1
|
Limavady A, Marlais M. The extent of kidney involvement in paediatric tuberous sclerosis complex. Pediatr Nephrol 2024; 39:2927-2937. [PMID: 38832977 PMCID: PMC11349837 DOI: 10.1007/s00467-024-06417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Tuberous sclerosis (TSC)-associated kidney disease is a leading cause of mortality in adults with TSC. This study aimed to understand TSC features in children, particularly kidney involvement, to inform clinical care for this specific group. METHODS This retrospective cohort study included all paediatric (< 19 years) TSC cases at a large tertiary paediatric nephrology centre. Relevant data were collected from patients' records, statistical analyses were performed to identify associations between variables, survival probabilities were estimated with Kaplan‒Meier curves, and log-rank tests were conducted to assess survival differences among genetic mutations. RESULTS A total of 182 children with TSC were included. Among the 145 children with available kidney imaging data, 78.6% (114/145) exhibited kidney lesions. Angiomyolipomas (AMLs) were significantly more prevalent in the TSC2 mutation group (p = 0.018). Children with TSC2 mutations generally had poorer lesion-free survival than those with TSC1 mutations, but this difference was only significant for AMLs (p = 0.030). The change in size of largest AMLs increased with age and doubled in children above 9 years; a similar pattern was observed when stratified by genetic mutation. In contrast, kidney cysts exhibited two peaks: one in children under 5 years (2.31 mm/year) and the second in children between 15-19 years (2.82 mm/year). Chronic kidney disease was observed in 12.3% (10/81) of children, and high-risk AMLs above 3 cm were observed in 9% (13/145). CONCLUSIONS While TSC kidney disease emerges later in the disease course than neurological features, our findings emphasise the importance of kidney surveillance during childhood, including routine kidney imaging, kidney function, and blood pressure monitoring.
Collapse
Affiliation(s)
- Andrew Limavady
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Matko Marlais
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Paediatric Nephrology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
2
|
Mekahli D, Müller RU, Marlais M, Wlodkowski T, Haeberle S, de Argumedo ML, Bergmann C, Breysem L, Fladrowski C, Henske EP, Janssens P, Jouret F, Kingswood JC, Lattouf JB, Lilien M, Maleux G, Rozenberg M, Siemer S, Devuyst O, Schaefer F, Kwiatkowski DJ, Rouvière O, Bissler J. Clinical practice recommendations for kidney involvement in tuberous sclerosis complex: a consensus statement by the ERKNet Working Group for Autosomal Dominant Structural Kidney Disorders and the ERA Genes & Kidney Working Group. Nat Rev Nephrol 2024; 20:402-420. [PMID: 38443710 DOI: 10.1038/s41581-024-00818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the presence of proliferative lesions throughout the body. Management of TSC is challenging because patients have a multifaceted systemic illness with prominent neurological and developmental impact as well as potentially severe kidney, heart and lung phenotypes; however, every organ system can be involved. Adequate care for patients with TSC requires a coordinated effort involving a multidisciplinary team of clinicians and support staff. This clinical practice recommendation was developed by nephrologists, urologists, paediatric radiologists, interventional radiologists, geneticists, pathologists, and patient and family group representatives, with a focus on TSC-associated kidney manifestations. Careful monitoring of kidney function and assessment of kidney structural lesions by imaging enable early interventions that can preserve kidney function through targeted approaches. Here, we summarize the current evidence and present recommendations for the multidisciplinary management of kidney involvement in TSC.
Collapse
Affiliation(s)
- Djalila Mekahli
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Department of Paediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matko Marlais
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tanja Wlodkowski
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Stefanie Haeberle
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Marta López de Argumedo
- Basque Office for Health Technology Assessment, (OSTEBA), Basque Government, Vitoria-Gasteiz, Spain
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Luc Breysem
- Department of Radiology, University Hospital of Leuven, Leuven, Belgium
| | - Carla Fladrowski
- Associazione Sclerosi Tuberosa ASP, Rome, Italy
- European Tuberous Sclerosis Complex Association (ETSC), Oestrich-Winkel, Germany
| | - Elizabeth P Henske
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Janssens
- Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium
- Interdisciplinary Group of Applied Genoproteomics, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - John Christopher Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St Georges University of London, London, UK
| | - Jean-Baptiste Lattouf
- Department of Surgery-Urology, CHUM-Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Marc Lilien
- Department of Paediatric Nephrology, Wilhelmina Children´s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Micaela Rozenberg
- European Tuberous Sclerosis Complex Association (ETSC), Oestrich-Winkel, Germany
- Associação de Esclerose Tuberosa em Portugal, Lisbon, Portugal
| | - Stefan Siemer
- Department of Urology and Paediatric Urology, Saarland University, Homburg, Germany
| | - Olivier Devuyst
- Department of Physiology, Mechanisms of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
- Institute for Rare Diseases, Saint-Luc Academic Hospital, UC Louvain, Brussels, Belgium
| | - Franz Schaefer
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - David J Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivier Rouvière
- Department of Radiology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Université Lyon 1, Lyon, France, Faculté de médecine Lyon Est, Lyon, France
| | - John Bissler
- Department of Paediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA.
- Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN, USA.
- Paediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Barone S, Zahedi K, Brooks M, Soleimani M. Carbonic Anhydrase 2 Deletion Delays the Growth of Kidney Cysts Whereas Foxi1 Deletion Completely Abrogates Cystogenesis in TSC. Int J Mol Sci 2024; 25:4772. [PMID: 38731991 PMCID: PMC11084925 DOI: 10.3390/ijms25094772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tuberous sclerosis complex (TSC) presents with renal cysts and benign tumors, which eventually lead to kidney failure. The factors promoting kidney cyst formation in TSC are poorly understood. Inactivation of carbonic anhydrase 2 (Car2) significantly reduced, whereas, deletion of Foxi1 completely abrogated the cyst burden in Tsc1 KO mice. In these studies, we contrasted the ontogeny of cyst burden in Tsc1/Car2 dKO mice vs. Tsc1/Foxi1 dKO mice. Compared to Tsc1 KO, the Tsc1/Car2 dKO mice showed few small cysts at 47 days of age. However, by 110 days, the kidneys showed frequent and large cysts with overwhelming numbers of A-intercalated cells in their linings. The magnitude of cyst burden in Tsc1/Car2 dKO mice correlated with the expression levels of Foxi1 and was proportional to mTORC1 activation. This is in stark contrast to Tsc1/Foxi1 dKO mice, which showed a remarkable absence of kidney cysts at both 47 and 110 days of age. RNA-seq data pointed to profound upregulation of Foxi1 and kidney-collecting duct-specific H+-ATPase subunits in 110-day-old Tsc1/Car2 dKO mice. We conclude that Car2 inactivation temporarily decreases the kidney cyst burden in Tsc1 KO mice but the cysts increase with advancing age, along with enhanced Foxi1 expression.
Collapse
Affiliation(s)
- Sharon Barone
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kamyar Zahedi
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Marybeth Brooks
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Manoocher Soleimani
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Kronick J, Gabril MY, House AA. Microscopic Kidney Disease in Tuberous Sclerosis Complex and Treatment With mTOR Inhibition. Am J Kidney Dis 2023; 82:772-775. [PMID: 37532078 DOI: 10.1053/j.ajkd.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 04/27/2023] [Indexed: 08/04/2023]
Abstract
Declining kidney function in tuberous sclerosis complex (TSC) is often attributed to large lesions, including angiomyolipomas (AMLs) and cysts, that encroach on the normal parenchyma or that require intervention and loss of parenchyma from surgical debulking or embolization. Consequently, research on inhibitors of the mammalian target of rapamycin (mTOR), a protein complex implicated in TSC pathophysiology for its role in promoting cell growth and proliferation, has largely focused on their ability to reduce AML size. Clinical guidelines distilled from this research limit mTOR inhibition as a first-line treatment to patients with large AMLs. However, chronic kidney disease (CKD) occurs in patients without large AMLs or a history of renal intervention. Alternate mechanisms postulated for CKD in TSC may suggest a role for mTOR inhibition in this population. In this report, we present 2 cases of a microscopic variant of TSC kidney disease causing declining kidney function, as well as anecdotal evidence for the use of mTOR inhibition to improve kidney function in the absence of large AMLs. We highlight the importance of annual kidney function assessment in patients with TSC and suggest a low threshold for kidney biopsy in patients with declining glomerular filtration rate without a clear etiology clinically or radiographically.
Collapse
Affiliation(s)
- Jami Kronick
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Manal Y Gabril
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew A House
- Division of Nephrology, Department of Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|