1
|
Meaza I, Williams AR, Wise SS, Lu H, Pierce JW. Carcinogenic Mechanisms of Hexavalent Chromium: From DNA Breaks to Chromosome Instability and Neoplastic Transformation. Curr Environ Health Rep 2024:10.1007/s40572-024-00460-9. [PMID: 39466546 DOI: 10.1007/s40572-024-00460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW Hexavalent chromium [Cr(VI)] is a well-established human carcinogen, yet the mechanisms by which it leads to carcinogenic outcomes is still unclear. As a driving factor in its carcinogenic mechanism, Cr(VI) causes DNA double strand breaks and break-repair deficiency, leading to the development of chromosome instability. Therefore, the aim of this review is to discuss studies assessing Cr(VI)-induced DNA double strand breaks, chromosome damage and instability, and neoplastic transformation including cell culture, experimental animal, human pathology and epidemiology studies. RECENT FINDINGS Recent findings confirm Cr(VI) induces DNA double strand breaks, chromosome instability and neoplastic transformation in exposed cells, animals and humans, emphasizing these outcomes as key steps in the mechanism of Cr(VI) carcinogenesis. Moreover, recent findings suggest chromosome instability is a key phenotype in Cr(VI)-neoplastically transformed clones and is an inheritable and persistent phenotype in exposed cells, once more suggesting chromosome instability as central in the carcinogenic mechanism. Although limited, some studies have demonstrated DNA damage and epigenetic modulation are also key outcomes in biopsies from chromate workers that developed lung cancer. Additionally, we also summarized new studies showing Cr(VI) causes genotoxic and clastogenic effects in cells from wildlife, such as sea turtles, whales, and alligators. Overall, across the literature, it is clear that Cr(VI) causes neoplastic transformation and lung cancer. Many studies measured Cr(VI)-induced increases in DNA double strand breaks, the most lethal type of breaks clearly showing that Cr(VI) is genotoxic. Unrepaired or inaccurately repaired breaks lead to the development of chromosome instability, which is a common phenotype in Cr(VI) exposed cells, animals, and humans. Indeed, many studies show Cr(VI) induces both structural and numerical chromosome instability. Overall, the large body of literature strongly supports the conclusion that Cr(VI) causes DNA double strand breaks, inhibits DNA repair and chromosome instability, which are key to the development of Cr(VI)-induced cell transformation.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA
| | - John W Pierce
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, , Rm 1422, Louisville, KY, USA.
| |
Collapse
|
2
|
Wang L, Zhang RK, Sang P, Xie YX, Zhang Y, Zhou ZH, Wang KK, Zhou FM, Ji XB, Liu WJ, Qiu JG, Jiang BH. HK2 and LDHA upregulation mediate hexavalent chromium-induced carcinogenesis, cancer development and prognosis through miR-218 inhibition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116500. [PMID: 38795416 DOI: 10.1016/j.ecoenv.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Hexavalent chromium [Cr(VI)] is one of the most common environmental contaminants due to its tremendous industrial applications, but its effects and mechanism remain to be investigated. Our previous studies showed that Cr(VI) exposure caused malignant transformation and tumorigenesis. This study showed that glycolytic proteins HK2 and LDHA levels were statistically significant changed in blood samples of Cr(VI)-exposed workers and in Cr-T cells compared to the control subjects and parental cells. HK2 and LDHA knockdown inhibited cell proliferation and angiogenesis, and higher HK2 and LDHA expression levels are associated with advanced stages and poor prognosis of lung cancer. We found that miR-218 levels were significantly decreased and miR-218 directly targeted HK2 and LDHA for inhibiting their expression. Overexpression of miR-218 inhibited glucose consumption and lactate production in Cr-T cells. Further study found that miR-218 inhibited tumor growth and angiogenesis by decreasing HK2 and LDHA expression in vivo. MiR-218 levels were negatively correlated with HK2 and LDHA expression levels and cancer development in human lung and other cancers. These results demonstrated that miR-218/HK2/LDHA pathway is vital for regulating Cr(VI)-induced carcinogenesis and human cancer development.
Collapse
Affiliation(s)
- Lin Wang
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Rui-Ke Zhang
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Peng Sang
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yun-Xia Xie
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Ye Zhang
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhi-Hao Zhou
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Kun-Kun Wang
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Feng-Mei Zhou
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xiang-Bo Ji
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jian-Ge Qiu
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Bing-Hua Jiang
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Long C, Su Z, Hu G, Zhang Q, Zhang Y, Chen T, Hong S, Su L, Jia G. Potential mechanisms of lung injury and repair after hexavalent chromium [Cr(VI)] aerosol whole-body dynamic exposure. CHEMOSPHERE 2024; 349:140918. [PMID: 38072199 DOI: 10.1016/j.chemosphere.2023.140918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Hexavalent chromium [Cr(VI)], known as "Top Hazardous Substances", poses a significant threat to the respiratory system. Nevertheless, the potential mechanisms of toxicity and the lung's repair ability after injury remain incompletely understood. In this study, Cr(VI) aerosol whole-body dynamic exposure system simulating real exposure scenarios of chromate workers was constructed to evaluate the lung injury and repair effects. Subsequently, miRNA sequencing, mRNA sequencing and metabolomics analyses on lung tissue were performed to explore the underlying mechanisms. Our results revealed that Cr(VI) exposure led to an increase in lactic dehydrogenase activity and a time-dependent decline in lung function. Notably, after 13 w of Cr(VI) exposure, alveolar hemorrhage, thickening of alveolar walls, emphysema-like changes, mitochondrial damage of alveolar epithelial cells and macrophage polarization changes were observed. Remarkably, a two-week repair intervention effectively ameliorated lung function decline and pulmonary injury. Furthermore, significant disruptions in the expressions of miRNAs and mRNAs involved in oxidative phosphorylation, glycerophospholipid metabolism and inflammatory signaling pathways were found. The two-week repair period resulted in the reversal of expression of oxidative phosphorylation related genes, and inhibited the inflammatory signaling pathways. This study concluded that the inhibition of the mitochondrial oxidative phosphorylation pathway and the subsequent enhancement of inflammatory response might be key mechanisms underlying Cr(VI) pulmonary toxicity, and timely cessation of exposure could effectively alleviate the pulmonary injury. These findings shed light on the potential mechanisms of Cr(VI) toxicity and provide crucial insights into the health protection for occupational populations exposed to Cr(VI).
Collapse
Affiliation(s)
- Changmao Long
- Jiangxi Provincial Key Laboratory of Preventive Medicine and School of Public Health, Nanchang University, Nanchang 330006, China; Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Guiping Hu
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, 100083, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China.
| |
Collapse
|
4
|
Wise JTF, Kondo K. Increased Lipogenesis Is Important for Hexavalent Chromium-Transformed Lung Cells and Xenograft Tumor Growth. Int J Mol Sci 2023; 24:17060. [PMID: 38069382 PMCID: PMC10707372 DOI: 10.3390/ijms242317060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Hexavalent chromium, Cr(VI), is a known carcinogen and environmental health concern. It has been established that reactive oxygen species, genomic instability, and DNA damage repair deficiency are important contributors to the Cr(VI)-induced carcinogenesis mechanism. However, some hallmarks of cancer remain under-researched regarding the mechanism behind Cr(VI)-induced carcinogenesis. Increased lipogenesis is important to carcinogenesis and tumorigenesis in multiple types of cancers, yet the role increased lipogenesis has in Cr(VI) carcinogenesis is unclear. We report here that Cr(VI)-induced transformation of three human lung cell lines (BEAS-2B, BEP2D, and WTHBF-6) resulted in increased lipogenesis (palmitic acid levels), and Cr(VI)-transformed cells had an increased expression of key lipogenesis proteins (ATP citrate lyase [ACLY], acetyl-CoA carboxylase [ACC1], and fatty acid synthase [FASN]). We also determined that the Cr(VI)-transformed cells did not exhibit an increase in fatty acid oxidation or lipid droplets compared to their passage-matched control cells. Additionally, we observed increases in ACLY, ACC1, and FASN in lung tumor tissue compared with normal-adjacent lung tissue (in chromate workers that died of chromate-induced tumors). Next, using a known FASN inhibitor (C75), we treated Cr(VI)-transformed BEAS-2B with this inhibitor and measured cell growth, FASN protein expression, and growth in soft agar. We observed that FASN inhibition results in a decreased protein expression, decreased cell growth, and the inhibition of colony growth in soft agar. Next, using shRNA to knock down the FASN protein in Cr(VI)-transformed BEAS-2B cells, we saw a decrease in FASN protein expression and a loss of the xenograft tumor development of Cr(VI)-transformed BEAS-2B cells. These results demonstrate that FASN is important for Cr(VI)-transformed cell growth and cancer properties. In conclusion, these data show that Cr(VI)-transformation in vitro caused an increase in lipogenesis, and that this increase is vital for Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- James T. F. Wise
- Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, 269 Knapp Hall, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, Louisiana State University Agriculture Center, Baton Rouge, LA 70803, USA
- Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| |
Collapse
|
5
|
Bao S, Zhang C, Luo S, Jiang L, Li Q, Kong Y, Cao J. HMGA2 mediates Cr (VI)-induced metabolic reprogramming through binding to mitochondrial D-Loop region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114085. [PMID: 36116352 DOI: 10.1016/j.ecoenv.2022.114085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr (VI)] exists environmentally and occupationally. It has been shown to pose a carcinogenic hazard in certain occupations. This study was to investigate the role of high mobility group A2 (HMGA2) in Cr (VI)-induced metabolism reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis in A549 and HELF cells. First, knockdown of HMGA2 by siHMGA2 significantly attenuated Cr (VI)-reduced expression of OXPHOS-related proteins (COX IV and ND1) and mitochondrial mass, indicating that HMGA2 was involved in Cr (VI)-reduced OXPHOS. Overexpression of HMGA2 by transfection of HMGA2-DNA plasmids reduced the expression of COX IV, ND1 and mitochondrial mass, suggesting the negative role of HMGA2 in OXPHOS. Secondly, both CCCP, the inhibitor of mitochondrial function, and the ER stress inhibitor, 4-phenylbutyric acid (4-PBA), decreased the level of HMGA2, indicating that the interaction of mitochondrial dysfunction and ER stress resulted in Cr (VI)-induced HMGA2 expression. Further study demonstrated that ER stress/HMGA2 axis mediated the metabolism rewiring from OXPHOS to aerobic glycolysis. Notably, Cr (VI) induced the accumulation of HMGA2 proteins in mitochondria and ChIP assay demonstrated that HMGA2 proteins could bind to D-loop region of mitochondrial DNA (mtDNA), which provided the proof for HMGA2-modulating OXPHOS. Taken together, our results suggested that the interaction of mitochondria and ER stress-enhanced HMGA2 played an important role in Cr (VI)-induced metabolic reprogramming from OXPHOS to glycolysis by binding directly to D-loop region of mtDNA. This work informs on the potential mode of action for Cr (VI)-induced tumors and builds on growing evidence regarding the contribution of cellular metabolic disruption contributing to carcinogenicity.
Collapse
Affiliation(s)
- Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, China
| | - Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
6
|
Carcinogenic Risk of Pb, Cd, Ni, and Cr and Critical Ecological Risk of Cd and Cu in Soil and Groundwater around the Municipal Solid Waste Open Dump in Central Thailand. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:3062215. [PMID: 35265140 PMCID: PMC8901317 DOI: 10.1155/2022/3062215] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/10/2022] [Indexed: 01/09/2023]
Abstract
Several consequences of health effects from municipal solid waste caused by carcinogenic and noncarcinogenic metals have been recognized. The water quality index (
) in the groundwater around this landfill is 2945.58, which is unacceptable for consumption. The contaminated groundwater mainly appears within a 1 km radius around the landfill. The metal pollution levels in the soil in descending order were Cu > Cd > Zn=Cr > Pb > Ni. The pollution degree (ER) of Cd was 2898.88, and the potential ecological risk index (RI) was 2945.58, indicating that the risk level was very high. Surprisingly, the hazard index (HI) of Pb (2.05) and Fe (1.59) in children was higher than 1. This indicated that the chronic risk and cancer risk caused by Pb and Fe for children were at a medium level. Carcinogenic risk by oral (CR oral) consumption of Ni, Cd, and Cr in children was 1.4E − 04, 2.5E − 04, and 1.8E − 04, respectively, while the lifetime carcinogenic risk (LCR) of Ni, Cd, and Cr in children was 1.5E − 04, 2.8E − 04, and 2.0E − 04, respectively. In adults, CR oral of Ni and Cr were 1.6E − 03 and 3.0E − 04, respectively, while LCR of Ni and Cr were 1.6E − 03 and 3.4E − 04, respectively, which exceeded the carcinogenic risks limits. Our study indicated a lifetime carcinogenic risk to humans. Environmental surveillance should focus on reducing health risks such as continuous monitoring of the groundwater, soil, and leachate treatment process.
Collapse
|
7
|
Wise JP, Young JL, Cai J, Cai L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. ENVIRONMENT INTERNATIONAL 2022; 158:106877. [PMID: 34547640 PMCID: PMC8694118 DOI: 10.1016/j.envint.2021.106877] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 05/21/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a global environmental pollutant that increases risk for several types of cancers and is increasingly being recognized as a neurotoxicant. Traditionally, the brain has been viewed as a largely post-mitotic organ due to its specialized composition of neurons, and consequently, clastogenic effects were not considered in neurotoxicology. Today, we understand the brain is composed of at least eight distinct cell types - most of which continue mitotic activity throughout lifespan. We have learned these dividing cells play essential roles in brain and body health. This review focuses on Cr(VI), a potent clastogen and known human carcinogen, as a potentially neurotoxic agent targeting mitotic cells of the brain. Despite its well-established role as a human carcinogen, Cr(VI) neurotoxicity studies have failed to find a significant link to brain cancers. In the few studies that did find a link, Cr(VI) was identified as a risk for gliomas. Instead, in the human brain, Cr(VI) appears to have more subtle deleterious effects that can impair childhood learning and attention development, olfactory function, social memory, and may contribute to motor neuron diseases. Studies of Cr(VI) neurotoxicity with animal and cell culture models have demonstrated elevated markers of oxidative damage and redox stress, with widespread neurodegeneration. One study showed mice exposed to Cr(VI)-laden tannery effluent exhibited longer periods of aggressive behavior toward an "intruder" mouse and took longer to recognize mice previously encountered, recapitulating the social memory deficits observed in humans. Here we conducted a critical review of the available literature on Cr(VI) neurotoxicity and synthesize the collective observations to thoroughly evaluate Cr(VI) neurotoxicity - much remains to be understood and recognized.
Collapse
Affiliation(s)
- John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jun Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Pediatric Research Institute, The Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
8
|
Proctor DM, Bhat V, Suh M, Reichert H, Jiang X, Thompson CM. Inhalation cancer risk assessment for environmental exposure to hexavalent chromium: Comparison of margin-of-exposure and linear extrapolation approaches. Regul Toxicol Pharmacol 2021; 124:104969. [PMID: 34089813 DOI: 10.1016/j.yrtph.2021.104969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Hexavalent chromium [Cr(VI)] exists in the ambient air at low concentrations (average upperbound ~0.1 ng/m3) yet airborne concentrations typically exceed EPA's Regional Screening Level for residential exposure (0.012 ng/m3) and other similar benchmarks, which assume a mutagenic mode of action (MOA) and use low-dose linear risk assessment models. We reviewed Cr(VI) inhalation unit risk estimates developed by researchers and regulatory agencies for environmental and occupational exposures and the underlying epidemiologic data, updated a previously published MOA analysis, and conducted dose-response modeling of rodent carcinogenicity data to evaluate the need for alternative exposure-response data and risk assessment approaches. Current research supports the role of non-mutagenic key events in the MOA, with growing evidence for epigenetic modifiers. Animal data show a weak carcinogenic response, even at cytotoxic exposures, and highlight the uncertainties associated with the current epidemiological data used in risk assessment. Points of departure from occupational and animal studies were used to determine margins of exposure (MOEs). MOEs range from 1.5 E+3 to 3.3 E+6 with a median of 5 E+5, indicating that current environmental exposures to Cr(VI) in ambient air should be considered of low concern. In this comprehensive review, the divergent results from default linear and MOE assessments support the need for more relevant and robust epidemiologic data, additional mechanistic studies, and refined risk assessment strategies.
Collapse
Affiliation(s)
- Deborah M Proctor
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA.
| | | | - Mina Suh
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA
| | | | | | | |
Collapse
|
9
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
10
|
Ljunggren SA, Ward LJ, Graff P, Persson A, Lind ML, Karlsson H. Metal additive manufacturing and possible clinical markers for the monitoring of exposure-related health effects. PLoS One 2021; 16:e0248601. [PMID: 33735215 PMCID: PMC7971853 DOI: 10.1371/journal.pone.0248601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022] Open
Abstract
Additive manufacturing (AM) includes a series of techniques used to create products, in several different materials, such as metal, polymer or ceramics, with digital models. The main advantage of AM is that it allows the creation of complex structures, but AM promises several additional advantages including the possibility to manufacture on demand or replacing smaller worn parts by directly building on an existing piece. Therefore, the interest for and establishment of AM is rapidly expanding, which is positive, however it is important to be aware that new techniques may also result in new challenges regarding health and safety issues. Metals in blood and possible clinical effects due to metal exposure were investigated in AM operators at one of the first serial producing AM facilities in the world during two consecutive years with implementation of preventive measures in-between. As comparison, welders and office workers as control group were investigated. Health investigations comprised of surveys, lung function tests, antioxidant activity and vascular inflammation as well as renal- and hepatic function analysis. AM operators had significantly reduced nickel levels in blood (10.8 vs 6.2 nmol/L) as well as improved lung function (80 vs 92% of predicted) from year 1 to year 2. This is in line with previously published results displaying reduced exposure. Blood cobalt and nickel levels correlated with previously reported urinary levels, while blood chromium did not. Multivariate modelling showed that blood cobalt, antioxidant/inflammatory marker serum amyloid A1/serum paraoxonase/arylesterase 1 activity and the hepatic markers aspartate transaminase, alanine transaminase, and alkaline phosphatase were higher in AM operators compared to controls. The study show that the selected clinical analyses could function as a complement to metal analyses in biological fluids when investigating exposure-related health effects in AM operators. However, validation in larger cohorts is necessary before more definite conclusions could be drawn.
Collapse
Affiliation(s)
- Stefan A. Ljunggren
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
- * E-mail:
| | - Liam J. Ward
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pål Graff
- National Institute of Occupational Health, Oslo, Norway
| | | | | | - Helen Karlsson
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
| |
Collapse
|