1
|
Bareeqa SB, Bibi F, Ahmed SI, Samar SS. Advancement in Stem Cell Therapy for Ischemic Myocardial Cell: A Systematic Review. Int J Hematol Oncol Stem Cell Res 2018; 12:282-290. [PMID: 30774828 PMCID: PMC6375372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Cardiac muscle possesses a limited capacity to regenerate its tissue on its own. It is less likely to reverse the altered cardiac functioning to its normal physiological state after a major myocardial infarction. Stem cell transplantation provided a unique therapeutic approach in managing such injuries. There has been a substantial debate about the complexity, scope and medical application of stem cell transplantation in past few years. Materials and Methods: An extensive review of medical literature was conducted to establish the consensus about the possible mechanism of cell renewal, associated complications and risks of failure of this technique. Twenty cases of mammalian animals and twenty-four cases of stem cell transplantation in human subjects were reviewed. Results: Most common associated complication was re-stenosis of coronary artery. Few clinical trials reported the failure in improving cardiac functioning. The success rate of stem cell transplantation was remarkable in the literature related to experimental animal subjects. Conclusion: It was concluded that renewal of the cardiac cell is a result of induction of angiogenesis and prolonged cell survival. This topic still requires an immense amount of research to fill the gap in adequate knowledge.
Collapse
Affiliation(s)
| | - Fazeela Bibi
- Jinnah Medical and Dental College, Karachi, Pakistan
| | - Syed Ijlal Ahmed
- Medical Graduate, Liaquat National Medical College and Hospital, Karachi, Pakistan
| | | |
Collapse
|
2
|
Jiang C, Zheng D, Feng YL, Guo J, Li HR, Zhang AD. Short- and Long-term Therapeutic Efficacies of Intravenous Transplantation of Bone Marrow Stem Cells on Cardiac Function in Rats with Acute Myocardial Infarction: A Meta-analysis of Randomized Controlled Trials. ACTA ACUST UNITED AC 2016; 31:142-8. [PMID: 27733220 DOI: 10.1016/s1001-9294(16)30042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
<strong>Objective</strong> To investigate the short- and long-term therapeutic efficacies of intravenous trans- plantation of bone marrow stem cells (MSCs) in rats with experimental myocardial infarction by meta- analysis. <strong>Methods</strong> Randomized controlled trials were systematically searched from PubMed, Science Citation Index (SCI), Chinese journal full-text database (CJFD) up to December 2014. While the experimental groups (MSCs groups) were injected MSCs intravenously, the control groups were injected Delubecco's minimum essential medium (DMEM) or phosphate buffered saline (PBS). Subgroup analysis for each outcome measure was performed for the observing time point after the transplantation of MSCs. Weighted mean differences (WMD) and 95% confidence intervals (CI) were calculated for outcome parameters including ejection fraction (EF) and fractional shortening (FS), which were measured by echocardiogram after intravenous injection and analyzed by RevMan 5.2 and STATA 12.0. <strong>Results</strong> Data from 9 studies (190 rats) were included in the meta-analysis. As compared to the control groups, the cardiac function of the experimental groups were not improved at day 7 (EF: WMD=0.08, 95%CI -1.32 to 1.16, P>0.01; FS: WMD=-0.12, 95%CI -0.90 to 0.65, P>0.01) until at day 14 after MSCs' transplantation (EF: WMD=10.79, 95%CI 9.16 to 12.42, P<0.01; FS: WMD=11.34, 95%CI 10.44 to 12.23, P<0.01), and it lasted 4 weeks or more after transplantation of MSCs (EF: WMD=13.94, 95%CI 12.24 to 15.64, P<0.01; FS: WMD=9.64, 95%CI 7.98 to 11.31, P<0.01). <strong>Conclusion</strong> The therapeutic efficacies of MSCs in rats with myocardid infarction become increasing apparent as time advances since 2 weeks after injection.
Collapse
Affiliation(s)
- Can Jiang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dong Zheng
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yun-Lu Feng
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jun Guo
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hai-Rui Li
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ai-Dong Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
3
|
Comparison of adipose tissue- and bone marrow- derived mesenchymal stem cells for alleviating doxorubicin-induced cardiac dysfunction in diabetic rats. Stem Cell Res Ther 2015; 6:148. [PMID: 26296856 PMCID: PMC4546321 DOI: 10.1186/s13287-015-0142-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/23/2015] [Accepted: 08/03/2015] [Indexed: 01/22/2023] Open
Abstract
Introduction Doxorubicin (DOX) is a well-known anticancer drug. However its clinical use has been limited due to cardiotoxic effects. One of the major concerns with DOX therapy is its toxicity in patients who are frail, particularly diabetics. Several studies suggest that mesenchymal stem cells (MSCs) have the potential to restore cardiac function after DOX-induced injury. However, limited data are available on the effects of MSC therapy on DOX-induced cardiac dysfunction in diabetics. Our objective was to test the efficacy of bone marrow-derived (BM-MSCs) and adipose-derived MSCs (AT-MSCs) from age-matched humans in a non-immune compromised rat model. Methods Diabetes mellitus was induced in rats by streptozotocin injection (STZ, 65 mg/kg b.w, i.p.). Diabetic rats were treated with DOX (doxorubicin hydrochloride, 2.5 mg/kg b.w, i.p) 3 times/wk for 2 weeks (DOX group); or with DOX+ GFP labelled BM-MSCs (2x106cells, i.v.) or with DOX + GFP labelled AT-MSCs (2x106cells, i.v.). Echocardiography and Langendorff perfusion analyses were carried out to determine the heart function. Immunostaining and western blot analysis of the heart tissue was carried out for CD31 and to assess inflammation and fibrosis. Statistical analysis was carried out using SPSS and data are expressed as mean ± SD. Results Glucose levels in the STZ treated groups were significantly greater than control group. After 4 weeks of intravenous injection, the presence of injected MSCs in the heart was confirmed through fluorescent microscopy and real time PCR for ALU transcripts. Both BM-MSCs and AT-MSCs injection prevented DOX-induced deterioration of %FS, LVDP, dp/dt max and rate pressure product. Staining for CD31 showed a significant increase in the number of capillaries in BM-MSCs and AT-MSCs treated animals in comparison to DOX treated group. Assessment of the inflammation and fibrosis revealed a marked reduction in the DOX-induced increase in immune cell infiltration, collagen deposition and αSMA in the BM-MSCs and AT-MSCs groups. Conclusions In conclusion BM-MSCs and AT-MSCs were equally effective in mitigating DOX-induced cardiac damage by promoting angiogenesis, decreasing the infiltration of immune cells and collagen deposition. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0142-x) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Liang L, Wang J, Zhang Y, Shen Z, Zheng J, Li J, Su Z, Cai J, Jiang W, Sun M. Transdifferentiation of bone marrow-derived mesenchymal stem cells into salivary gland-like cells using a novel culture method. Biotechnol Lett 2015; 37:1505-13. [DOI: 10.1007/s10529-015-1809-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
5
|
Amr SM, Gouda A, Koptan WT, Galal AA, Abdel-Fattah DS, Rashed LA, Atta HM, Abdel-Aziz MT. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. J Spinal Cord Med 2014; 37:54-71. [PMID: 24090088 PMCID: PMC4066552 DOI: 10.1179/2045772312y.0000000069] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. METHODS In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. RESULTS Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2-3 grades), ankle dorsiflexors (1-2 grades), long toe extensors (1-2 grades), and plantar flexors (0-2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. CONCLUSION Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold.
Collapse
Affiliation(s)
- Sherif M. Amr
- Department of Orthopaedics and Traumatology, Cairo University, Cairo, Egypt
| | - Ashraf Gouda
- Department of Orthopaedics and Traumatology, Al-Helal Hospital, Cairo, Egypt
| | - Wael T. Koptan
- Department of Orthopaedics and Traumatology, Cairo University, Cairo, Egypt
| | - Ahmad A. Galal
- Department of Orthopaedics and Traumatology, Cairo University, Cairo, Egypt
| | | | - Laila A. Rashed
- Department of Biochemistry and Molecular Biology, Cairo University, Cairo, Egypt
| | - Hazem M. Atta
- Department of Biochemistry and Molecular Biology, Cairo University, Cairo, Egypt
| | | |
Collapse
|
6
|
Zhu B, Bailey SR, Elliott J, Li X, Escobar GP, Rodriguez EM, Agrawal CM. Development of a total atherosclerotic occlusion with cell-mediated calcium deposits in a rabbit femoral artery using tissue-engineering scaffolds. J Tissue Eng Regen Med 2011; 6:193-204. [PMID: 21400666 DOI: 10.1002/term.413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/30/2010] [Indexed: 01/07/2023]
Abstract
This study sought to establish a chronic total occlusion (CTO) model with cell-mediated calcium deposits in rabbit femoral arteries. CTO is the most severe case in atherosclerosis and contains calcium deposits. Previous animal models of CTO do not mimic the gradual occlusion of arteries or have calcium in physiological form. In the present study we tested the strategy of placing tissue-engineering scaffolds preloaded with cells in arteries to develop a novel CTO model. Primary human osteoblasts (HOBs) were first cultured in vitro on polycaprolactone (PCL) scaffolds with 5 ng TGFβ1 loading for 28 days for precalcification. The HOB-PCL construct was then implanted into a rabbit femoral artery for an additional 3, 10 or 28 days. At the time of sacrifice, angiograms and gross histology of arteries were captured to examine the occlusion of arteries. Fluorescent staining of calcium and EDS detection of calcium were used to evaluate the presence and distribution of calcium inside arteries. Rabbit femoral arteries were totally occluded over 28 days. Calcium was presented at CTO sites at 3, 10 and 28 days, with the day 10 specimens showing the maximum calcium. Chronic inflammatory response and recanalization were observed in day 28 CTO sites. A novel CTO model with cell-mediated calcium has been successfully established in a rabbit femoral artery. This model can be used to develop new devices and therapies to treat severe atherosclerotic occlusion.
Collapse
Affiliation(s)
- Beili Zhu
- Janey Briscoe Center for Cardiovascular Research, Janey and Dolph Briscoe Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Potential of human umbilical cord matrix and rabbit bone marrow-derived mesenchymal stem cells in repair of surgically incised rabbit external anal sphincter. Dis Colon Rectum 2009; 52:1753-61. [PMID: 19966609 DOI: 10.1007/dcr.0b013e3181b55112] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Anal sphincter defects and fecal incontinence are complicated surgical problems. We investigated the ability of human umbilical cord matrix (hUCM) and rabbit bone marrow (rBM) stem cells to improve anal sphincter incontinence due to induced sphincter defects without surgical repair. METHODS We harvested hUCM cells from human Wharton's jelly and rBM stem cells from rabbit femurs and tibias. To induce sphincter defects, we made an incision in the external anal sphincter. Rabbits were randomly allocated to 5 groups to receive either no intervention (n = 3) or injections of 10 hUCM cells in medium (10 microL RPMI-1640), rBM cells in medium, medium only, or normal saline (n = 7 per group), 2 weeks after sphincterotomy. Transplanted cells were tracked in the injured sphincters by prelabeling with bromodeoxyuridine. Electromyography was performed before and 2 weeks after the external anal sphincterotomy, and 2 weeks after cell transplantation. We also evaluated the proliferation and differentiation of injected cells with histopathologic techniques. RESULTS Electromyography showed significant improvement in sphincter function 2 weeks after local injection of rBM stem cells compared with pretreatment values and controls. Moderate, nonsignificant improvement was observed with hUCM cell injection. Cells with incorporated bromodeoxyuridine were detected at the site of injury after transplantation of hUCM and rBM. Histopathologic evaluation showed normal or muscle-dominant sphincter structure in all animals receiving rBM and fibrous-dominant sphincter structure in most animals receiving hUCM. CONCLUSIONS Stem cell injection at the site of injury can enhance contractile function of the anal sphincter without surgical repair. Transplantation of stem cells, particularly bone marrow mesenchymal cells, may provide an effective tool for treating anal sphincter injuries in humans.
Collapse
|
8
|
Liu XB, Wang JA, Ogle ME, Wei L. Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. J Cell Biochem 2009; 106:903-11. [PMID: 19229863 DOI: 10.1002/jcb.22064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising approach in the therapy of ischemic heart or CNS diseases; however, the poor viability of MSCs after transplantation critically limits the efficacy of this new strategy. Prolyl hydroxylase inhibition followed by HIF-1alpha up-regulation participates in the regulation of apoptosis and cell survival, which have been shown in cancer cells and neurons. The role of prolyl hydroxylase inhibition by dimethyloxalylglycine (DMOG) in regulation of cell survival has not been investigated in MSCs. In the present investigation with MSCs, apoptosis and cell death induced by serum deprivation were assessed by caspase-3 activation and trypan blue staining, respectively. The mitochondrial apoptotic pathway and PI3K/Akt cell survival pathway were evaluated. DMOG significantly attenuated apoptosis and cell death of MSCs, stabilized HIF-1alpha and induced downstream glucose transport 1 (Glut-1) synthesis. DMOG treatment reduced mitochondrial cytochrome c release, nuclear translocation of apoptosis inducing factor (AIF), and promoted Akt phosphorylation. A specific PI3K inhibitor, wortmannin, blocked Akt phosphorylation and abrogated the beneficial effect of DMOG. These data suggest that the DMOG protection of MSCs may provide a novel approach to promote cell survival during cell stress.
Collapse
Affiliation(s)
- Xian-Bao Liu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | |
Collapse
|
9
|
Stastna M, Abraham MR, Van Eyk JE. Cardiac stem/progenitor cells, secreted proteins, and proteomics. FEBS Lett 2009; 583:1800-7. [PMID: 19303873 PMCID: PMC4340703 DOI: 10.1016/j.febslet.2009.03.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/02/2009] [Accepted: 03/13/2009] [Indexed: 01/06/2023]
Abstract
Stem cell-based therapy is emerging as a novel approach for myocardial repair over conventional cardiovascular therapies. In addition to embryonic stem cells and adult stem cells from noncardiac sources, there is a small population of resident stem cells in the heart from which new cardiac cells (myocytes, vascular endothelial cells and smooth muscle cells) can be derived and used for cardiac repair in case of heart injury. It has been proposed that the clinical benefit of stem cells may arise from secreted proteins that mediate regeneration in a paracrine/autocrine manner. To be able to track the regulatory pathway on a molecular basis, utilization of proteomics in stem cell research is essential. Proteomics offers a tool that can address questions regarding stem cell response to disease/injury.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the ASCR, v.v.i., Veveri 97, 602 00 Brno, Czech Republic.
| | | | | |
Collapse
|
10
|
Wang SP, Wang JA, Luo RH, Cui WY, Wang H. POTASSIUM CHANNEL CURRENTS IN RAT MESENCHYMAL STEM CELLS AND THEIR POSSIBLE ROLES IN CELL PROLIFERATION. Clin Exp Pharmacol Physiol 2008; 35:1077-84. [DOI: 10.1111/j.1440-1681.2008.04964.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Liu XB, Jiang J, Gui C, Hu XY, Xiang MX, Wang JA. Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway. Acta Pharmacol Sin 2008; 29:815-22. [PMID: 18565279 DOI: 10.1111/j.1745-7254.2008.00811.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The angiopoietin-1 (Ang1)/Tie-2 signaling system not only plays a pivotal role in vessel growth, remodeling, and maturation, but also reduces apoptosis of endothelial cells, neurons, and cardiomyocytes. However, relatively little is known as to whether Ang1 has a protective effect on mesenchymal stem cells (MSC). The aim of the present study was to investigate the protective effect of Ang1/Tie-2 signaling on MSC against serum deprivation and hypoxia-induced apoptosis, and to determine the possible mechanisms. METHODS Hoechst 33342 and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling staining were used to assess the apoptosis of MSC. The expression of Tie-2, Akt, Bcl-2, Bax, and cleaved caspase-9 and -3 was detected by Western blot analysis. RESULTS This study showed that MSC expressed Tie-2 receptor, and Ang1 induced Tie-2 receptor phosphorylation. The protective effect of Ang1 on MSC was dose-dependent and peaked at 50 microg/L; however, the soluble Tie-2/Fc fusion protein, which acts as an inhibitor by sequestering Ang1, abrogated the anti-apoptotic effect. Ang1 induced Akt phosphorylation, increased the Bcl-2/Bax ratio, and decreased the activation of caspase-9 and -3. All these effects were attenuated by Tie-2/Fc and a phosphatidylinositol 3 kinase (PI3K) inhibitor, wortmannin. CONCLUSION These results demonstrate that Ang1 can protect MSC against serum deprivation and hypoxia-induced apoptosis; Ang1/Tie-2 signaling and its downstream PI3K/Akt messenger pathway are crucial in the processes leading to MSC survival.
Collapse
Affiliation(s)
- Xian-bao Liu
- Department of Cardiology, Second affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | | | |
Collapse
|
12
|
Guillot PV, De Bari C, Dell'Accio F, Kurata H, Polak J, Fisk NM. Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation 2008; 76:946-57. [PMID: 18557767 DOI: 10.1111/j.1432-0436.2008.00279.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human mesenchymal stem cells (MSC) from adult and fetal tissues are promising candidates for cell therapy but there is a need to identify the optimal source for bone regeneration. We have previously characterized MSC populations in first trimester fetal blood, liver, and bone marrow and we now evaluate their osteogenic differentiation potential in comparison to adult bone marrow MSC. Using quantitative real-time RT-PCR, we demonstrated that 16 osteogenic-specific genes (OC, ON, BSP, OP, Col1, PCE, Met2A, OPG, PHOS1, SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were expressed in both fetal and adult MSC under basal conditions and were up-regulated under osteogenic conditions both in vivo and during an in vitro 21-day time-course. However, under basal conditions, fetal MSC had higher levels of osteogenic gene expression than adult MSC. Upon osteogenic differentiation, fetal MSC produced more calcium in vitro and reached higher levels of osteogenic gene up-regulation in vivo and in vitro. Second, we observed a hierarchy within fetal samples, with fetal bone marrow MSC having greater osteogenic potential than fetal blood MSC, which in turn had greater osteogenic potential than fetal liver MSC. Finally, we found that the level of gene expression under basal conditions was positively correlated with both calcium secretion and gene expression after 21 days in osteogenic conditions. Our findings suggest that stem cell therapy for bone dysplasias such as osteogenesis imperfecta may benefit from preferentially using first trimester fetal blood or bone marrow MSC over fetal liver or adult bone marrow MSC.
Collapse
Affiliation(s)
- Pascale V Guillot
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, Mori T, Miyado K, Ikegami Y, Cui C, Kiyono T, Kyo S, Shimizu T, Okano T, Sakamoto M, Ogawa S, Umezawa A. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 2008; 26:1695-704. [PMID: 18420831 DOI: 10.1634/stemcells.2007-0826] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cell therapy can help repair damaged heart tissue. Yet many of the suitable cells currently identified for human use are difficult to obtain and involve invasive procedures. In our search for novel stem cells with a higher cardiomyogenic potential than those available from bone marrow, we discovered that potent cardiac precursor-like cells can be harvested from human menstrual blood. This represents a new, noninvasive, and potent source of cardiac stem cell therapeutic material. We demonstrate that menstrual blood-derived mesenchymal cells (MMCs) began beating spontaneously after induction, exhibiting cardiomyocyte-specific action potentials. Cardiac troponin-I-positive cardiomyocytes accounted for 27%-32% of the MMCs in vitro. The MMCs proliferated, on average, 28 generations without affecting cardiomyogenic transdifferentiation ability, and expressed mRNA of GATA-4 before cardiomyogenic induction. Hypothesizing that the majority of cardiomyogenic cells in MMCs originated from detached uterine endometrial glands, we established monoclonal endometrial gland-derived mesenchymal cells (EMCs), 76%-97% of which transdifferentiated into cardiac cells in vitro. Both EMCs and MMCs were positive for CD29, CD105 and negative for CD34, CD45. EMCs engrafted onto a recipient's heart using a novel 3-dimensional EMC cell sheet manipulation transdifferentiated into cardiac tissue layer in vivo. Transplanted MMCs also significantly restored impaired cardiac function, decreasing the myocardial infarction (MI) area in the nude rat model, with tissue of MMC-derived cardiomyocytes observed in the MI area in vivo. Thus, MMCs appear to be a potential novel, easily accessible source of material for cardiac stem cell-based therapy.
Collapse
Affiliation(s)
- Naoko Hida
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ballard VLT, Edelberg JM. Stem cells for cardiovascular repair - the challenges of the aging heart. J Mol Cell Cardiol 2008; 45:582-92. [PMID: 18396293 DOI: 10.1016/j.yjmcc.2008.02.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/22/2008] [Accepted: 02/22/2008] [Indexed: 01/04/2023]
Abstract
The discovery of extracardiac progenitor cells and resident cardiac stem cells in recent years has led to a great deal of interest in the development of therapeutic strategies that target these endogenous cell sources for promotion of cardiovascular repair mechanisms in the diseased heart. Cardiovascular risk increases with age and among many factors, the age-associated decline in cardiac and vascular regenerative capacity may contribute to the progressive deterioration of cardiovascular health. Thus, understanding the mechanisms which underlie the dysregulation of cardiac stem and progenitor cells may lead to the identification of novel targets and approaches to reverse this decline. In this review, we outline the current knowledge about cardiac stem and progenitor cells, their contribution to cardiovascular regenerative processes and factors that may affect their decreased function in aging individuals. Moreover, we describe the therapeutic strategies that are currently being tested in clinical trials as well as potential new avenues of investigation for the future.
Collapse
|
15
|
Guillot PV, Cui W, Fisk NM, Polak DJ. Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 2008; 11:935-44. [PMID: 17979875 PMCID: PMC4401265 DOI: 10.1111/j.1582-4934.2007.00106.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This invited review discusses the latest advances stem cell biology, tissue engineering and the transition from bench to bedside. An overview is presented as to which the best cell source might be for cell therapy and tissue engineering applications, best biomaterials currently available and the challenges the field faces to translate basic research into therapies for a large number of human diseases.
Collapse
Affiliation(s)
- Pascale V Guillot
- Imperial College London, Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus, London, UK
| | | | | | | |
Collapse
|
16
|
Guarita-Souza LC, Carvalho KAT, Rebelatto C, Senegaglia A, Hansen P, Furuta M, Miyague N, Francisco JC, Olandoski M, Faria-Neto JR, Oliveira SA, Brofman PRS. Cell transplantation: Differential effects of myoblasts and mesenchymal stem cells. Int J Cardiol 2006; 111:423-9. [PMID: 16290098 DOI: 10.1016/j.ijcard.2005.08.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 08/18/2005] [Accepted: 08/20/2005] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cellular transplantation has emerged as a novel therapeutic option for treatment of ventricular dysfunction. Both skeletal myoblasts (SM) and mesenchymal stem cells (MSC) have been proposed as ideal cell for this aim. The aim of this study is to compare the efficacy of these cells in improving ventricular function and to evaluate the different histological findings in a rat model of severe post-infarct ventricular dysfunction. METHODS Myocardial infarction was induced in Wistar rats by left coronary occlusion. Animals with resulting ejection fraction (EF) lower than 40% were included. Heterologous SM were obtained by lower limb muscle biopsy and MSC by bone marrow aspiration. Nine days after infarction, rats received intramyocardial injection of SM (n=8), MSC (n=8) or culture medium, as control (n=11). Echocardiographic evaluation was performed at baseline and after 1 month. Histological evaluation was performed after HE and Gomori's trichrome staining and immunostainig against desmin, fast myosin and factor VIII. RESULTS There was no difference in baseline EF and left ventricular end diastolic (LVEDV) and systolic volume (LVESV) between all groups. After 1 month a decrease was observed in the EF in the control group (27.0+/-7.10% to 21.46+/-5.96%, p=0.005) while the EF markedly improved in SM group (22.66+/-7.29% to 29.40+/-7.01%, p=0.04) and remained unchanged in the MSC group (23.88+/-8.44% to 23.63+/-10.28%, p=0.94). Histopathology identified new muscular fibers in the group that received SM and new vessels and endothelial cells in the MSC. CONCLUSION Skeletal myoblasts transplantation resulted in myogenesis and improvement of ventricular function. In contrast, treatment with mesenchymal stem cells resulted in neoangiogenesis and no functional effect.
Collapse
Affiliation(s)
- L C Guarita-Souza
- PUCPR-Experimental Laboratory of Cell Culture Institute of Biological and Health Sciences, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Premaratne GU, Tambara K, Fujita M, Lin X, Kanemitsu N, Tomita S, Sakaguchi G, Nakajima H, Ikeda T, Komeda M. Repeated Implantation is a More Effective Cell Delivery Method in Skeletal Myoblast Transplantation for Rat Myocardial Infarction. Circ J 2006; 70:1184-9. [PMID: 16936434 DOI: 10.1253/circj.70.1184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Several clinical trials are underway to determine whether autologous skeletal myoblast transplantation is an effective and safe therapeutic strategy for severe heart failure due to myocardial infarction (MI). It remains unclear whether repeated skeletal myoblast implantation is a feasible and effective cell delivery method for the infarcted myocardium. METHODS AND RESULTS Four weeks after a coronary ligation, male syngeneic Lewis rats were assigned to 3 treatment groups: 3 episodes of skeletal myoblasts (6x10(6)) transplantation (group I), a bolus transplantation of myoblasts (18x10(6)) (group II), or culture medium injection (group III). Eight weeks after the first treatment, echocardiography, cardiac catheterization and histological examination were performed to compare the therapeutic effects on left ventricular (LV) systolic and diastolic functions, and the engrafted myoblast volume. Repeated myoblast implantation significantly improved LV function and resulted in significantly larger engrafted volume and LV contractility compared with a bolus transplantation with the same number of myoblasts. CONCLUSIONS Repeated skeletal myoblast transplantation is a safe and effective therapeutic strategy for the infarcted myocardium.
Collapse
Affiliation(s)
- Goditha U Premaratne
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA. Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev 2005; 14:440-51. [PMID: 16137233 DOI: 10.1089/scd.2005.14.440] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The isolation and characterization of embryonic and adult stem cells from higher-order mammalian species will enhance the understanding of the biology and therapeutic application of stem cells. The aim of this study was to purify rhesus mesenchymal stem cells (MSCs) from adult bone marrow and to characterize functionally their abilities to differentiate along diverse lineages. Adherent cells from adult rhesus macaque bone marrow were characterized for their growth characteristics, lineage differentiation, cell-surface antigen expression, telomere length, chromosome content, and transcription factor gene expression. Rhesus bone marrow MSCs (BMSCs) are very heterogeneous, composed of primarily long, thin cells and some smaller, round cells. The cells are capable of differentiating along osteogenic, chondrogenic, and adipogenic lineages in vitro. The cell morphology and multipotential differentiation capabilities are maintained throughout extended culture. They express CD59, CD90 (Thy-1), CD105, and HLA-1 and were negative for hematopoietic markers such as CD3, CD4, CD8, CD11b, CD13, CD34, and platelet endothelial cell adhesion molecule-1 (CD31). BMSCs were also demonstrated to express the mRNA for important stem cell-related transcription factors such as Oct-4, Sox-2, Rex-1, and Nanog. Rhesus BMSCs have a normal chromosome content, and the shortening of telomeres is minimal during early passages. These data demonstrate that BMSCs isolated from rhesus macaques have a high degree of commonality with MSCs isolated from other species. Therefore, isolation of these cells provides an effective and convenient method for rapid expansion of pluripotent rhesus MSCs.
Collapse
Affiliation(s)
- Reza Izadpanah
- Division of Gene Therapy, Tulane National Primate Center, Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70433, USA
| | | | | | | | | | | |
Collapse
|