1
|
Bains A, Goksen G, Ali N, Khan MR, Patil S, Chawla P. Exploration of Agrocybe aegerita mushroom polysaccharide-polyphenolic complex: Functional properties, binding efficiency, and biological activities. Int J Biol Macromol 2025; 295:139309. [PMID: 39756726 DOI: 10.1016/j.ijbiomac.2024.139309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
This study investigates the functional and biological activities of a polysaccharide-polyphenolic complex derived from the edible mushroom Agrocybe aegerita. Polyphenols were extracted using a modified solvent evaporation technique, and polysaccharides (AMP) were extracted using enzyme-assisted methods, yielding 8.02 %. The presence of fructose, mannose, glucose, galactose, sucrose, and maltose in varying amounts was confirmed. Different mushroom extracts concentrations (0.025-1.00 %) were tested for interaction with AMP. Samples with 0.2 % and 0.5 % extracts showed significantly higher binding efficiency with polysaccharides. AMP exhibited a particle size of 319 nm, while mushroom polysaccharide-polyphenolic compound complex (AMPP) revealed 136 nm with an irregular shape and smooth surface. Both AMP and AMPP showed three stages of decomposition, with distinct weight loss. Anti-quorum sensing tests against P. aeruginosa PAO1 showed that AMPP significantly decreased pyocyanin, pyoverdine, and swarming activity and exhibited higher biofilm inhibition. These findings suggest that the AMPP has substantial potential for developing sustainable health products, owing to its enhanced bioactivity.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children's Hospital, 7019 Yi Tian 15 Road, Shenzhen 510038, China
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
2
|
Liu C, Chen F, Fan X, Liu B, Chai X, He S, Huang T, Wang X, Liu L, Liu H, Zeng D, Jiang B, Zhang X, Liu M. Combined NMR and MS-based metabonomics and real-time PCR analyses reveal dynamic metabolic changes of Ganoderma lucidum during fruiting body growing. Food Res Int 2024; 180:114056. [PMID: 38395571 DOI: 10.1016/j.foodres.2024.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ganoderma lucidum (G. lucidum) is a rare medicinal fungus with various beneficial properties. One of its main components, ganoderic acids (GAs), are important triterpenoids known for their sedative and analgesic, hepatoprotective, and anti-tumor activities. Understanding the growth and development of the G. lucidum fruiting body is crucial for determining the optimal time to harvest them. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to systematically characterize the metabolites of G. lucidum at seven distinct developmental stages. We also measured the contents of seven kinds of GAs using LC-MS/MS. A total of 49 metabolites were detected in G. lucidum, including amino acids, sugars, organic acids and GAs. During the transition from the bud development period (I) to the budding period (II), we observed a rapid accumulation of glucose, tyrosine, nicotinamide ribotide, inosine and GAs. After the budding period, the contents of most metabolites decreased until the mature period (VII). In addition, the contents of GAs showed an initial raising, followed by a decline during the elongation period, except for GAF, which exhibited a rapid raise during the mature stage. We also detected the expression of several genes involved in GA synthesis, finding that most genes including 16 cytochrome P450 monooxygenase were all down-regulated during periods IV and VII compared to period I. These findings provide valuable insights into the dynamic metabolic profiles of G. lucidum throughout its growth stage, and it is recommended to harvest G. lucidum at period IV.
Collapse
Affiliation(s)
- Caixiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fangfang Chen
- Songjiang Yunjian High School affiliated to Shanghai Foreign Language School, Shanghai 201600, China; Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xinyu Fan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Biao Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xin Chai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sipei He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaohua Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Laixing Liu
- School of Management Wuhan Institute of Technology, Wuhan 430205, China.
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Danyun Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China.
| |
Collapse
|