1
|
Hiramatsu N, Yamamoto N, Ohkuma M, Nagai N, Miyachi EI, Yamatsuta K, Imaizumi K. Iris-derived induced pluripotent stem cells that express GFP in all somatic cells of mice and differentiate into functional retinal neurons. Med Mol Morphol 2022; 55:292-303. [PMID: 35932315 DOI: 10.1007/s00795-022-00330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
When regenerated tissue is generated from induced pluripotent stem cells (iPSCs), it is necessary to track and identify the transplanted cells. Fluorescently-labeled iPSCs synthesize a fluorescent substance that is easily tracked. However, the expressed protein should not affect the original genome sequence or pluripotency. To solve this problem, we created a cell tool for basic research on iPSCs. Iris tissue-derived cells from GFP fluorescence-expressing mice (GFP-DBA/2 mice) were reprogrammed to generate GFP mouse iris-derived iPSCs (M-iris GFP iPSCs). M-iris GFP iPSCs expressed cell markers characteristic of iPSCs and showed pluripotency in differentiating into the three germ layers. In addition, when expressing GFP, the cells differentiated into functional recoverin- and calbindin-positive cells. Thus, this cell line will facilitate future studies on iPSCs.
Collapse
Affiliation(s)
- Noriko Hiramatsu
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Naoki Yamamoto
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
- International Center for Cell and Gene Therapy, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Department of Ophthalmology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
- Division of Vision Research for Environmental Health, Project Research Center, Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| | - Mahito Ohkuma
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, 577-8502, Japan
| | - Ei-Ichi Miyachi
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
- Department of Food Science and Nutrition, Nagoya Women's University, Toyoake, Aichi, 467-8610, Japan
| | - Kumiko Yamatsuta
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
2
|
Hiramatsu N, Yamamoto N, Kato Y, Nagai N, Isogai S, Imaizumi K. Formation of three‑dimensional cell aggregates expressing lens‑specific proteins in various cultures of human iris‑derived tissue cells and iPS cells. Exp Ther Med 2022; 24:539. [PMID: 35837031 PMCID: PMC9257972 DOI: 10.3892/etm.2022.11476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are widely used as a research tool in regenerative medicine and embryology. In studies related to lens regeneration in the eye, iPS cells have been reported to differentiate into lens epithelial cells (LECs); however, to the best of our knowledge, no study to date has described their formation of three-dimensional cell aggregates. Notably, in vivo studies in newts have revealed that iris cells in the eye can dedifferentiate into LECs and regenerate a new lens. Thus, as basic research on lens regeneration, the present study investigated the differentiation of human iris tissue-derived cells and human iris tissue-derived iPS cells into LECs and their formation of three-dimensional cell aggregates using a combination of two-dimensional culture, static suspension culture and rotational suspension culture. The results revealed that three-dimensional cell aggregates were formed and differentiated into LECs expressing αA-crystallin, a specific marker protein for LECs, suggesting that the cell-cell interaction facilitated by cell aggregation may have a critical role in enabling highly efficient differentiation of LECs. However, the present study was unable to achieve transparency in the cell aggregates; therefore, we aim to continue to investigate the degradation of organelles and other materials necessary to make the interior of the formed cell aggregates transparent. Furthermore, we aim to expand on our current work to study the regeneration of the lens and ciliary body as a whole in vitro, with the aim of being able to restore focusing function after cataract surgery.
Collapse
Affiliation(s)
- Noriko Hiramatsu
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Naoki Yamamoto
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Yu Kato
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577‑8502, Japan
| | - Sumito Isogai
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| |
Collapse
|
3
|
Yamamoto N, Hiramatsu N, Ohkuma M, Hatsusaka N, Takeda S, Nagai N, Miyachi EI, Kondo M, Imaizumi K, Horiguchi M, Kubo E, Sasaki H. Novel Technique for Retinal Nerve Cell Regeneration with Electrophysiological Functions Using Human Iris-Derived iPS Cells. Cells 2021; 10:cells10040743. [PMID: 33800535 PMCID: PMC8067101 DOI: 10.3390/cells10040743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine in ophthalmology that uses induced pluripotent stem cells (iPS) cells has been described, but those studies used iPS cells derived from fibroblasts. Here, we generated iPS cells derived from iris cells that develop from the same inner layer of the optic cup as the retina, to regenerate retinal nerves. We first identified cells positive for p75NTR, a marker of retinal tissue stem and progenitor cells, in human iris tissue. We then reprogrammed the cultured p75NTR-positive iris tissue stem/progenitor (H-iris stem/progenitor) cells to create iris-derived iPS (H-iris iPS) cells for the first time. These cells were positive for iPS cell markers and showed pluripotency to differentiate into three germ layers. When H-iris iPS cells were pre-differentiated into neural stem/progenitor cells, not all cells became positive for neural stem/progenitor and nerve cell markers. When these cells were pre-differentiated into neural stem/progenitor cells, sorted with p75NTR, and used as a medium for differentiating into retinal nerve cells, the cells differentiated into Recoverin-positive cells with electrophysiological functions. In a different medium, H-iris iPS cells differentiated into retinal ganglion cell marker-positive cells with electrophysiological functions. This is the first demonstration of H-iris iPS cells differentiating into retinal neurons that function physiologically as neurons.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
- Graduate School of Health Sciences, Fujita Health University, Aichi 470-1192, Japan
- Correspondence: or ; Tel.: +81-762-286-2211
| | - Noriko Hiramatsu
- Research Promotion and Support Headquarters, Fujita Health University, Aichi 470-1192, Japan;
| | - Mahito Ohkuma
- Department of Physiology, School of Medicine, Fujita Health University, Aichi 470-1192, Japan; (M.O.); (E.-i.M.)
| | - Natsuko Hatsusaka
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
| | - Shun Takeda
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan;
| | - Ei-ichi Miyachi
- Department of Physiology, School of Medicine, Fujita Health University, Aichi 470-1192, Japan; (M.O.); (E.-i.M.)
- Department of Food Science and Nutrition, Nagoya Women’s University, Aichi 467-8610, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Aichi 470-1192, Japan; (M.K.); (K.I.)
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Aichi 470-1192, Japan; (M.K.); (K.I.)
| | - Masayuki Horiguchi
- Department of Ophthalmology, School of Medicine, Fujita Health University, Aichi 470-1192, Japan;
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (N.H.); (S.T.); (E.K.); (H.S.)
| |
Collapse
|
4
|
Kennelly KP, Holmes TM, Wallace DM, O'Farrelly C, Keegan DJ. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity. Cell Transplant 2017; 26:983-1000. [PMID: 28105976 DOI: 10.3727/096368917x694697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response.
Collapse
|
5
|
Lai JY, Li YT. Influence of Cross-Linker Concentration on the Functionality of Carbodiimide Cross-Linked Gelatin Membranes for Retinal Sheet Carriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 22:277-95. [PMID: 20557713 DOI: 10.1163/092050609x12603600753204] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Carbodiimide cross-linking can easily regulate the functionality of gelatin carriers used for retinal sheet delivery. This paper investigates the effect of cross-linker concentrations (0-0.4 mmol EDC/mg gelatin membrane (GM)) on the properties of the chemically-modified GMs. ATR-FT-IR and ninhydrin analyses results consistently indicated that the EDC cross-linking reaction approaches saturation at concentrations around 0.02 mmol EDC/mg GM. The thermal stability and resistance to water dissolution and collagenase digestion were significantly enhanced with increasing cross-linker concentration from 0.001 to 0.02 mmol EDC/mg GM. In addition, the chemical cross-linking did not affect the ability to form a tissue-encapsulating structure at 37°C. Irrespective of their cross-linking degree, the GMs had an appropriate degradation rate sufficient to allow tissue integration. It was noted that, although high cross-linker concentrations can be used to improve the delivery efficiency of gelatin samples, the treatment with 0.1-0.4 mmol EDC/mg GM may lead to poor biocompatibility. Results of Live/Dead and pro-inflammatory cytokine expression analyses showed that the exposure of ARPE-19 cultures to the test materials cross-linked with a concentration ≥0.1 mmol EDC/mg GM induces significant cytotoxicity and high levels of interleukin-1β and interleukin-6. However, the presence of EDC cross-linked gelatin membranes in the culture medium had no effect on the glutamate uptake capacity. It is concluded that among the cross-linked gelatin samples studied, 0.02 mmol EDC/mg GM is the best cross-linker concentration for preparation of retinal sheet delivery carriers.
Collapse
Affiliation(s)
- Jui-Yang Lai
- a Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China; Biomedical Engineering Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan 33302, Republic of China
| | | |
Collapse
|
6
|
Necrosis-Induced Sterile Inflammation Mediated by Interleukin-1α in Retinal Pigment Epithelial Cells. PLoS One 2015; 10:e0144460. [PMID: 26641100 PMCID: PMC4671579 DOI: 10.1371/journal.pone.0144460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
Endogenous danger signals released from necrotic cells contribute to retinal inflammation. We have now investigated the effects of necrotic cell extracts prepared from ARPE-19 human retinal pigment epithelial cells (ANCE) on the release of proinflammatory cytokines and chemokines by healthy ARPE-19 cells. ANCE were prepared by subjection of ARPE-19 cells to freeze-thaw cycles. The release of various cytokines and chemokines from ARPE-19 cells was measured with a multiplex assay system or enzyme-linked immunosorbent assays. The expression of interleukin (IL)–1α and the phosphorylation and degradation of the endogenous nuclear factor–κB (NF-κB) inhibitor IκB-α were examined by immunoblot analysis. Among the various cytokines and chemokines examined, we found that ANCE markedly stimulated the release of the proinflammatory cytokine IL-6 and the chemokines IL-8 and monocyte chemoattractant protein (MCP)–1 by ARPE-19 cells. ANCE-induced IL-6, IL-8, and MCP-1 release was inhibited by IL-1 receptor antagonist and by an IKK2 inhibitor (a blocker of NF-κB signaling) in a concentration-dependent manner, but was not affected by a pan-caspase inhibitor (Z-VAD-FMK). Recombinant IL-1α also induced the secretion of IL-6, IL-8, and MCP-1 from ARPE-19 cells, and IL-1α was detected in ANCE. Furthermore, ANCE induced the phosphorylation and degradation of IκB-α in ARPE-19 cells. Our findings thus suggest that IL-1α is an important danger signal that is released from necrotic retinal pigment epithelial cells and triggers proinflammatory cytokine and chemokine secretion from intact cells in a manner dependent on NF-κB signaling. IL-1α is therefore a potential therapeutic target for amelioration of sterile inflammation in the retina.
Collapse
|
7
|
Stanzel BV, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N, Corneo B, Holz FG, Temple S, Stern JH, Blenkinsop TA. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Reports 2014; 2:64-77. [PMID: 24511471 PMCID: PMC3916756 DOI: 10.1016/j.stemcr.2013.11.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
Transplantation of the retinal pigment epithelium (RPE) is being developed as a cell-replacement therapy for age-related macular degeneration. Human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC)-derived RPE are currently translating toward clinic. We introduce the adult human RPE stem cell (hRPESC) as an alternative RPE source. Polarized monolayers of adult hRPESC-derived RPE grown on polyester (PET) membranes had near-native characteristics. Trephined pieces of RPE monolayers on PET were transplanted subretinally in the rabbit, a large-eyed animal model. After 4 days, retinal edema was observed above the implant, detected by spectral domain optical coherence tomography (SD-OCT) and fundoscopy. At 1 week, retinal atrophy overlying the fetal or adult transplant was observed, remaining stable thereafter. Histology obtained 4 weeks after implantation confirmed a continuous polarized human RPE monolayer on PET. Taken together, the xeno-RPE survived with retained characteristics in the subretinal space. These experiments support that adult hRPESC-derived RPE are a potential source for transplantation therapies. Adult hRPESC-derived RPE had comparable in vitro characteristics to fetal hRPE hRPE monolayers survived 4 weeks on PET carriers under the rabbit retina Better xenograft survival may be due to the maintained hRPE cell polarity Atrophy of the retina overlaying the hRPE xenograft remains a future challenge
Collapse
Affiliation(s)
- Boris V Stanzel
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany
| | - Zengping Liu
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany
| | - Sudawadee Somboonthanakij
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany ; Mettapracharak Eye Institute, Raikhing, Nakhon Pathom 73210, Thailand
| | - Warapat Wongsawad
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany ; Mettapracharak Eye Institute, Raikhing, Nakhon Pathom 73210, Thailand
| | - Ralf Brinken
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany
| | - Nicole Eter
- Department of Ophthalmology, University of Muenster, Muenster 48149, Germany
| | | | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn 53127, Germany
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | | | | |
Collapse
|
8
|
Lai JY. Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydr Polym 2014; 101:203-12. [DOI: 10.1016/j.carbpol.2013.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/25/2022]
|
9
|
Lai JY, Li YT. Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Lai JY. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1899-1911. [PMID: 20238149 DOI: 10.1007/s10856-010-4035-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/22/2010] [Indexed: 05/27/2023]
Abstract
Biocompatibility is a major requirement for the development of functional biomaterials for ophthalmic applications. In this study, we investigated the effect of cross-linker functionality on ocular biocompatibility of chemically modified gelatin hydrogels. The test materials were cross-linked with glutaraldehyde (GTA) or 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC), and were analyzed using in vitro and in vivo assays. Primary rat iris pigment epithelial cultures were incubated with various gelatin discs for 2 days, and the cellular responses were monitored by cell proliferation, viability, and pro-inflammatory gene and cytokine expression. The results demonstrated that the cells exposed to EDC cross-linked gelatins had relatively lower lactate dehydrogenase activity, cytotoxicity, and interleukin-1beta and tumor necrosis factor-alpha levels than did those to GTA treated samples. In addition, the gelatin implants were inserted in the anterior chamber of rabbit eyes for 12 weeks and characterized by clinical observations and scanning electron microscopy studies. The EDC cross-linked gelatin hydrogels exhibited good biocompatibility and were well tolerated without causing toxicity and adverse effects. However, a significant inflammatory reaction was elicited by the presence of GTA treated materials. It was noted that, despite its biocompatibility, the potential application of non-cross-linked gelatin for local delivery of cell and drug therapeutics would be limited due to rapid dissolution in aqueous environments. In conclusion, these findings suggest ocular cell/tissue response to changes in cross-linker properties. In comparison to GTA treatment, the EDC cross-linking is more suitable for preparation of chemically modified gelatin hydrogels for ophthalmic use.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, 33302, Taoyuan, Taiwan, Republic of China.
| |
Collapse
|
11
|
Lai JY. The role of bloom index of gelatin on the interaction with retinal pigment epithelial cells. Int J Mol Sci 2009; 10:3442-3456. [PMID: 20111679 PMCID: PMC2812822 DOI: 10.3390/ijms10083442] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/29/2009] [Accepted: 07/31/2009] [Indexed: 12/28/2022] Open
Abstract
Biocompatible materials are of considerable interest in the development of cell/drug delivery carriers for therapeutic applications. This paper investigates the effects of the Bloom index of gelatin on its interaction with retinal pigment epithelial (RPE) cells. Following two days of culture of ARPE-19 cells with gelatin samples G75-100, G175, and G300, the in vitro biocompatibility was determined by cell proliferation and viability assays, and glutamate uptake measurements, as well as cytokine expression analyses. The mitochondrial dehydrogenase activity in the G300 groups was significantly lower than that of G75-100 and G175 groups. The Live/Dead assays also showed that the gelatin samples G300 induced mild cytotoxicity. In comparison with the treatment of gelatins with low Bloom index, the exposure to high Bloom strength gelatins markedly reduced the glutamate uptake capacity of ARPE-19 cells. One possible explanation for these observations is that the presence of gelatin samples G300 with high viscosity in the medium may affect the nutrient availability to cultured cells. The analyses of pro-inflammatory cytokine IL-6 expression at both mRNA and protein levels showed that the gelatins with low Bloom index caused less cellular inflammatory reaction and had more acceptable biocompatibility than their high Bloom strength counterparts. These findings suggest that the Bloom index gives influence on cellular responses to gelatin materials.
Collapse
Affiliation(s)
- Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Author to whom correspondence should be addressed; E-Mail:
(J.-Y.L.); Tel. +886-3-211-8800, ext. 3598; Fax: +886-3-211-8668
| |
Collapse
|
12
|
da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog Retin Eye Res 2007; 26:598-635. [PMID: 17920328 DOI: 10.1016/j.preteyeres.2007.07.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retinal pigment epithelial (RPE) transplantation aims to restore the subretinal anatomy and re-establish the critical interaction between the RPE and the photoreceptor, which is fundamental to sight. The field has developed over the past 20 years with advances coming from a large body of animal work and more recently a considerable number of human trials. Enormous progress has been made with the potential for at least partial restoration of visual function in both animal and human clinical work. Diseases that have been treated with RPE transplantation demonstrating partial reversal of vision loss include primary RPE dystrophies such as the merTK dystrophy in the Royal College of Surgeons (RCS) rat and in humans, photoreceptor dystrophies as well as complex retinal diseases such as atrophic and neovascular age-related macular degeneration (AMD). Unfortunately, in the human trials the visual recovery has been limited at best and full visual recovery has not been demonstrated. Autologous full-thickness transplants have been used most commonly and effectively in human disease but the search for a cell source to replace autologous RPE such as embryonic stem cells, marrow-derived stem cells, umbilical cord-derived cells as well as immortalised cell lines continues. The combination of cell transplantation with other modalities of treatment such as gene transfer remains an exciting future prospect. RPE transplantation has already been shown to be capable of restoring the subretinal anatomy and improving photoreceptor function in a variety of retinal diseases. In the near future, refinements of current techniques are likely to allow RPE transplantation to enter the mainstream of retinal therapy at a time when the treatment of previously blinding retinal diseases is finally becoming a reality.
Collapse
Affiliation(s)
- Lyndon da Cruz
- Division of Cellular Therapy, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
13
|
Huang H, Frank MB, Dozmorov I, Cao W, Cadwell C, Knowlton N, Centola M, Anderson RE. Identification of mouse retinal genes differentially regulated by dim and bright cyclic light rearing. Exp Eye Res 2005; 80:727-39. [PMID: 15862179 DOI: 10.1016/j.exer.2004.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 10/25/2004] [Accepted: 11/30/2004] [Indexed: 11/30/2022]
Abstract
Bright cyclic light rearing protects BALB/c mice from light-induced photoreceptor apoptosis compared to dim cyclic light rearing. We used a microarray approach to search for putative neuroprotection genes that were up- or down-regulated under these environmental conditions. Retinal protection by bright cyclic rearing was determined by quantitative histology and DNA fragmentation analysis. Total RNA was isolated from 5-week-old mice raised in bright (400 lux) or dim (5 lux) cyclic light and prepared for analysis on microarrays produced using a 70-mer oligonucleotide library that represented 16,463 mouse genes. Genes of interest were identified using statistically robust bioinformatics analysis methods that were developed in-house. Changes in some genes were confirmed with quantitative real time PCR. We found that 952 genes were up- or down-regulated by bright cyclic light rearing compared to dim cyclic light rearing. One hundred and eighty-four of them, having >/=2-fold differences, were grouped into 13 categories, and selected for further consideration. Eleven up-regulated and two down-regulated genes were confirmed by semi-quantitative PCR. Five neuroprotection-associated genes were up-regulated by bright cyclic light rearing as confirmed by real-time PCR. The human orthologue chromosomal location of 22 differentially expressed genes map to known retinal degeneration loci. Using PathwayAssist software, we modeled the pathway networks of up- and down-regulated genes that are functionally related to the retina. We identified retinal genes that are differentially regulated by environmental light history. Those that directly affect cell processes such as survival, apoptosis, and transcription are likely play a pivotal role in the regulation of retinal neuroprotection against light-induced photoreceptor apoptosis.
Collapse
Affiliation(s)
- Hu Huang
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lund RD, Kwan AS, Keegan DJ, Sauvé Y, Coffey PJ, Lawrence JM. Cell transplantation as a treatment for retinal disease. Prog Retin Eye Res 2001; 20:415-49. [PMID: 11390255 DOI: 10.1016/s1350-9462(01)00003-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that photoreceptor degeneration can be limited in experimental animals by transplantation of fresh RPE to the subretinal space. There is also evidence that retinal cell transplants can be used to reconstruct retinal circuitry in dystrophic animals. Here we describe and review recent developments that highlight the necessary steps that should be taken prior to embarking on clinical trials in humans.
Collapse
Affiliation(s)
- R D Lund
- Institute of Ophthalmology, Bath Street, EC1V 9EL, London, UK
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
A number of studies have shown that transplantation of retinal pigment epithelial (RPE) cells to the subretinal space offers a promising treatment modality for retinal degenerative diseases. However, it is necessary to transplant autologous cells to avoid rejection; unfortunately, obtaining autologous RPE cells necessitates such traumatic surgical intervention as to make this approach irrelevant. It has been hypothesized that iris pigment epithelial (IPE) cells may be a possible substitute for RPE cells for transplantation into the subretinal space. The iris pigment epithelium, which has the same embryonic origin as retinal pigment epithelium, has not received much attention from visual scientists. Even though it forms a highly specialized tissue, it is not clear whether the iris pigment epithelium contributes critical functions to the health of the visual system. In vivo the IPE does not appear to have any of the functions characteristic of RPE; however, in vitro cultured IPE cells do acquire functions, such as specific phagocytosis of rod outer segments, that are characteristic of RPE cells, and have been shown to have the potential to carry out many functions characteristic of RPE cells, e.g., retinol metabolism. This review outlines the development and cellular functions of the IPE with special emphasis on the modulation of those functions that can allow the IPE cells to be transplanted to the subretinal space where they appear to acquire differentiated properties of retinal pigment epithelium (RPE).
Collapse
Affiliation(s)
- G Thumann
- Department of Ophthalmology, Laboratory for Cell Culture and Molecular Biology, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|