42°C) that was induced for 5 min. By digital gene expression profiling, we determined the gene expression profile of three strains (cot/cot ok/ok, +/+ ok/ok and +/+ +/+) under hyperthermia (42°C) and normal (25°C) conditions. A Venn diagram showed that the most common differentially expressed genes (DEGs, FDR<0.01 and log2 Ratio≥1) were up-regulated and annotated with the heat shock proteins (HSPs) in 3 strains after treatment with hyperthermia, suggesting that HSPs rapidly increased in response to high temperature; 110 unique DEGs, could be identified in the cot mutant after inducing hyperthermia when compared to the control strains. Of these 110 unique DEGs, 98.18% (108 genes) were up-regulated and 1.82% (two genes) were down-regulated in the cot mutant. KEGG pathways analysis of these unique DEGs suggested that the top three KEGG pathways were “Biotin metabolism,” “Fatty acid biosynthesis” and “Purine metabolism,” implying that diverse metabolic processes are active in cot mutant induced-hyperthermia. Unique DEGs of interest were mainly involved in the ubiquitin system, nicotinic acetylcholine receptor genes, cardiac excitation–contraction coupling or the Notch signaling pathway. Insights into hyperthermia-induced alterations in gene expression and related pathways could yield hints for understanding the relationship between behaviors and environmental stimuli (hyperthermia) in insects.
Collapse
Affiliation(s)
- Hongyi Nie
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
- the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yinxia Zhang
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| | - Mengting Zhou
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| | - Xiaofeng Huang
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| | - Li Peng
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
- the Key Sericultural Laboratory of the Ministry of Agriculture, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
21
|
Hidalgo K, Mouline K, Mamai W, Foucreau N, Dabiré KR, Bouchereau A, Simard F, Renault D. Novel insights into the metabolic and biochemical underpinnings assisting dry-season survival in female malaria mosquitoes of the Anopheles gambiae complex. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:102-116. [PMID: 25083809 DOI: 10.1016/j.jinsphys.2014.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/05/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
The mechanisms by which Anopheles gambiae mosquitoes survive the desiccating conditions of the dry season in Africa and are able to readily transmit malaria soon after the rains start remain largely unknown. The desiccation tolerance and resistance of female An. gambiae M and S reared in contrasting environmental conditions reflecting the onset of dry season ("ods") and the rainy season ("rs") was determined by monitoring their survival and body water loss in response to low relative humidity. Furthermore, we investigated the degree to which the physiology of 1-h and 24-h-old females is altered at "ods" by examining and comparing their quantitative metabotypes and proteotypes with conspecifics exposed to "rs" conditions. Results showed that distinct biochemical rearrangements occurred soon after emergence in female mosquitoes that enhance survival and limit water loss under dry conditions. In particular, three amino acids (phenylalanine, tyrosine, and valine) playing a pivotal role in cuticle permeability decreased significantly from the 1-h to 24-h-old females, regardless of the experimental conditions. However, these amino acids were present in higher amounts in 1-h-old female An. gambiae M reared under "ods" whereas no such seasonal difference was reported in S ones. Together with the 1.28- to 2.84-fold increased expression of cuticular proteins 70 and 117, our data suggests that cuticle composition, rigidity and permeability were adjusted at "ods". Increased expression of enzymes involved in glycogenolytic and proteolytic processes were found in both forms at "ods". Moreover, 1-h-old S forms were characterised by elevated amounts of glycogen phosphorylase, isocitrate dehydrogenase, and citrate synthase, suggesting an increase of energetic demand in these females at "ods".
Collapse
Affiliation(s)
- K Hidalgo
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus de Beaulieu, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier 1, Université de Montpellier 2 MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France.
| | - K Mouline
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier 1, Université de Montpellier 2 MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - W Mamai
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier 1, Université de Montpellier 2 MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France; Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - N Foucreau
- Université Claude Bernard Lyon 1, UMR CNRS 5023 LEHNA, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - K R Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), 399 Avenue de la Liberté, 01 BP 545, Bobo-Dioulasso, Burkina Faso
| | - A Bouchereau
- Université de Rennes 1, UMR INRA IGEPP, Campus de Beaulieu, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - F Simard
- Institut de Recherche pour le Développement (IRD), UMR IRD 224-CNRS 5290-Université de Montpellier 1, Université de Montpellier 2 MIVEGEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - D Renault
- Université de Rennes 1, UMR CNRS 6553 Ecobio, Campus de Beaulieu, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| |
Collapse
|
22
|
Ecophysiology of Anopheles gambiae s.l.: persistence in the Sahel. INFECTION GENETICS AND EVOLUTION 2014; 28:648-61. [PMID: 24933461 DOI: 10.1016/j.meegid.2014.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022]
Abstract
The dry-season biology of malaria vectors is poorly understood, especially in arid environments when no surface waters are available for several months, such as during the dry season in the Sahel. Here we reappraise results on the dry-season physiology of members of the Anopheles gambiae s.l. complex in the broad context of dormancy in insects and especially in mosquitoes. We examine evidence on seasonal changes in reproduction, metabolism, stress tolerance, nutrition, molecular regulation, and environmental conditions and determine if the current results are compatible with dry-season diapause (aestivation) as the primary strategy for persistence throughout the dry season in the Sahel. In the process, we point out critical gaps in our knowledge that future studies can fill. We find compelling evidence that members of the An. gambiae s.l. complex undergo a form of aestivation during the Sahelian dry season by shifting energetic resources away from reproduction and towards increased longevity. Considering the differences between winter at temperate latitudes, which entails immobility of the insect and hence reliance on physiological solutions, as opposed to the Sahelian dry season, which restricts reproduction exclusively, we propose that behavioral changes play an important role in complementing physiological changes in this strategy.
Collapse
|