1
|
Yan M, Zhang D, Yang M. Saikosaponin D alleviates inflammatory response of osteoarthritis and mediates autophagy via elevating microRNA-199-3p to target transcription Factor-4. J Orthop Surg Res 2024; 19:151. [PMID: 38389105 PMCID: PMC10882832 DOI: 10.1186/s13018-024-04607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE This study was to investigate the underlying mechanism by which Saikosaponin D (SSD) mitigates the inflammatory response associated with osteoarthritis (OA) and regulates autophagy through upregulation of microRNA (miR)-199-3p and downregulation of transcription Factor-4 (TCF4). METHODS A mouse OA model was established. Mice were intragastrically administered with SSD (0, 5, 10 μmol/L) or injected with miR-199-3p antagomir into the knee. Then, pathological changes in cartilage tissues were observed. Normal chondrocytes and OA chondrocytes were isolated and identified. Chondrocytes were treated with SSD and/or transfected with oligonucleotides or plasmid vectors targeting miR-199-3p and TCF4. Cell viability, apoptosis, inflammation, and autophagy were assessed. miR-199-3p and TCF4 expressions were measured, and their targeting relationship was analyzed. RESULTS In in vivo experiments, SSD ameliorated cartilage histopathological damage, decreased inflammatory factor content and promoted autophagy in OA mice. miR-199-3p expression was downregulated and TCF4 expression was upregulated in cartilage tissues of OA mice. miR-199-3p expression was upregulated and TCF4 expression was downregulated after SSD treatment. Downregulation of miR-199-3p attenuated the effect of SSD on OA mice. In in vitro experiments, SSD inhibited the inflammatory response and promoted autophagy in OA chondrocytes. Downregulation of miR-199-3p attenuated the effect of SSD on OA chondrocytes. In addition, upregulation of miR-199-3p alone inhibited inflammatory responses and promoted autophagy in OA chondrocytes. miR-199-3p targeted TCF4. Upregulation of TCF4 attenuated the effects of miR-199-3p upregulation on OA chondrocytes. CONCLUSIONS SSD alleviates inflammatory response and mediates autophagy in OA via elevating miR-199-3p to target TCF4.
Collapse
Affiliation(s)
- Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China
| | - DaWei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, No. 128, Changle West Road, Xincheng District, Xi'an City, 710000, Shaanxi Province, China.
| |
Collapse
|
2
|
Yu Y, Park S, Lee H, Kwon EJ, Park HR, Kim YH, Lee SG. Exosomal hsa-miR-335-5p and hsa-miR-483-5p are novel biomarkers for rheumatoid arthritis: A development and validation study. Int Immunopharmacol 2023; 120:110286. [PMID: 37216801 DOI: 10.1016/j.intimp.2023.110286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes cartilage and bone damage. Exosomes are small extracellular vesicles that play a critical role in intercellular communication and various biological processes by serving as vehicles for the transfer of diverse molecules, such as nucleic acids, proteins, and lipids, between cells. The purpose of this study was to develop potential biomarkers for RA in peripheral blood by performing small non-coding RNA (sncRNA) sequencing using circulating exosomes from healthy controls and patients with RA. METHODS In this study, we investigated extracellular sncRNAs associated with RA in peripheral blood. Using RNA sequencing and differentially expressed sncRNA analysis, we identified a miRNA signature and target genes. Target gene expression was validated via the four GEO datasets. RESULTS Exosomal RNAs were successfully isolated from the peripheral blood of 13 patients with RA and 10 healthy controls. The hsa-miR-335-5p and hsa-miR-486-5p expression levels were higher in patients with RA than in controls. We identified the SRSF4 gene, which is a common target of hsa-miR-335-5p and hsa-miR-483-5p. As expected, the expression of this gene was found to be decreased in the synovial tissues of patients with RA through external validation. In addition, hsa-miR-335-5p was positively correlated with antiCCP, DAS28ESR, DAS28CRP, and rheumatoid factor. CONCLUSIONS Our results provide strong evidence that circulating exosomal miRNA (hsa-miR-335-5p and hsa-miR-486-5p) and SRSF4 could be valuable biomarkers for RA.
Collapse
Affiliation(s)
- Yeuni Yu
- Biomedical Research Institute, School of Medicine, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Sohee Park
- Convergence Medical Sciences, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hansong Lee
- Convergence Medical Sciences, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Jung Kwon
- Interdisciplinary Program of Genomic Science, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Hae Ryoun Park
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea; Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea; Department of Oral Pathology, School of Dentistry, Pusan National University, 50612 Yangsan, Republic of Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea; Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| | - Seung-Geun Lee
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Republic of Korea.
| |
Collapse
|
3
|
Zhao Y, Liu H, Zhao C, Dang P, Li H, Farzaneh M. Paracrine Interactions Involved in Human Induced Pluripotent Stem Cells Differentiation into Chondrocytes. Curr Stem Cell Res Ther 2020; 15:233-242. [PMID: 31889496 DOI: 10.2174/1574888x15666191224122058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA), as a degenerative joint disease, is the most common form of joint disorder that causes pain, stiffness, and other symptoms associated with OA. Various genetic, biomechanical, and environmental factors have a relevant role in the development of OA. To date, extensive efforts are currently being made to overcome the poor self-healing capacity of articular cartilage. Despite the pivotal role of chondrocytes, their proliferation and repair capacity after tissue injury are limited. Therefore, the development of new strategies to overcome these constraints is urgently needed. Recent advances in regenerative medicine suggest that pluripotent stem cells are promising stem cell sources for cartilage repair. Pluripotent stem cells are undifferentiated cells that have the capacity to differentiate into different types of cells and can self-renew indefinitely. In the past few decades, numerous attempts have been made to regenerate articular cartilage by using induced pluripotent stem cells (iPSCs). The potential applications of patient-specific iPSCs hold great promise for regenerative medicine and OA treatment. However, there are different culture conditions for the preparation and characterization of human iPSCs-derived chondrocytes (hiChondrocytes). Recent biochemical analyses reported that several paracrine factors such as TGFb, BMPs, WNT, Ihh, and Runx have been shown to be involved in cartilage cell proliferation and differentiation from human iPSCs. In this review, we summarize and discuss the paracrine interactions involved in human iPSCs differentiation into chondrocytes in different cell culture media.
Collapse
Affiliation(s)
- Yunchang Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Honghao Liu
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Chunjie Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Peng Dang
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Haijian Li
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Stadnik PS, Gilbert SJ, Tarn J, Charlton S, Skelton AJ, Barter MJ, Duance VC, Young DA, Blain EJ. Regulation of microRNA-221, -222, -21 and -27 in articular cartilage subjected to abnormal compressive forces. J Physiol 2020; 599:143-155. [PMID: 33052608 PMCID: PMC8132181 DOI: 10.1113/jp279810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Key points microRNAs (miRs) are small non‐coding molecules that regulate post‐transcriptional target gene expression. miRs are involved in regulating cellular activities in response to mechanical loading in all physiological systems, although it is largely unknown whether this response differs with increasing magnitudes of load. miR‐221, miR‐222, miR‐21‐5p and miR‐27a‐5p were significantly increased in ex vivo cartilage explants subjected to increasing load magnitude and in in vivo joint cartilage exposed to abnormal loading. TIMP3 and CPEB3 are putative miR targets in chondrocytes Identification of mechanically regulated miRs that have potential to impact on tissue homeostasis provides a mechanism by which load‐induced tissue behaviour is regulated, in both health and pathology, in all physiological systems.
Abstract MicroRNAs (miRs) are small non‐coding molecules that regulate post‐transcriptional target gene expression and are involved in mechano‐regulation of cellular activities in all physiological systems. It is unknown whether such epigenetic mechanisms are regulated in response to increasing magnitudes of load. The present study investigated mechano‐regulation of miRs in articular cartilage subjected to ‘physiological’ and ‘non‐physiological’ compressive loads in vitro as a model system and validated findings in an in vivo model of abnormal joint loading. Bovine full‐depth articular cartilage explants were loaded to 2.5 MPa (physiological) or 7 MPa (non‐physiological) (1 Hz, 15 min) and mechanically‐regulated miRs identified using next generation sequencing and verified using a quantitative PCR. Downstream targets were verified using miR‐specific mimics or inhibitors in conjunction with 3′‐UTR luciferase activity assays. A subset of miRs were mechanically‐regulated in ex vivo cartilage explants and in vivo joint cartilage. miR‐221, miR‐222, miR‐21‐5p and miR‐27a‐5p were increased and miR‐483 levels decreased with increasing load magnitude. Tissue inhibitor of metalloproteinase 3 (TIMP3) and cytoplasmic polyadenylation element binding protein 3 (CPEB3) were identified as putative downstream targets. Our data confirm miR‐221 and ‐222 mechano‐regulation and demonstrates novel mechano‐regulation of miR‐21‐5p and miR‐27a‐5p in ex vivo and in vivo cartilage loading models. TIMP3 and CPEB3 are putative miR targets in chondrocytes. Identification of specific miRs that are regulated by increasing load magnitude, as well as their potential to impact on tissue homeostasis, has direct relevance to other mechano‐sensitive physiological systems and provides a mechanism by which load‐induced tissue behaviour is regulated, in both health and pathology. microRNAs (miRs) are small non‐coding molecules that regulate post‐transcriptional target gene expression. miRs are involved in regulating cellular activities in response to mechanical loading in all physiological systems, although it is largely unknown whether this response differs with increasing magnitudes of load. miR‐221, miR‐222, miR‐21‐5p and miR‐27a‐5p were significantly increased in ex vivo cartilage explants subjected to increasing load magnitude and in in vivo joint cartilage exposed to abnormal loading. TIMP3 and CPEB3 are putative miR targets in chondrocytes Identification of mechanically regulated miRs that have potential to impact on tissue homeostasis provides a mechanism by which load‐induced tissue behaviour is regulated, in both health and pathology, in all physiological systems.
Collapse
Affiliation(s)
- Paulina S Stadnik
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Biomedicine Division, School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff, Wales, UK
| | - Sophie J Gilbert
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Biomedicine Division, School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff, Wales, UK
| | - Jessica Tarn
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah Charlton
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Skelton
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Barter
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Victor C Duance
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Biomedicine Division, School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff, Wales, UK
| | - David A Young
- Skeletal Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Emma J Blain
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Biomedicine Division, School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
5
|
Ganguly K, Kishore U, Madan T. Interplay between C-type lectin receptors and microRNAs in cellular homeostasis and immune response. FEBS J 2020; 288:4210-4229. [PMID: 33085815 DOI: 10.1111/febs.15603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin receptors (CLRs) belong to the family of pattern recognition receptors (PRRs). They have a critical role to play in the regulation of a range of physiological functions including development, respiration, angiogenesis, inflammation, and immunity. CLRs can recognize distinct and conserved exogenous pathogen-associated as well as endogenous damage-associated molecular patterns. These interactions set off downstream signaling cascades, leading to the production of inflammatory mediators, activation of effector immune cells as well as regulation of the developmental and physiological homeostasis. CLR signaling must be tightly controlled to circumvent the excessive inflammatory burden and to maintain the cellular homeostasis. Recently, MicroRNAs (miRNAs) have been shown to be important regulators of expression of CLRs and their downstream signaling. The delicate balance between miRNAs and CLRs seems crucial in almost all aspects of multicellular life. Any dysregulations in the miRNA-CLR axes may lead to tumorigenesis or inflammatory diseases. Here, we present an overview of the current understanding of the central role of miRNAs in the regulation of CLR expression, profoundly impacting upon homeostasis and immunity, and thus, development of therapeutics against immune disorders.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
6
|
Wu Y, Lu X, Shen B, Zeng Y. The Therapeutic Potential and Role of miRNA, lncRNA, and circRNA in Osteoarthritis. Curr Gene Ther 2020; 19:255-263. [PMID: 31333128 DOI: 10.2174/1566523219666190716092203] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. OBJECTIVE The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. METHODS The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. RESULTS AND DISCUSSION With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. CONCLUSION In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.
Collapse
Affiliation(s)
- Yuangang Wu
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaoxi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Shen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yi Zeng
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
7
|
Chi Q, Luan Y, Zhang Y, Hu X, Li S. The regulatory effects of miR-138-5p on selenium deficiency-induced chondrocyte apoptosis are mediated by targeting SelM. Metallomics 2020; 11:845-857. [PMID: 30869711 DOI: 10.1039/c9mt00006b] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis is a common paradigm of cell death and plays a key role in cartilage damage and selenium (Se) deficiency. Selenoproteins play major roles in determining the biological effects of Se, and are potentially involved in the pathophysiological processes in bone tissue. MicroRNAs (miRNAs) play important roles in cell proliferation, differentiation, apoptosis and tumorigenesis. Based on the preliminary results, the expression of selenoprotein M (SelM) was significantly decreased (69%) in chicken cartilage tissues with Se deficiency, and we subsequently screened and verified that SelM is one of the target genes of miR-138-5p in chicken cartilage using a dual luciferase reporter assay and real-time quantitative PCR (qRT-PCR). The expression of miR-138-5p was increased in response to Se deficiency, and the overexpression of miR-138-5p increased caspase-3, caspase-9, BAX and BAK levels, while the BCL-2 level was decreased, suggesting that miR-138-5p induced apoptosis via the mitochondrial pathway in vivo and in vitro. We explored whether oxidative stress, mitochondrial fission and fusion, and energy metabolism might trigger apoptosis to obtain an understanding of the mechanisms underlying the effects of miR-138-5p on Se deficiency-induced apoptosis in cartilage. The levels of indicators of oxidative stress, mitochondrial dynamics and energy metabolism were changed as well. This study confirmed that SelM is one of the target genes of miR-138-5p, and the overexpression of miR-138-5p induced by Se deficiency triggered oxidative stress, an imbalance in mitochondrial fission and fusion, and energy metabolism dysfunction. Therefore, miR-138-5p is involved in the mitochondrial apoptosis pathway via targeting SelM in chicken chondrocytes.
Collapse
Affiliation(s)
- Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | |
Collapse
|
8
|
Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle 2018; 17:2411-2422. [PMID: 30324848 DOI: 10.1080/15384101.2018.1526603] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exosomes secreted by human mesenchymal stem cells (hMSCs) have been shown to promote cartilage regeneration. This study aimed to explore whether exosomal lncRNA-KLF3-AS1 derived from hMSCs can promote chondrocyte proliferation via miR-206/GIT1 axis in osteoarthritis (OA). METHODS hMSCs and MSC-derived exosomes (MSC-exo) were prepared for morphological observation and identification by transmission electron microscopy (TEM) and flow cytometry. IL-1β-induced OA chondrocytes and collagenase-induced mouse OA model were established for the further experiments. Luciferase activity assay was performed to test whether miR-206 could bind to KLF3-AS1 or GIT1. Cell proliferation and apoptosis were evaluated by CCK-8 assay and flow cytometry, respectively. RESULTS MSC-Exos increased chondrogenic genes Col2a1 (type II collagen alpha 1) and aggrecan, decreased hondrocyte hypertrophy markers MMP-13 (matrix metalloproteinase-13) and Runx2 (runt-related transcription factor 2) in chondrocytes isolated from OA model mice. Furthermore, MSC-Exos attenuated IL-1β-induced chondrocyte proliferation inhibition and apoptosis induction. Moreover, MSCKLF3-AS1-Exos (exosomes derived from KLF3-AS1-overexpressing-MSCs) ameliorated IL-1β-induced chondrocyte injury. Results also demonstrated that KLF3-AS1 acted as a competitive endogenous RNA (ceRNA) by sponging miR-206 to facilitate GIT1 expression. In addition, miR-206 overexpression and GIT1 knockdown reversed MSCKLF3-AS1-Exos-mediated attenuation of chondrocyte injury. CONCLUSION Exosomal KLF3-AS1 derived from MSCs involved in MSC-Exos-mediated chondrocyte proliferation induction and chondrocyte apoptosis inhibition via miR-206/GIT1 axis. Abbreviation: G-protein-coupled receptor kinase interacting protein-1 (GIT1).
Collapse
Affiliation(s)
- Yubao Liu
- a Department of Orthopaedics , Luhe People's Hospital of Nanjing , Nanjing , China
| | - Lupan Lin
- a Department of Orthopaedics , Luhe People's Hospital of Nanjing , Nanjing , China
| | - Rui Zou
- a Department of Orthopaedics , Luhe People's Hospital of Nanjing , Nanjing , China
| | - Chuanyang Wen
- a Department of Orthopaedics , Luhe People's Hospital of Nanjing , Nanjing , China
| | - Zhen Wang
- a Department of Orthopaedics , Luhe People's Hospital of Nanjing , Nanjing , China
| | - Fuqing Lin
- a Department of Orthopaedics , Luhe People's Hospital of Nanjing , Nanjing , China
| |
Collapse
|
9
|
Onset and Progression of Human Osteoarthritis-Can Growth Factors, Inflammatory Cytokines, or Differential miRNA Expression Concomitantly Induce Proliferation, ECM Degradation, and Inflammation in Articular Cartilage? Int J Mol Sci 2018; 19:ijms19082282. [PMID: 30081513 PMCID: PMC6121276 DOI: 10.3390/ijms19082282] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative whole joint disease, for which no preventative or therapeutic biological interventions are available. This is likely due to the fact that OA pathogenesis includes several signaling pathways, whose interactions remain unclear, especially at disease onset. Early OA is characterized by three key events: a rarely considered early phase of proliferation of cartilage-resident cells, in contrast to well-established increased synthesis, and degradation of extracellular matrix components and inflammation, associated with OA progression. We focused on the question, which of these key events are regulated by growth factors, inflammatory cytokines, and/or miRNA abundance. Collectively, we elucidated a specific sequence of the OA key events that are described best as a very early phase of proliferation of human articular cartilage (AC) cells and concomitant anabolic/catabolic effects that are accompanied by incipient pro-inflammatory effects. Many of the reviewed factors appeared able to induce one or two key events. Only one factor, fibroblast growth factor 2 (FGF2), is capable of concomitantly inducing all key events. Moreover, AC cell proliferation cannot be induced and, in fact, is suppressed by inflammatory signaling, suggesting that inflammatory signaling cannot be the sole inductor of all early OA key events, especially at disease onset.
Collapse
|
10
|
Kong Y, Guo Y, Zhang J, Zhao B, Wang J. Strontium Promotes Transforming Growth Factors β1 and β2 Expression in Rat Chondrocytes Cultured In Vitro. Biol Trace Elem Res 2018; 184:450-455. [PMID: 29170863 DOI: 10.1007/s12011-017-1208-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 01/18/2023]
Abstract
The transforming growth factors β1 (TGF-β1) and TGF-β2, as two distinct homodimers of TGF-β superfamily, involve in chondrocyte growth and differentiation. Emerging evidence has implied that strontium (Sr) plays an important role in the bone formation and resorption, and has strong effects on stimulating human cartilage matrix formation in vitro. However, the direct effects of Sr on TGF-β1 and TGF-β2 expressions in chondrocytes are not entirely clear. The purpose of this study was to evaluate the influence of different Sr concentrations on the expression of TGF-β1 and TGF-β2 in rat chondrocytes in vitro. Chondrocytes were isolated from Wistar rat articular by enzymatic digestion. Strontium chloride hexahydrate (SrCl2·6H2O) was used as a Sr source in this study. Sr was added to the culture solution at final concentrations of 0, 0.5, 1.0, 2.0, 5.0, 20.0, and 100 μg/mL. After 72 h of continuous culture, TGF-β1 and TGF-β2 mRNA abundance and protein expression levels in the chondrocytes were determined by real-time polymerase chain reaction (real-time PCR) and Western blot, respectively. The results showed that TGF-β1 and TGF-β2 expressions in chondrocytes increased dose-dependently with Sr concentration. The mRNA abundance of TGF-β1 and TGF-β2 were markedly higher than those observed for control (P < 0.01) when the Sr-treated concentration exceeded 1.0 and 5.0 μg/mL, respectively. The TGF-β1 and TGF-β2 protein expression levels were extremely significantly higher than those in the control group (P < 0.01) at above 5.0 μg/mL Sr-treatment. These results indicated that Sr could involve in the chondrocytes metabolism via regulating TGF-β1 and TGF-β2 signalling.
Collapse
Affiliation(s)
- Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yazhou Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinfeng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
MicroRNA-140 Suppresses Human Chondrocytes Hypertrophy by Targeting SMAD1 and Controlling the Bone Morphogenetic Protein Pathway in Osteoarthritis. Am J Med Sci 2018; 355:477-487. [DOI: 10.1016/j.amjms.2018.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 12/19/2022]
|
12
|
Matrix metalloproteinase-13: A special focus on its regulation by signaling cascades and microRNAs in bone. Int J Biol Macromol 2018; 109:338-349. [DOI: 10.1016/j.ijbiomac.2017.12.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023]
|