1
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Kurihara G, Ujihara Y, Nakamura M, Sugita S. Delamination Strength and Elastin Interlaminar Fibers Decrease with the Development of Aortic Dissection in Model Rats. Bioengineering (Basel) 2023; 10:1292. [PMID: 38002416 PMCID: PMC10669036 DOI: 10.3390/bioengineering10111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Aortic dissection (AD) is a life-threatening tear of the vascular tissue with creation of a false lumen. To explore the mechanism underlying this tissue tear, this study investigated the delamination strength of AD model rats and the histological composition of the aorta at various stages of AD development. SD rats were administrated beta-amino propionitrile for 0 (Control), 3 (Pre-dissection), and 6 (Dissection) weeks. The thoracic aorta was harvested at 10-11 weeks of age. The Dissection group exclusively showed AD at the ascending aorta. The delamination strength, a force that separates the aorta in the radial direction, of the descending aorta decreased significantly in the order of the Control, Pre-dissection, and Dissection groups. A quantitative histological analysis of the aortic tissue demonstrated that, compared with the Control group, the area fraction of collagen was significantly higher in the Pre-dissection and Dissection groups and that of elastin was significantly lower in the Dissection group. The area fraction of the elastin fibers between the elastic laminas (interlaminar fibers) was significantly decreased in the order of the Control, Pre-dissection, and Dissection groups. Histological changes of the aortic tissue, perhaps a reduction in interlaminar fibers mainly aligned in the radial direction, decreased delamination strength, thereby causing AD.
Collapse
Affiliation(s)
- Genki Kurihara
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Shukei Sugita
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Oberhuber A, Raddatz A, Betge S, Ploenes C, Ito W, Janosi RA, Ott C, Langheim E, Czerny M, Puls R, Maßmann A, Zeyer K, Schelzig H. Interdisciplinary German clinical practice guidelines on the management of type B aortic dissection. GEFASSCHIRURGIE 2023; 28:1-28. [PMCID: PMC10123596 DOI: 10.1007/s00772-023-00995-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 08/13/2023]
Affiliation(s)
- A. Oberhuber
- German Society of Vascular Surgery and Vascular Medicine (DGG); Department of Vascular and Endovascular Surgery, University Hospital of Münster, Münster, Germany
| | - A. Raddatz
- German Society of Anaesthesiology and Intensive Care Medicine (DGAI); Department of Anaesthesiology, Critical Care and Pain Medicine, Saarland University Hospital, Homburg, Germany
| | - S. Betge
- German Society of Angiology and Vascular Medicine (DGG); Department of Internal Medicine and Angiology, Helios Hospital Salzgitter, Salzgitter, Germany
| | - C. Ploenes
- German Society of Geriatrics (DGG); Department of Angiology, Schön Klinik Düsseldorf, Düsseldorf, Germany
| | - W. Ito
- German Society of Internal Medicine (GSIM) (DGIM); cardiovascular center Oberallgäu Kempten, Hospital Kempten, Kempten, Germany
| | - R. A. Janosi
- German Cardiac Society (DGK); Department of Cardiology and Angiology, University Hospital Essen, Essen, Germany
| | - C. Ott
- German Society of Nephrology (DGfN); Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Hypertension, Paracelsus Medical University, Nürnberg, Germany
| | - E. Langheim
- German Society of prevention and rehabilitation of cardiovascular diseaese (DGPR), Reha Center Seehof, Teltow, Germany
| | - M. Czerny
- German Society of Thoracic and Cardiovascular Surgery (DGTHG), Department University Heart Center Freiburg – Bad Krozingen, Freiburg, Germany
- Albert Ludwigs University Freiburg, Freiburg, Germany
| | - R. Puls
- German Radiologic Society (DRG); Institute of Diagnostic an Interventional Radiology and Neuroradiology, Helios Klinikum Erfurt, Erfurt, Germany
| | - A. Maßmann
- German Society of Interventional Radiology (DeGIR); Department of Diagnostic an Interventional Radiology, Saarland University Hospital, Homburg, Germany
| | - K. Zeyer
- Marfanhilfe e. V., Weiden, Germany
| | - H. Schelzig
- German Society of Surgery (DGCH); Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
The Role of the Stromal Extracellular Matrix in the Development of Pterygium Pathology: An Update. J Clin Med 2021; 10:jcm10245930. [PMID: 34945227 PMCID: PMC8707182 DOI: 10.3390/jcm10245930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Pterygium is a benign fibrovascular lesion of the bulbar conjunctiva with frequent involvement of the corneal limbus. Its pathogenesis has been mainly attributed to sun exposure to ultraviolet-B radiation. Obtained evidence has shown that it is a complex and multifactorial process which involves multiple mechanisms such as oxidative stress, dysregulation of cell cycle checkpoints, induction of inflammatory mediators and growth factors, angiogenic stimulation, extracellular matrix (ECM) disorders, and, most likely, viruses and hereditary changes. In this review, we aim to collect all authors’ experiences and our own, with respect to the study of fibroelastic ECM of pterygium. Collagen and elastin are intrinsic indicators of physiological and pathological states. Here, we focus on an in-depth analysis of collagen (types I and III), as well as the main constituents of elastic fibers (tropoelastin (TE), fibrillins (FBNs), and fibulins (FBLNs)) and the enzymes (lysyl oxidases (LOXs)) that carry out their assembly or crosslinking. All the studies established that changes in the fibroelastic ECM occur in pterygium, based on the following facts: An increase in the synthesis and deposition of an immature form of collagen type III, which showed the process of tissue remodeling. An increase in protein levels in most of the constituents necessary for the development of elastic fibers, except FBLN4, whose biological roles are critical in the binding of the enzyme LOX, as well as FBN1 for the development of stable elastin. There was gene overexpression of TE, FBN1, FBLN5, and LOXL1, while the expression of LOX and FBLN2 and -4 remained stable. In conclusion, collagen and elastin, as well as several constituents involved in elastic fiber assembly are overexpressed in human pterygium, thus, supporting the hypothesis that there is dysregulation in the synthesis and crosslinking of the fibroelastic component, constituting an important pathogenetic mechanism for the development of the disease.
Collapse
|
5
|
Gaar J, Naffa R, Brimble M. Enzymatic and non-enzymatic crosslinks found in collagen and elastin and their chemical synthesis. Org Chem Front 2020. [DOI: 10.1039/d0qo00624f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review summarized the enzymatic and non-enzymatic crosslinks found in collagen and elastin and their organic synthesis.
Collapse
Affiliation(s)
- Jakob Gaar
- School of Chemical Sciences
- The University of Auckland
- Auckland Central 1010
- New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery
| | - Rafea Naffa
- New Zealand Leather and Shoe Research Association
- Palmerston North
- New Zealand
| | - Margaret Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland Central 1010
- New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
6
|
Farrell K, Simmers P, Mahajan G, Boytard L, Camardo A, Joshi J, Ramamurthi A, Pinet F, Kothapalli CR. Alterations in phenotype and gene expression of adult human aneurysmal smooth muscle cells by exogenous nitric oxide. Exp Cell Res 2019; 384:111589. [PMID: 31473210 DOI: 10.1016/j.yexcr.2019.111589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Abdominal aortic aneurysms (AAA) are characterized by matrix remodeling, elastin degradation, absence of nitric oxide (NO) signaling, and inflammation, influencing smooth muscle cell (SMC) phenotype and gene expression. Little is known about the biomolecular release and intrinsic biomechanics of human AAA-SMCs. NO delivery could be an attractive therapeutic strategy to restore lost functionality of AAA-SMCs by inhibiting inflammation and cell stiffening. We aim to establish the differences in phenotype and gene expression of adult human AAA-SMCs from healthy SMCs. Based on our previous study which showed benefits of optimal NO dosage delivered via S-Nitrosoglutathione (GSNO) to healthy aortic SMCs, we tested whether such benefits would occur in AAA-SMCs. The mRNA expression of three genes involved in matrix degradation (ACE, ADAMTS5 and ADAMTS8) was significantly downregulated in AAA-SMCs. Total protein and glycosaminoglycans synthesis were higher in AAA-SMCs than healthy-SMCs (p < 0.05 for AAA-vs. healthy- SMC cultures) and was enhanced by GSNO and 3D cultures (p < 0.05 for 3D vs. 2D cultures; p < 0.05 for GSNO vs. non-GSNO cases). Elastin gene expression, synthesis and deposition, desmosine crosslinker levels, and lysyl oxidase (LOX) functional activity were lower, while cell proliferation, iNOS, LOX and fibrillin-1 gene expressions were higher in AAA-SMCs (p < 0.05 between respective cases), with differential benefits from GSNO exposure. GSNO and 3D cultures reduced MMPs -2, -9, and increased TIMP-1 release in AAA-SMC cultures (p < 0.05 for GSNO vs. non-GSNO cultures). AAA-SMCs were inherently stiffer and had smoother surface than healthy SMCs (p < 0.01 in both cases), but GSNO reduced stiffness (~25%; p < 0.01) and increased roughness (p < 0.05) of both cell types. In conclusion, exogenously-delivered NO offers an attractive strategy by providing therapeutic benefits to AAA-SMCs.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Phillip Simmers
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Ludovic Boytard
- University of Lille, Inserm U1167, Institut Pasteur de Lille, France
| | - Andrew Camardo
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44141, USA
| | - Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44141, USA
| | - Florence Pinet
- University of Lille, Inserm U1167, Institut Pasteur de Lille, France
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA.
| |
Collapse
|
7
|
Mimler T, Nebert C, Eichmair E, Winter B, Aschacher T, Stelzmueller ME, Andreas M, Ehrlich M, Laufer G, Messner B. Extracellular matrix in ascending aortic aneurysms and dissections - What we learn from decellularization and scanning electron microscopy. PLoS One 2019; 14:e0213794. [PMID: 30883576 PMCID: PMC6422325 DOI: 10.1371/journal.pone.0213794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/28/2019] [Indexed: 01/24/2023] Open
Abstract
Pathological impairment of elastic fiber and other extracellular matrix (ECM) components are described for the aortic media of ascending thoracic aortic aneurysms (aTAA) but the exact pathological impairment of the structure and its degree still needs further investigations. To evaluate the quantity and quality of elastic fiber sheets and other ECM structures (e.g. collagen), cells were removed from different types of aneurysmal tissues (tricuspid aortic valve [TAV] associated-, bicuspid aortic valve [BAV] associated-aneurysmal tissue and acute aortic dissections [AAD]) using 2.5% sodium hydroxide (NaOH) and compared to decellularized control aortic tissue. Likewise, native tissue has been analysed. To evaluate the 2D- (histological evaluation, fluorescence- and auto-fluorescence based staining methods) and the 3D structure (scanning electron microscopic [SEM] examination) of the medial layer we first analysed for a successful decellularization. After proving for successful decellularization, we quantified the amount of elastic fiber sheets, elastin and other ECM components including collagen. Aside from clearly visible focal elastic fiber loss in TAV-aTAA tissue, decellularization resulted in reduction of elastic fiber auto-fluorescence properties, which is perhaps an indication from a disease-related qualitative impairment of elastic fibers, visible only after contact with the alkaline solution. Likewise, the loss of collagen amount in BAV-aTAA and TAV-aTAA tissue (compared to non-decellularized tissue) after contact with NaOH indicates a prior disease-associated impairment of collagen. Although the amount of ECM was not changed in type A dissection tissue, detailed electron microscopic evaluation revealed changes in ECM quality, which worsened after contact with alkaline solution but were not visible after histological analyses. Apart from the improved observation of the samples using electron microscopy, contact of aneurysmal and dissected tissue with the alkaline decellularization solution revealed potential disease related changes in ECM quality which can partly be connected to already published data, but have to be proven by further studies.
Collapse
Affiliation(s)
- Teresa Mimler
- Department of Surgery, Cardiac Surgery Research Laboratory, Medical University of Vienna, Vienna, Austria
| | - Clemens Nebert
- Department of Surgery, Cardiac Surgery Research Laboratory, Medical University of Vienna, Vienna, Austria
| | - Eva Eichmair
- Department of Surgery, Cardiac Surgery Research Laboratory, Medical University of Vienna, Vienna, Austria
| | - Birgitta Winter
- Department of Surgery, Cardiac Surgery Research Laboratory, Medical University of Vienna, Vienna, Austria
| | - Thomas Aschacher
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Martin Andreas
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek Ehrlich
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Guenther Laufer
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Messner
- Department of Surgery, Cardiac Surgery Research Laboratory, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
8
|
Cheng J, Zhou X, Jiang X, Sun T. Deletion of ACTA2 in mice promotes angiotensin II induced pathogenesis of thoracic aortic aneurysms and dissections. J Thorac Dis 2018; 10:4733-4740. [PMID: 30233845 DOI: 10.21037/jtd.2018.07.75] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Mutation of the ACTA2 (α-2 smooth muscle actin) gene accounts for ~15% of all cases of familial thoracic aortic aneurysms and dissections. Surprisingly, no severe vascular phenotypes were observed at baseline in mice carrying this gene mutation. Our aim was to explore whether mutation of ACTA2 promotes the development of aneurysms or dissections in the presence of angiotensin II (AngII) and to determine whether this mutation has an impact on the phenotypic modulation and apoptosis mediated by AngII in vascular smooth muscle cells (VSMCs). Methods Mice were divided into three groups: AngII stimulated-wild-type (WT) (AngII) and ACTA2-/- mice (ACTA2) group, in which AngII were administered subcutaneously into 8-week-old C57 mice and ACTA2-/- mice, respectively, for 4 weeks using osmotic minipumps, and the control group (WT), in which the WT mice were infused with normal saline (NS). Ultrasound was performed to quantify lumen diameters. RT-qPCR and Western blot were used to assess gene expression, and histobiochemistry was used to evaluate the pathological changes in the thoracoabdominal aortas. TUNEL was used to assess apoptosis in VSMCs. Results Compared with the AngII- group, the ACTA2 mice exhibited more severity of dilated lumena of the aortas, a significantly increased expression of osteopontin (OPN), an elevated ratio of Bax/Bcl-2, increased apoptosis, and a decreased expression of α-smooth muscle actin (α-SMA). Conclusions Knockout of ACTA2 promoted AngII induced progressive lumen dilation of the aortas, apoptosis, and the phenotypic modulation in VSMCs in mice.
Collapse
Affiliation(s)
- Jiancheng Cheng
- Department of Cardiothoracic Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Wuhan Asia Heart Hospital, Wuhan 430015, China
| | - Xionggang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tucheng Sun
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
9
|
Rathod P, Kaur M, Ho HP, Louis ME, Dhital B, Durlik P, Boutis GS, Mark KJ, Lee JI, Chang EJ. Quantification of desmosine and isodesmosine using MALDI-ion trap tandem mass spectrometry. Anal Bioanal Chem 2018; 410:6881-6889. [PMID: 30062515 DOI: 10.1007/s00216-018-1288-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/07/2018] [Accepted: 07/20/2018] [Indexed: 01/17/2023]
Abstract
Desmosine (Des) and isodesmosine (Isodes), cross-linking amino acids in the biomolecule elastin, may be used as biomarkers for various pathological conditions associated with elastin degradation. The current study presents a novel approach to quantify Des and Isodes using matrix-assisted laser desorption ionization (MALDI)-tandem mass spectrometry (MS2) in a linear ion trap coupled to a vacuum MALDI source. MALDI-MS2 analyses of Des and Isodes are performed using stable-isotope-labeled desmosine d4 (labeled-Des) as an internal standard in different biological fluids, such as urine and serum. The method demonstrated linearity over two orders of magnitude with a detection limit of 0.02 ng/μL in both urine and serum without enrichment prior to mass spectrometry, and relative standard deviation of < 5%. The method is used to evaluate the time-dependent degradation of Des upon UV irradiation (254 nm) and found to be consistent with quantification by 1H NMR. This is the first characterized MALDI-MS2 method for quantification of Des and Isodes and illustrates the potential of MALDI-ion trap MS2 for effective quantification of biomolecules. The reported method represents improvement over current liquid chromatography-based methods with respect to analysis time and solvent consumption, while maintaining similar analytical characteristics. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Pratikkumar Rathod
- Department of Chemistry, York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11451-0001, USA.,Chemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Manjeet Kaur
- Department of Chemistry, York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11451-0001, USA
| | - Hsin-Pin Ho
- Department of Chemistry, York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11451-0001, USA
| | - Marissa E Louis
- Department of Chemistry, York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11451-0001, USA
| | - Basant Dhital
- Department of Physics, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Philip Durlik
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, NY, 11210, USA
| | - Gregory S Boutis
- Department of Physics, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA.,Department of Physics, Brooklyn College of The City University of New York, Brooklyn, NY, 11210, USA
| | - Kevin J Mark
- Department of Natural Sciences, LaGuardia Community College, The City University of New York, 31-10 Thomson Ave, Long Island City, NY, 11101, USA
| | - Jong I Lee
- Department of Chemistry, York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11451-0001, USA
| | - Emmanuel J Chang
- Department of Chemistry, York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY, 11451-0001, USA. .,Chemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA. .,Biochemistry Doctoral Program, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, 10016, USA.
| |
Collapse
|
10
|
Ogawa K, Hayashi T, Lin YY, Usuki T. Synthesis of desmosine-containing cyclic peptide for the possible elucidation of elastin crosslinking structure. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Murakami Y, Suzuki R, Yanuma H, He J, Ma S, Turino GM, Lin YY, Usuki T. Synthesis and LC-MS/MS analysis of desmosine-CH2, a potential internal standard for the degraded elastin biomarker desmosine. Org Biomol Chem 2015; 12:9887-94. [PMID: 25355397 DOI: 10.1039/c4ob01438c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Desmosine-CH2, an analog of the elastic tissue degradation biomarker desmosine, can be regarded as a potential internal standard for precise quantification of desmosines by LC-MS/MS. In this study, the chemical synthesis of desmosine-CH2 was completed in 22% overall yield in five steps. The LC-MS/MS analysis of desmosine-CH2 was also achieved.
Collapse
Affiliation(s)
- Yuko Murakami
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Koseki Y, Sugimura T, Ogawa K, Suzuki R, Yamada H, Suzuki N, Masuyama Y, Lin YY, Usuki T. Total Synthesis of Isodesmosine by Stepwise, Regioselective Negishi and Sonogashira Cross-Coupling Reactions. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Tanigawa T, Komatsu A, Usuki T. [(13)C3,(15)N1]-labeled isodesmosine: A potential internal standard for LC-MS/MS analysis of desmosines in elastin degradation. Bioorg Med Chem Lett 2015; 25:2046-9. [PMID: 25890800 DOI: 10.1016/j.bmcl.2015.03.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022]
Abstract
Isodesmosine and desmosine are crosslinking amino acids that are present only in elastin. They are useful biomarkers for the degradation of elastin, which occurs during the progression of chronic obstructive pulmonary disease (COPD) and related diseases. This Letter describes the synthesis of [(13)C3,(15)N1]-labeled isodesmosine, using Chichibabin pyridine synthesis as a key reaction. The labeled isodesmosine is a potential internal standard for the quantitative LC-MS/MS analysis of desmosines in elastin degradation.
Collapse
Affiliation(s)
- Takahiro Tanigawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Komatsu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
14
|
Syntheses of natural and deuterated desmosines via palladium-catalyzed cross-coupling reactions. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wu D, Shen YH, Russell L, Coselli JS, LeMaire SA. Molecular mechanisms of thoracic aortic dissection. J Surg Res 2013; 184:907-24. [PMID: 23856125 PMCID: PMC3788606 DOI: 10.1016/j.jss.2013.06.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 12/22/2022]
Abstract
Thoracic aortic dissection (TAD) is a highly lethal vascular disease. In many patients with TAD, the aorta progressively dilates and ultimately ruptures. Dissection formation, progression, and rupture cannot be reliably prevented pharmacologically because the molecular mechanisms of aortic wall degeneration are poorly understood. The key histopathologic feature of TAD is medial degeneration, a process characterized by smooth muscle cell depletion and extracellular matrix degradation. These structural changes have a profound impact on the functional properties of the aortic wall and can result from excessive protease-mediated destruction of the extracellular matrix, altered signaling pathways, and altered gene expression. Review of the literature reveals differences in the processes that lead to ascending versus descending and sporadic versus hereditary TAD. These differences add to the complexity of this disease. Although tremendous progress has been made in diagnosing and treating TAD, a better understanding of the molecular, cellular, and genetic mechanisms that cause this disease is necessary to developing more effective preventative and therapeutic treatment strategies.
Collapse
Affiliation(s)
- Darrell Wu
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, BCM 390, One Baylor Plaza, Houston, Texas 77030
- Department of Cardiovascular Surgery, Texas Heart Institute at St. Luke’s Episcopal Hospital, 6770 Bertner Ave., Houston, Texas 77030
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, BCM 335, One Baylor Plaza, Houston, Texas 77030
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, BCM 390, One Baylor Plaza, Houston, Texas 77030
- Department of Cardiovascular Surgery, Texas Heart Institute at St. Luke’s Episcopal Hospital, 6770 Bertner Ave., Houston, Texas 77030
| | - Ludivine Russell
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, BCM 390, One Baylor Plaza, Houston, Texas 77030
- Department of Cardiovascular Surgery, Texas Heart Institute at St. Luke’s Episcopal Hospital, 6770 Bertner Ave., Houston, Texas 77030
| | - Joseph S. Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, BCM 390, One Baylor Plaza, Houston, Texas 77030
- Department of Cardiovascular Surgery, Texas Heart Institute at St. Luke’s Episcopal Hospital, 6770 Bertner Ave., Houston, Texas 77030
| | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, BCM 390, One Baylor Plaza, Houston, Texas 77030
- Department of Cardiovascular Surgery, Texas Heart Institute at St. Luke’s Episcopal Hospital, 6770 Bertner Ave., Houston, Texas 77030
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, BCM 335, One Baylor Plaza, Houston, Texas 77030
| |
Collapse
|
16
|
Ma S, Turino GM, Hayashi T, Yanuma H, Usuki T, Lin YY. Stable deuterium internal standard for the isotope-dilution LC-MS/MS analysis of elastin degradation. Anal Biochem 2013; 440:158-65. [PMID: 23727558 DOI: 10.1016/j.ab.2013.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/26/2013] [Accepted: 05/17/2013] [Indexed: 11/27/2022]
Abstract
Chemical synthesis of the deuterium isotope desmosine-d4 has been achieved. This isotopic compound possesses all four deuterium atoms at the alkanyl carbons of the alkyl amino acid substitution in the desmosine molecule and is stable toward acid hydrolysis; this is required in the measurement of two crosslinking molecules, desmosine and isodesmosine, as biomarkers of elastic tissue degradation. The degradation of elastin occurs in several widely prevalent diseases. The synthesized desmosine-d₄ is used as the internal standard to develop an accurate and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry analysis, which can serve as a generalized method for an accurate analysis of desmosine and isodesmosine as biomarkers in many types of biological tissues involving elastin degradation.
Collapse
Affiliation(s)
- Shuren Ma
- Department of Medicine, St. Luke's Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY 10019, USA
| | | | | | | | | | | |
Collapse
|
17
|
Cation exchange HPLC analysis of desmosines in elastin hydrolysates. Anal Bioanal Chem 2011; 401:2473-9. [PMID: 21887606 PMCID: PMC3184222 DOI: 10.1007/s00216-011-5346-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/18/2011] [Accepted: 08/17/2011] [Indexed: 10/25/2022]
Abstract
Desmosine crosslinks are responsible for the elastic properties of connective tissues in lungs and cardiovascular system and are often compromised in disease states. We developed a new, fast, and simple cation exchange HPLC assay for the analysis of desmosine and isodesmosine in animal elastin. The method was validated by determining linearity, accuracy, precision, and desmosines stability and was applied to measure levels of desmosines in porcine and murine organs. The detection and quantification limits were 2 and 4 pmol, respectively. The run-time was 8 min. Our cation exchange column does not separate desmosine and isodesmosine, but their level can be quantified from absorbance at different wavelengths. Using this assay, we found that desmosines levels were significantly lower in elastin isolated from various organs of immunodeficient severe combined immunodeficiency mice compared with wild-type animals. We also found that desmosines levels were lower in lung elastin isolated from hyperhomocysteinemic Pcft(-/-) mice deficient in intestinal folate transport compared with wild-type Pcft(+/+) animals.
Collapse
|
18
|
Ma S, Turino GM, Lin YY. Quantitation of desmosine and isodesmosine in urine, plasma, and sputum by LC–MS/MS as biomarkers for elastin degradation. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1893-8. [DOI: 10.1016/j.jchromb.2011.05.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 01/26/2023]
|
19
|
Viglio S, Annovazzi L, Luisetti M, Stolk J, Casado B, Iadarola P. Progress in the methodological strategies for the detection in real samples of desmosine and isodesmosine, two biological markers of elastin degradation. J Sep Sci 2007; 30:202-13. [PMID: 17390614 DOI: 10.1002/jssc.200600260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Desmosines are crosslinking amino acids unique to mature elastin in humans. Owing to this unicity, they have been discussed as potentially attractive indicators of connective tissue disorders whose clinical manifestations are mostly the result of elastin degradation. This review covers advances in immunochemical, chromatographic, and electrophoretic procedures applied in the last 25 years to detect and quantitate these crosslinksin a variety of biological samples. Recent applications of CE with LIF detection (CE-LIF) for investigating the content of desmosines in different fluids will also be discussed.
Collapse
Affiliation(s)
- Simona Viglio
- Dipartimento di Biochimica "A. Castellani", Università di Pavia, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Getie M, Raith K, Neubert RHH. LC/ESI-MS analysis of two elastin cross-links, desmosine and isodesmosine, and their radiation-induced degradation products. Biochim Biophys Acta Gen Subj 2003; 1624:81-7. [PMID: 14642817 DOI: 10.1016/j.bbagen.2003.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, the effect of Fenton reaction on two elastin cross-linked amino acids, desmosine (DES) and isodesmosine (IDE), in the absence or presence of different wavelength radiations generated from artificial sources has been evaluated using LC/ESI-MS. Irradiation as well as incubation of DES or IDE solutions in the presence of Fe(2+) and H(2)O(2) resulted in products with m/z 497.1 and 481.1 for [M+H](+). A strongly dose-dependent degradation of both amino acids was observed upon exposure to UVB at doses ranging from 0 to 3 J/cm(2) and a moderate dose-dependent degradation upon exposure to UVA at doses 10 times higher than that of UVB. A significant time-dependent degradation of DES and IDE was also observed upon exposure of these amino acids to a lamp emitting visible light similar to sunlight. Exposure of both amino acids to IR radiation (520 W) for 8 h did not cause significant degradation.
Collapse
Affiliation(s)
- Melkamu Getie
- Institute of Pharmaceutics and Biopharmaceutics, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, D-06120, Halle(Saale), Germany
| | | | | |
Collapse
|
21
|
Ma S, Lieberman S, Turino GM, Lin YY. The detection and quantitation of free desmosine and isodesmosine in human urine and their peptide-bound forms in sputum. Proc Natl Acad Sci U S A 2003; 100:12941-3. [PMID: 14563926 PMCID: PMC240723 DOI: 10.1073/pnas.2235344100] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Desmosine (D) and isodesmosine (I), the intramolecular crosslinking amino acids that occur in chains of elastin, have now been found in free form in human urine. Until now, these amino acids (M(r) = 526) were found to occur in urine only as higher molecular weight (M (r) = 1,000-1,500) peptides. Thus, the previously used analytical methods required, as the first step, acid hydrolysis of the urine at elevated temperature to liberate D and I from their peptides. The analytical method described here uses HPLC followed by electrospray ionization MS for the detection and quantitation of free D and I in unhydrolyzed urine. Identities of both D and I were established by their retention times on LC and by their mass ion at 526 atomic mass units, characteristic of each compound. The sensitivity of the method is 0.10 ng. The average values of free D and I in the urine of seven healthy subjects were 1.42 +/- 1.16 and 1.39 +/- 1.04 microg/g of creatinine, respectively. After acid hydrolysis of the urine, the amounts of D and I were 8.67 +/- 3.75 and 6.28+/-2.87 microg/g of creatinine, respectively. The method was also successfully used to measure peptide-bound D and I levels in the sputum of patients with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
| | | | | | - Yong Y. Lin
- James P. Mara Center for Lung Disease, Department of Medicine, St. Luke's/Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY 10019
| |
Collapse
|
22
|
Qian Q, Li M, Cai Y, Ward CJ, Somlo S, Harris PC, Torres VE. Analysis of the polycystins in aortic vascular smooth muscle cells. J Am Soc Nephrol 2003; 14:2280-7. [PMID: 12937304 DOI: 10.1097/01.asn.0000080185.38113.a3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The leading cause of death in autosomal dominant polycystic kidney disease (ADPKD) is cardiovascular. However, little is known about the pathogenesis of these manifestations. The present study was undertaken to characterize the ADPKD proteins, the polycystins, in vascular smooth muscle cells. It was demonstrated that the expression of polycystin-1 is developmentally regulated, whereas polycystin-2 has a more constant level of expression. A polycystin-1 subpopulation was immunoprecipitated by polycystin-2, indicating an in vivo interaction of these two proteins. Analysis with glycosidase and cell surface biotinylation indicates that some polycystin-1 products, but not polycystin-2, are located on the plasma membrane. Immunofluorescence showed that most of the polycystin-1 and polycystin-2 was cytoplasmic but that persistent polycystin-1 staining was located in proximity to the cell surface after a Triton-X extraction, whereas no clear surface localization of polycystin-2 was detected. Immuno-gold electron microscopy revealed that polycystin-1 was localized at the plasma membrane and sarcoplasmic reticulum, whereas polycystin-2 was mainly located in the sarcoplasmic reticulum. Both polycystins were found to be associated with dense plaques. These observations are consistent with an important role of the polycystins in the development, maintenance, and function of the myoelastic arterial organization and with the vascular phenotype associated with ADPKD.
Collapse
Affiliation(s)
- Qi Qian
- Division of Nephrology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Krettek A, Sukhova GK, Libby P. Elastogenesis in human arterial disease: a role for macrophages in disordered elastin synthesis. Arterioscler Thromb Vasc Biol 2003; 23:582-7. [PMID: 12615674 DOI: 10.1161/01.atv.0000064372.78561.a5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Elastin, an extracellular matrix protein, constitutes about 30% of the dry weight of the arteries. Elastolysis induced by inflammatory processes is active in chronic arterial diseases. However, elastogenesis in arterial diseases has received little attention. In this work we hypothesized that disordered elastogenesis is active in matrix remodeling in atheroma and abdominal aortic aneurysm (AAA). METHODS AND RESULTS Human AAA and atheroma have 4- to 6-fold more tropoelastin protein than nondiseased arteries. The smooth muscle cell-containing media and fibrous cap of atherosclerotic arteries contain ordered mature elastin, whereas macrophage (MPhi)-rich regions often have disorganized elastic fibers. Surprisingly, in addition to smooth muscle cells, MPhis in diseased arteries also produce the elastin precursor tropoelastin, as shown by double immunostaining, in situ hybridization, and reverse transcription-polymerase chain reaction for tropoelastin mRNA. Cultured monocyte-derived MPhis can express the elastin gene. AAA have 9-fold but atheroma only 1.6-fold lower levels of desmosine, a marker for mature cross-linked elastin, than normal arteries. CONCLUSIONS This study demonstrates ongoing but often ineffective elastogenesis in arterial disease and establishes human macrophages as a novel source for this important matrix protein. These results have considerable import for understanding mechanisms of extracellular matrix remodeling in arterial diseases.
Collapse
Affiliation(s)
- Alexandra Krettek
- Leducq Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Eugene Braunwald Research Center 307, Boston, Mass 02115, USA
| | | | | |
Collapse
|
24
|
Agozzino L, Ferraraccio F, Esposito S, Trocciola A, Parente A, Della Corte A, De Feo M, Cotrufo M. Medial degeneration does not involve uniformly the whole ascending aorta: morphological, biochemical and clinical correlations. Eur J Cardiothorac Surg 2002; 21:675-82. [PMID: 11932167 DOI: 10.1016/s1010-7940(02)00022-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate whether and how the severity of medial degeneration (MD) lesions varies along the circumference of the dilated intrapericardial aorta. METHODS Two groups of aortic wall specimens, respectively harvested 1cm distal to the non-coronary (NC) sinus (right postero-lateral wall) and to the right coronary sinus (anterior wall) in 22 patients undergoing surgery for dilatation of the intrapericardial aorta associated with aortic valve disease, were separately sent for pathology, morphometry and ultrastructural examination. MD lesions found at histology were classified into three degrees of severity. MD mean degree and morphometric findings in postero-lateral ('NC') and anterior ('coronary') specimens were compared by paired t-test. Correlation between degree of aortic dilatation at echocardiography and severity of MD was assessed separately for each of the two groups of specimens. After the preliminary results of the morphological study, we decided to send the specimens for biochemical investigation of protein electrophoretic patterns. This was performed in the last seven patients of this series. RESULTS At histology, MD was found in all cases. A higher mean MD degree was found in the NC group (2.59+/-0.50 versus 1.59+/-0.67 in the coronary group; P<0.001). At morphometry, normal smooth muscle cells in the NC specimens were significantly reduced (P=0.012) and the length (P=0.011) and number (P=0.015) of elastic fibres reduced and increased, respectively. Correlation between aortic ratio and MD degree was significant in the NC specimens (P<0.001), not in the coronary ones (P=0.227). Quantitative differences between coronary and NC proteins from the same patient and between coronary proteins from different patients were found at electrophoresis. However, at this stage of the study, the sample was too small to allow for the identification of proteins involved in those differences. CONCLUSIONS MD lesions in dilated intrapericardial aorta are more severe in the right postero-lateral wall area, likely due to haemodynamic stress asymmetry.
Collapse
Affiliation(s)
- L Agozzino
- Department of Public Medicine, Section of Pathology, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Umeda H, Nakamura F, Suyama K. Oxodesmosine and isooxodesmosine, candidates of oxidative metabolic intermediates of pyridinium cross-links in elastin. Arch Biochem Biophys 2001; 385:209-19. [PMID: 11361020 DOI: 10.1006/abbi.2000.2145] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We isolated two new dihydrooxopyridine cross-links, oxodesmosine (OXD) and isooxodesmosine (IOXD) from the acid hydrolysates of the bovine aortic elastin. OXD and IOXD were identified to have N-substituted 1,2-dihydro-2-oxopyridine and N-substituted 1,4-dihydro-4-oxopyridine skeletons, respectively, with three alpha-amino acid groups and mass of 495 (C23H37N5O7). These structures and distribution indicated that OXD and IOXD are oxidative metabolites generated from desmosine (DES) and isodesmosine (IDE), respectively, by reactive oxygen species (ROS). Effects of ROS derived from divalent metal (Fe2+, Cu2+)/H2O2 on DES, IDE, OXD, and IOXD in elastin were investigated. Changes in the contents of these cross-links in elastin were observed by using reverse-phase HPLC with UV detection. The time- and pH-dependent formation of OXD and reduction of DES and IDE in elastin by Cu2+/H2O2 and Fe2+/H2O2 were observed. OXD was found to be formed from DES by Fe2+/H2O2. No formation of IOXD was observed under the conditions of oxidation examined. By using a model compound of IDE, however, we found that 4-pyridone could be formed by Fe2+/H2O2. Elastin incubated in Cu2+/H2O2 was also solubilized dependent on solution pH and the concentration of H2O2. These results suggest that oxidative degradation of elastin with cross-links results in its weakening, followed by its solubilization. Pyridinium cross-links, such as DES and IDE, may be oxidatively metabolized by ROS, further changing to dihydrooxopyridine cross-links such as OXD and IOXD, respectively.
Collapse
Affiliation(s)
- H Umeda
- Department of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|