1
|
Quesenberry PJ, Wen S, Goldberg LR, Dooner MS. The universal stem cell. Leukemia 2022; 36:2784-2792. [PMID: 36307485 PMCID: PMC9712109 DOI: 10.1038/s41375-022-01715-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
Current dogma is that there exists a hematopoietic pluripotent stem cell, resident in the marrow, which is quiescent, but with tremendous proliferative and differentiative potential. Furthermore, the hematopoietic system is essentially hierarchical with progressive differentiation from the pluripotent stem cells to different classes of hematopoietic cells. However, results summarized here indicate that the marrow pluripotent hematopoietic stem cell is actively cycling and thus continually changing phenotype. As it progresses through cell cycle differentiation potential changes as illustrated by sequential changes in surface expression of B220 and GR-1 epitopes. Further data indicated that the potential of purified hematopoietic stem cells extends to multiple other non-hematopoietic cells. It appears that marrow stem cells will give rise to epithelial pulmonary cells at certain points in cell cycle. Thus, it appears that the marrow "hematopoietic" stem cell is also a stem cell for other non-hematopoietic tissues. These observations give rise to the concept of a universal stem cell. The marrow stem cell is not limited to hematopoiesis and its differentiation potential continually changes as it transits cell cycle. Thus, there is a universal stem cell in the marrow which alters its differentiation potential as it progresses through cell cycle. This potential is expressed when it resides in tissues compatible with its differentiation potential, at a particular point in cell cycle transit, or when it interacts with vesicles from that tissue.
Collapse
Affiliation(s)
- Peter J Quesenberry
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA.
| | - Sicheng Wen
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Laura R Goldberg
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mark S Dooner
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| |
Collapse
|
2
|
Liu C, Xiao K, Xie L. Advances in mesenchymal stromal cell therapy for acute lung injury/acute respiratory distress syndrome. Front Cell Dev Biol 2022; 10:951764. [PMID: 36036014 PMCID: PMC9399751 DOI: 10.3389/fcell.2022.951764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) develops rapidly and has high mortality. ALI/ARDS is mainly manifested as acute or progressive hypoxic respiratory failure. At present, there is no effective clinical intervention for the treatment of ALI/ARDS. Mesenchymal stromal cells (MSCs) show promise for ALI/ARDS treatment due to their biological characteristics, easy cultivation, low immunogenicity, and abundant sources. The therapeutic mechanisms of MSCs in diseases are related to their homing capability, multidirectional differentiation, anti-inflammatory effect, paracrine signaling, macrophage polarization, the polarization of the MSCs themselves, and MSCs-derived exosomes. In this review, we discuss the pathogenesis of ALI/ARDS along with the biological characteristics and mechanisms of MSCs in the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| |
Collapse
|
3
|
Ciechanowicz AK, Lay WX, Prado Paulino J, Suchocki E, Leszczak S, Leszczak C, Kucia M. Angiotensin 1–7 Stimulates Proliferation of Lung Bronchoalveolar Progenitors—Implications for SARS-CoV-2 Infection. Cells 2022; 11:cells11132102. [PMID: 35805187 PMCID: PMC9266020 DOI: 10.3390/cells11132102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 infection leads to severe lung damage due to pneumonia and, in more severe cases, leads to acute respiratory distress syndrome, or ARDS. This affects the viability of bronchoalveolar cells. An important role in the pathogenesis of these complications is the hyperactivation of the renin-angiotensin-aldosterone (RAA) pathway and induction of cytokine storm that occurs in an Nlrp3 inflammasome-dependent manner. To shed more light on the susceptibility of lung tissue to SARS-CoV-2 infection, we evaluated murine bronchioalveolar stem cells (BASC), alveolar type II cells (AT2), and 3D-derived organoids expression of mRNA encoding genes involved in virus entry into cells, components of RAA, and genes that comprise elements of the Nlrp3 inflammasome pathway. We noticed that all these genes are expressed by lung alveolar stem cells and organoids-derived from these cells. Interestingly, all these cells express a high level of ACE2 that, on the one hand, serves as an entry receptor for SARS-CoV-2 and, on the other, converts angiotensin II into its physiological antagonist, angiotensin 1–7 (Ang 1–7), which has been reported to have a protective role in lung damage. To shed more light on the role of Ang 1–7 on lung tissue, we exposed lung-derived BASC and AT2 cells to this mediator of RAA and noticed that it increases the proliferation of these cells. Based on this, Ang 1–7 could be employed to alleviate the damage to lung alveolar stem/progenitor cells during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Andrzej K. Ciechanowicz
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.X.L.); (J.P.P.); (E.S.); (S.L.); (C.L.); (M.K.)
- Correspondence:
| | - Wen Xin Lay
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.X.L.); (J.P.P.); (E.S.); (S.L.); (C.L.); (M.K.)
| | - Jefte Prado Paulino
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.X.L.); (J.P.P.); (E.S.); (S.L.); (C.L.); (M.K.)
| | - Erika Suchocki
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.X.L.); (J.P.P.); (E.S.); (S.L.); (C.L.); (M.K.)
| | - Susanne Leszczak
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.X.L.); (J.P.P.); (E.S.); (S.L.); (C.L.); (M.K.)
| | - Christian Leszczak
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.X.L.); (J.P.P.); (E.S.); (S.L.); (C.L.); (M.K.)
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.X.L.); (J.P.P.); (E.S.); (S.L.); (C.L.); (M.K.)
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Yang Y, Wu Y, Meng X, Wang Z, Younis M, Liu Y, Wang P, Huang X. SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK. Cell Death Differ 2022; 29:1395-1408. [PMID: 35022571 PMCID: PMC8752586 DOI: 10.1038/s41418-022-00928-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Deaths caused by coronavirus disease 2019 (COVID-19) are largely due to the lungs edema resulting from the disruption of the lung alveolo-capillary barrier, induced by SARS-CoV-2-triggered pulmonary cell apoptosis. However, the molecular mechanism underlying the proapoptotic role of SARS-CoV-2 is still unclear. Here, we revealed that SARS-CoV-2 membrane (M) protein could induce lung epithelial cells mitochondrial apoptosis. Notably, M protein stabilized B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) via inhibiting its ubiquitination and promoted BOK mitochondria translocation. The endodomain of M protein was required for its interaction with BOK. Knockout of BOK by CRISPR/Cas9 increased cellular resistance to M protein-induced apoptosis. BOK was rescued in the BOK-knockout cells, which led to apoptosis induced by M protein. M protein induced BOK to trigger apoptosis in the absence of BAX and BAK. Furthermore, the BH2 domain of BOK was required for interaction with M protein and proapoptosis. In vivo M protein recombinant lentivirus infection induced caspase-associated apoptosis and increased alveolar-capillary permeability in the mouse lungs. BOK knockdown improved the lung edema due to lentivirus-M protein infection. Overall, M protein activated the BOK-dependent apoptotic pathway and thus exacerbated SARS-CoV-2 associated lung injury in vivo. These findings proposed a proapoptotic role for M protein in SARS-CoV-2 pathogenesis, which may provide potential targets for COVID-19 treatments.
Collapse
Affiliation(s)
- Yang Yang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojun Meng
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zhiying Wang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Muhammad Younis
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Ye Liu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Peihui Wang
- Cheeloo College of Medicine, Advanced Medical Research Institute, Shandong University, Jinan, Shandong Province, 250012, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China.
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
5
|
Ciechanowicz AK, Sielatycka K, Cymer M, Skoda M, Suszyńska M, Bujko K, Ratajczak MZ, Krause DS, Kucia M. Bone Marrow-Derived VSELs Engraft as Lung Epithelial Progenitor Cells after Bleomycin-Induced Lung Injury. Cells 2021; 10:1570. [PMID: 34206516 PMCID: PMC8303224 DOI: 10.3390/cells10071570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Alveolar type 2 (AT2) cells and bronchioalveolar stem cells (BASC) perform critical regenerative functions in response to lung damage. Published data show that nonhematopoietic, bone marrow-derived "very small embryonic-like stem cells" (VSELs) can differentiate in vivo into surfactant protein C (SPC)-producing AT2 cells in the lung. Here, we test directly whether VSEL-derived BASC and AT2 cells function to produce differentiated progeny. METHODS using a reporter mouse in which the H2B-GFP fusion protein is driven from the murine SPC promoter, we tested whether bone marrow-derived VSELs or non-VSEL/nonhematopoietic stem cells (non-VSEL/non-HSCs) can differentiate into AT2 and BASC cells that function as progenitor cells. Immediately following bleomycin administration, WT recipient mice underwent intravenous administration of VSELs or non-VSEL/non-HSCs from SPC H2B-GFP mice. GFP+ AT2 and BASC were isolated and tested for progenitor activity using in vitro organoid assays. RESULTS after 21 days in vivo, we observed differentiation of VSELs but not non-VSEL/non-HSCs into phenotypic AT2 and BASC consistent with previous data in irradiated recipients. Subsequent in vitro organoid assays revealed that VSEL-derived AT2 and BASC maintained physiological potential for differentiation and self-renewal. CONCLUSION these findings prove that VSELs produce functional BASC and AT2 cells, and this may open new avenues using VSELs to develop effective cell therapy approaches for patients with lung injury.
Collapse
Affiliation(s)
- Andrzej K. Ciechanowicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
| | - Katarzyna Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, 71-415 Szczecin, Poland;
| | - Monika Cymer
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
| | - Marta Skoda
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
| | - Malwina Suszyńska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (M.S.); (K.B.)
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (M.S.); (K.B.)
| | - Mariusz Z. Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (M.S.); (K.B.)
| | - Diane S. Krause
- Departments of Laboratory Medicine, Cell Biology and Pathology and the Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06509, USA;
| | - Magdalena Kucia
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.C.); (M.C.); (M.S.); (M.Z.R.)
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (M.S.); (K.B.)
| |
Collapse
|
6
|
Advances in mesenchymal stem cell-mediated tissue repair of lung injury. Chronic Dis Transl Med 2021; 7:75-78. [PMID: 34136766 PMCID: PMC8180469 DOI: 10.1016/j.cdtm.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 01/20/2023] Open
|
7
|
Li L, Zhang S, Ge C, Ji L, Lv Y, Zhao C, Xu L, Zhang J, Song C, Chen J, Wei W, Fang Y, Yuan N, Wang J. HSCs transdifferentiate primarily to pneumonocytes in radiation-induced lung damage repair. Aging (Albany NY) 2021; 13:8335-8354. [PMID: 33686967 PMCID: PMC8034935 DOI: 10.18632/aging.202644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Accumulative radiation exposure leads to hematopoietic or tissue aging. Whether hematopoietic stem cells (HSCs) are involved in lung damage repair in response to radiation remains controversial. The aim of this study is to identify if HSC can transdifferentiate to pneumonocytes for radiation-induced damage repair. To this end, HSCs from male RosamT/mG mice were isolated by fluorescence-activated cell sorting (FACS) and transplanted into lethally irradiated female CD45.1 mice. 4 months after transplantation, transplanted HSC was shown to repair the radiation-induced tissue damage, and donor-derived tdTomato (phycoerythrin, PE) red fluorescence cells and Ddx3y representing Y chromosome were detected exclusively in female recipient lung epithelial and endothelial cells. Co-localization of donor-derived cells and recipient lung tissue cells were observed by laser confocal microscopy and image flow cytometry. Furthermore, the results showed HSC transplantation replenished radiation-induced lung HSC depletion and the PE positive repaired lung epithelial cells were identified as donor HSC origin. The above data suggest that donor HSC may migrate to the injured lung of the recipient and some of them can be transdifferentiated to pneumonocytes to repair the injury caused by radiation.
Collapse
Affiliation(s)
- Lei Li
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Chaorong Ge
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Ji
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yaqi Lv
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chen Zhao
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Jingyi Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chenglin Song
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jianing Chen
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University School of Medicine, Suzhou 215123, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co., Ltd., Suzhou 215124, China
| |
Collapse
|
8
|
Baer PC, Sann J, Duecker RP, Ullrich E, Geiger H, Bader P, Zielen S, Schubert R. Tracking of Infused Mesenchymal Stem Cells in Injured Pulmonary Tissue in Atm-Deficient Mice. Cells 2020; 9:cells9061444. [PMID: 32531978 PMCID: PMC7349119 DOI: 10.3390/cells9061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary failure is the main cause of morbidity and mortality in the human chromosomal instability syndrome Ataxia-telangiectasia (A-T). Major phenotypes include recurrent respiratory tract infections and bronchiectasis, aspiration, respiratory muscle abnormalities, interstitial lung disease, and pulmonary fibrosis. At present, no effective pulmonary therapy for A-T exists. Cell therapy using adipose-derived mesenchymal stromal/stem cells (ASCs) might be a promising approach for tissue regeneration. The aim of the present project was to investigate whether ASCs migrate into the injured lung parenchyma of Atm-deficient mice as an indication of incipient tissue damage during A-T. Therefore, ASCs isolated from luciferase transgenic mice (mASCs) were intravenously transplanted into Atm-deficient and wild-type mice. Retention kinetics of the cells were monitored using in vivo bioluminescence imaging (BLI) and completed by subsequent verification using quantitative real-time polymerase chain reaction (qRT-PCR). The in vivo imaging and the qPCR results demonstrated migration accompanied by a significantly longer retention time of transplanted mASCs in the lung parenchyma of Atm-deficient mice compared to wild type mice. In conclusion, our study suggests incipient damage in the lung parenchyma of Atm-deficient mice. In addition, our data further demonstrate that a combination of luciferase-based PCR together with BLI is a pivotal tool for tracking mASCs after transplantation in models of inflammatory lung diseases such as A-T.
Collapse
Affiliation(s)
- Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (J.S.); (H.G.)
- Correspondence: (P.C.B.); (R.S.); Tel.: +49-69-6301-5554 (P.C.B.); +49-69-6301-83611 (R.S.); Fax: +49-69-6301-4749 (P.C.B.); +49-69-6301-83349 (R.S.)
| | - Julia Sann
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (J.S.); (H.G.)
| | - Ruth Pia Duecker
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (R.P.D.); (S.Z.)
| | - Evelyn Ullrich
- Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany; (E.U.); (P.B.)
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, 60596 Frankfurt am Main, Germany
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (J.S.); (H.G.)
| | - Peter Bader
- Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany; (E.U.); (P.B.)
| | - Stefan Zielen
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (R.P.D.); (S.Z.)
| | - Ralf Schubert
- Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany; (R.P.D.); (S.Z.)
- Correspondence: (P.C.B.); (R.S.); Tel.: +49-69-6301-5554 (P.C.B.); +49-69-6301-83611 (R.S.); Fax: +49-69-6301-4749 (P.C.B.); +49-69-6301-83349 (R.S.)
| |
Collapse
|
9
|
Epithelial chimerism in lung tissue after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2017; 53:474-477. [PMID: 29269810 DOI: 10.1038/s41409-017-0050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 11/08/2022]
|
10
|
Ahmadi M, Rahbarghazi R, Soltani S, Aslani MR, Keyhanmanesh R. Contributory Anti-Inflammatory Effects of Mesenchymal Stem Cells, Not Conditioned Media, On Ovalbumin-Induced Asthmatic Changes in Male Rats. Inflammation 2017; 39:1960-1971. [PMID: 27590236 DOI: 10.1007/s10753-016-0431-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our aim in selecting an appropriate cell fraction and conditioned media (CM) was to achieve the suitable candidate for ameliorating long-term chronic asthmatic changes of respiratory tract. Thirty-six rats were classified into healthy and sensitized groups, which were further divided into three subgroups; rats received systemically 50 μl volume of PBS, CM, or 2 × 106 rat bone marrow-derived mesenchymal stem cells (rBMMSCs). Tracheal responsiveness (TR), immunologic responses, and recruitment of rBMMSCs into the lungs were evaluated. A high degree of TR and total WBC and percentages of eosinophils and neutrophils was significantly recorded in all sensitized groups rather than of controls (p < 0.001 to p < 0.05). Concurrently, a significant improvement of TR and eosinophil and neutrophil return toward normal levels was evident in sensitized rats receiving cells as compared to parallel asthmatic animals. Flow cytometric monitoring of lymphocyte subpopulation revealed a decrease in the number of CD3+CD4+ and concurrent increase in CD3+CD8+ in all sensitized rats as compared to control (p < 0.001 to p < 0.05). Noticeably, no significant modulatory effects of either cell or CM administration were achieved on the CD3+CD4+ and CD3+CD8+ populations in non-asthmatic rats. Corroborating our results, the number of CD3+CD4+ tended to increase (p < 0.05) which coincided with a decreased manner of CD3+CD8+ populations as compared to other asthmatic groups (p < 0.01 to p < 0.05). Moreover, stem cells could efficiently transmigrate to the lung parenchyma, albeit the dynamic of asthmatic changes stimulated the rate of recruited cells. Our study shed light on superior effects of mesenchymal stem cells, but not CM, in attenuating chronic asthmatic changes in the model of rat.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Soltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Aslani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Maria OM, Maria AM, Ybarra N, Jeyaseelan K, Lee S, Perez J, Shalaby MY, Lehnert S, Faria S, Serban M, Seuntjens J, El Naqa I. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions. Appl Immunohistochem Mol Morphol 2016. [PMID: 26200842 DOI: 10.1097/pai.0000000000000180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.
Collapse
Affiliation(s)
- Ola M Maria
- *Medical Physics Unit, Department of Oncology, Radiation Oncology Division, McGill University, Montreal General Hospital ‡Department of Oncology, Radiation Oncology Division, McGill University Health Centre ∥International Baccalaureate, Marymount Academy, Montreal, QC, Canada †Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura §Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bone marrow mesenchymal stem cells and their conditioned media could potentially ameliorate ovalbumin-induced asthmatic changes. Biomed Pharmacother 2016; 85:28-40. [PMID: 27930984 DOI: 10.1016/j.biopha.2016.11.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The major feature of asthma is governed by chronic airway inflammation. This investigation was proposed to achieve the suitable candidate for ameliorating long-term chronic asthmatic changes of respiratory tract. METHODS 36 rats were classified into healthy (C) and ovalbumin (OVA)-sensitized animals (S). To sensitize, the rats were exposed to OVA over a course of 32±1days. One day after sensitization, equal six different groups were subjected to experimental procedure (n=6); Rats only received intratracheally 50ml PBS (CPT and SPT groups), 50μl conditioned medium (CM) (CST and SST groups) and 50μl PBS containing 2×106 rat bone marrow-derived mesenchymal stem cells (rBMMSCs) (CCT and SCT groups). Two weeks after treatment, tracheal responsiveness, immunologic responses and recruitment of rBMMSCs into the lung as well as pathological changes were evaluated. RESULTS A high degree of tracheal responsiveness, total white blood cell and percentages of eosinophil and neutrophil was significantly recorded in all sensitized groups rather than of controls (p<0.001 to p<0.05). Of interest, all above-mentioned parameters decreased significantly in SST and notably SCT groups as compared to S group (p<0.001 to p<0.05). The results revealed decrease number of blood CD3+CD4+ and concurrent increase in CD3+CD8+ in all sensitized rats as compared to control (p<0.001 to p<0.05). Noticeably, no significant modulatory effects of either cell or CM administration were achieved on the CD3+CD4+ and CD3+CD8+ populations in non-asthmatic rats. Moreover, the number of CD3+CD4+ in SST and SCT groups tended to increase, which coincided with a decreased manner of CD3+CD8+ populations as compared with S group (p<0.001 to p<0.05). However, the CD3+CD4+ cells in SCT rats were significantly higher than the group SST (p<0.01) whereas CD3+CD8+ cells diminished simultaneously (p<0.001). Real-time PCR analysis further showed that both CM and particularly MSCs changed the expression of interleukin (IL)-4 and IL-10 in the asthmatic groups to the near level of control rats (p<0.001 to p<0.05). Histopathological analysis revealed a profound reduction of lungs injuries in asthmatic rats when received CM and peculiarly mesenchymal stem cells (p<0.01 to p<0.05). CONCLUSION Our study shed light on the superior effects of rBMMSCs, rather than CM, in attenuating of chronic asthmatic changes in the rat model.
Collapse
|
13
|
A survey of changing trends in modelling radiation lung injury in mice: bringing out the good, the bad, and the uncertain. J Transl Med 2016; 96:936-49. [PMID: 27479087 DOI: 10.1038/labinvest.2016.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/10/2016] [Accepted: 06/04/2016] [Indexed: 12/22/2022] Open
Abstract
Within this millennium there has been resurgence in funding and research dealing with animal models of radiation-induced lung injury to identify and establish predictive biomarkers and effective mitigating agents that are applicable to humans. Most have been performed on mice but there needs to be assurance that the emphasis on such models is not misplaced. We therefore considered it timely to perform a comprehensive appraisal of the literature dealing with radiation lung injury of mice and to critically evaluate the validity and clinical relevance of the research. A total of 357 research papers covering the period of 1970-2015 were extensively reviewed. Whole thorax irradiation (WTI) has become the most common treatment for studying lung injury in mice and distinct trends were seen with regard to the murine strain, radiation dose, intended pathology investigated, length of study, and assays. Recently, the C57BL/6 strain has been increasingly used in the majority of these studies with the notion that they are susceptible to pulmonary fibrosis. Nonetheless, many of these investigations depend on animal survival as the primary end point and neglect the importance of radiation pneumonitis and the anomaly of lethal pleural effusions. A relatively large variation in survival times of C5BL/6 mice is also seen among different institutions pointing to the need for standardization of radiation treatments and environmental conditions. An analysis of mitigating drug treatments is complicated by the fact that the majority of studies are limited to the C57BL/6 strain with a premature termination of the experiments and do not establish whether the treatment actually prevents or simply delays the progression of radiation injury. This survey of the literature has pointed to several improvements that need to be considered in establishing a reliable preclinical murine model of radiation lung injury. The lethality end point should also be used cautiously and with greater emphasis on other assays such as non-invasive lung functional and imaging monitoring in order to quantify specific pulmonary injury that can be better extrapolated to radiation toxicity encountered in our own species.
Collapse
|
14
|
Effect of irradiation/bone marrow transplantation on alveolar epithelial type II cells is aggravated in surfactant protein D deficient mice. Histochem Cell Biol 2016; 147:49-61. [PMID: 27565967 DOI: 10.1007/s00418-016-1479-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
Irradiation followed by bone marrow transplantation (BM-Tx) is a frequent therapeutic intervention causing pathology to the lung. Although alveolar epithelial type II (AE2) cells are essential for lung function and are damaged by irradiation, the long-term consequences of irradiation and BM-Tx are not well characterized. In addition, it is unknown whether surfactant protein D (SP-D) influences the response of AE2 cells to the injurious events. Therefore, wildtype (WT) and SP-D-/- mice were subjected to a myeloablative whole body irradiation dose of 8 Gy and subsequent BM-Tx and compared with age- and sex-matched untreated controls. AE2 cell changes were investigated quantitatively by design-based stereology. Compared with WT, untreated SP-D-/- mice showed a higher number of larger sized AE2 cells and a greater amount of surfactant-storing lamellar bodies. Irradiation and BM-Tx induced hyperplasia and hypertrophy in WT and SP-D-/- mice as well as the formation of giant lamellar bodies. The experimentally induced alterations were more severe in the SP-D-/- than in the WT mice, particularly with respect to the surfactant-storing lamellar bodies which were sometimes extremely enlarged in SP-D-/- mice. In conclusion, irradiation and BM-Tx have profound long-term effects on AE2 cells and their lamellar bodies. These data may explain some of the clinical pulmonary consequences of this procedure. The data should also be taken into account when BM-Tx is used as an experimental procedure to investigate the impact of bone marrow-derived cells for the phenotype of a specific genotype in the mouse.
Collapse
|
15
|
Abstract
The understanding of bone marrow stem cell plasticity and contribution of bone marrow stem cells to pathophysiology is evolving with the advent of innovative technologies. Recent data has led to new mechanistic insights in the field of mesenchymal stem cell (MSC) research, and an increased appreciation for the plasticity of the hematopoietic stem cell (HSC). In this review, we discuss current research examining the origin of pulmonary cell types from endogenous lung stem and progenitor cells as well as bone marrow-derived stem cells (MSCs and HSCs) and their contributions to lung homeostasis and pathology. We specifically highlight recent findings from our laboratory that demonstrate an HSC origin for pulmonary fibroblasts based on transplantation of a clonal population of cells derived from a single HSC. These findings demonstrate the importance of developing an understanding of the sources of effector cells in disease state. Finally, a perspective is given on the potential clinical implications of these studies and others addressing stem cell contributions to lung tissue homeostasis and pathology.
Collapse
Affiliation(s)
- Lindsay T McDonald
- Research Services, Ralph H Johnson VAMC, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C LaRue
- Research Services, Ralph H Johnson VAMC, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
16
|
Kassmer SH, Jin H, Zhang PX, Bruscia EM, Heydari K, Lee JH, Kim CF, Kassmer SH, Krause DS, Krouse D. Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells 2015; 31:2759-66. [PMID: 23681901 DOI: 10.1002/stem.1413] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 03/28/2013] [Indexed: 01/17/2023]
Abstract
The view that adult stem cells are lineage restricted has been challenged by numerous reports of bone marrow (BM)-derived cells giving rise to epithelial cells. Previously, we demonstrated that nonhematopoietic BM cells are the primary source of BM-derived lung epithelial cells. Here, we tested the hypothesis that very small embryonic like cells (VSELs) are responsible for this engraftment. We directly compared the level of BM-derived epithelial cells after transplantation of VSELs, hematopoietic stem/progenitor cells, or other nonhematopoietic cells. VSELs clearly had the highest rate of forming epithelial cells in the lung. By transplanting VSELs from donor mice expressing H2B-GFP under a type 2 pneumocyte-specific promoter, we demonstrate that this engraftment occurs by differentiation and not fusion. This is the first report of VSELs differentiating into an endodermal lineage in vivo, thereby potentially crossing germ layer lineages. Our data suggest that Oct4+ VSELs in the adult BM exhibit broad differentiation potential.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Department of Laboratory Medicine, and Yale Flow Cytometry Core Facility, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
He H, Liu L, Chen Q, Liu A, Cai S, Yang Y, Lu X, Qiu H. Mesenchymal Stem Cells Overexpressing Angiotensin-Converting Enzyme 2 Rescue Lipopolysaccharide-Induced Lung Injury. Cell Transplant 2014; 24:1699-715. [PMID: 25291359 DOI: 10.3727/096368914x685087] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs), which have beneficial effects in acute lung injury (ALI), can serve as a vehicle for gene therapy. Angiotensin-converting enzyme 2 (ACE2), a counterregulatory enzyme of ACE that degrades angiotensin (Ang) II into Ang 1-7, has a protective role against ALI. Because ACE2 expression is severely reduced in the injured lung, a therapy targeted to improve ACE2 expression in lung might attenuate ALI. We hypothesized that MSCs overexpressing ACE2 would have further benefits in lipopolysaccharide (LPS)-induced ALI mice, when compared with MSCs alone. MSCs were transduced with ACE2 gene (MSC-ACE2) by a lentiviral vector and then infused into wild-type (WT) and ACE2 knockout (ACE2(-/y)) mice following an LPS-induced intratracheal lung injury. The results demonstrated that the lung injury of ALI mice was alleviated at 24 and 72 h after MSC-ACE2 transplantation. MSC-ACE2 improved the lung histopathology and had additional anti-inflammatory effects when compared with MSCs alone in both WT and ACE2(-/y) ALI mice. MSC-ACE2 administration also reduced pulmonary vascular permeability, improved endothelial barrier integrity, and normalized lung eNOS expression relative to the MSC group. The beneficial effects of MSC-ACE2 could be attributed to its recruitment into the injured lung and enhanced local expression of ACE2 protein without changing the serum ACE2 levels after MSC-ACE2 transplantation. The biological activity of the increased ACE2 protein decreased the Ang II amount and increased the Ang 1-7 level in the lung when compared with the ALI and MSC-only groups, thereby inhibiting the detrimental effects of accumulating Ang II. Therefore, compared to MSCs alone, the administration of MSCs overexpressing ACE2 resulted in a further improvement in the inflammatory response and pulmonary endothelial function of LPS-induced ALI mice. These additional benefits could be due to the degradation of Ang II that accompanies the targeted overexpression of ACE2 in the lung.
Collapse
Affiliation(s)
- Hongli He
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sen N, Weingarten M, Peter Y. Very late antigen-5 facilitates stromal progenitor cell differentiation into myofibroblast. Stem Cells Transl Med 2014; 3:1342-53. [PMID: 25273539 DOI: 10.5966/sctm.2014-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibrotic disease is associated with abrogated stromal cell proliferation and activity. The precise identity of the cells that drive fibrosis remains obscure, in part because of a lack of information on their lineage development. To investigate the role of an early stromal progenitor cell (SPC) on the fibrotic process, we selected for, and monitored the stages of, fibroblast development from a previously reported free-floating anchorage-independent cell (AIC) progenitor population. Our findings demonstrate that organotypic pulmonary, cardiac, and renal fibroblast commitment follows a two-step process of attachment and remodeling in culture. Cell differentiation was confirmed by the inability of SPCs to revert to the free-floating state and functional mesenchymal stem/stromal cell (MSC) differentiation into osteoblast, adipocyte, chondrocyte, and fibroblastic lineages. The myofibroblastic phenotype was reflected by actin stress-fiber formation, α-smooth muscle production, and a greater than threefold increase in proliferative activity compared with that of the progenitors. SPC-derived pulmonary myofibroblasts demonstrated a more than 300-fold increase in fibronectin-1 (Fn1), collagen, type 1, α1, integrin α-5 (Itga5), and integrin β-1 (Itgb1) transcript levels. Very late antigen-5 (ITGA5/ITGB1) protein cluster formations were also prevalent on the differentiated cells. Normalized SPC-derived myofibroblast expression patterns reflected those of primary cultured lung myofibroblasts. Intratracheal implantation of pulmonary AICs into recipient mouse lungs resulted in donor cell FN1 production and evidence of epithelial derivation. SPC derivation into stromal tissue in vitro and in vivo and the observation that MSC and fibroblast lineages share a common ancestor could potentially lead to personalized antifibrotic therapies.
Collapse
Affiliation(s)
- Namita Sen
- Department of Biology, Yeshiva University, New York, New York, USA; Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | - Mark Weingarten
- Department of Biology, Yeshiva University, New York, New York, USA; Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | - Yakov Peter
- Department of Biology, Yeshiva University, New York, New York, USA; Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| |
Collapse
|
19
|
Niu J, Yue W, Song Y, Zhang Y, Qi X, Wang Z, Liu B, Shen H, Hu X. Prevention of acute liver allograft rejection by IL-10-engineered mesenchymal stem cells. Clin Exp Immunol 2014; 176:473-84. [PMID: 24527865 DOI: 10.1111/cei.12283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 01/02/2023] Open
Abstract
Hepatic allograft rejection remains a challenging problem, with acute rejection episode as the major barrier for long-term survival in liver transplant recipients. To explore a strategy to prevent allograft rejection, we hypothesized that mesenchymal stem cells (MSCs) genetically engineered with interleukin-10 (IL-10) could produce beneficial effects on orthotopic liver transplantation (OLT) in the experimental rat model. Syngeneic MSCs transduced with IL-10 were delivered via the right jugular vein 30 min post-orthotopic transplantation in the rat model. To evaluate liver morphology and measure cytokine concentration, the blood and liver samples from each animal group were collected at different time-points (3, 5 and 7 days) post-transplantation. The mean survival time of the rats treated with MSCs-IL-10 was shown to be much longer than those treated with saline. According to Banff scheme grading, the saline group scores increased significantly compared with those in the MSCs-IL-10 group. Retinoid acid receptor-related orphan receptor gamma t (RORγt) expression was more increased in the saline group compared to those in the MSCs-IL-10 group in a time-dependent manner; forkhead box protein 3 (FoxP3) expression also decreased significantly in the saline group compared with those in the MSCs-IL-10 group in a time-dependent manner. The expression of cytokines [IL-17, IL-23, IL-6, interferon (IFN)-γ and tumour necrosis factor (TNF)-α] in the saline groups increased significantly compared with the time-point-matched MSCs-IL-10 group, whereas cytokine expression of (IL-10, TGF-β1) was deceased markedly compared to that in the MSCs-IL-10 group. These results suggest a potential role for IL-10-engineered MSC therapy to overcome clinical liver transplantation rejection.
Collapse
Affiliation(s)
- J Niu
- General Surgery of the Hospital Affiliated Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Eisenhauer P, Earle B, Loi R, Sueblinvong V, Goodwin M, Allen GB, Lundblad L, Mazan MR, Hoffman AM, Weiss DJ. Endogenous distal airway progenitor cells, lung mechanics, and disproportionate lobar growth following long-term postpneumonectomy in mice. Stem Cells 2014; 31:1330-9. [PMID: 23533195 DOI: 10.1002/stem.1377] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 01/21/2013] [Accepted: 02/13/2013] [Indexed: 12/13/2022]
Abstract
Using a model of postpneumonectomy (PNY) compensatory lung growth in mice, we previously observed an increase in numbers of a putative endogenous distal airway progenitor cell population (CCSP(pos) /pro-SPC(pos) cells located at bronchoalveolar duct junctions [BADJs]), at 3, 7, and 14 days after pneumonectomy, returning to baseline at 28 days post-PNY. As the origin of these cells is poorly understood, we evaluated whether bone marrow cells contributed to the pool of these or other cells during prolonged post-PNY lung regrowth. Naïve and sex-mismatched chimeric mice underwent left PNY and were evaluated at 1, 2, and 3 months for numbers of BADJ CCSP(pos) /pro-SPC(pos) cells and presence of donor-derived marrow cells engrafted as airway or alveolar epithelium. Nonchimeric mice were also examined at 12 months after PNY for numbers of BADJ CCSP(pos) /pro-SPC(pos) cells. Notably, the right accessory lobe (RAL) continued to grow disproportionately over 12 months, a novel finding not previously described. Assessment of lung mechanics demonstrated an increase in lung stiffness following PNY, which significantly diminished over 1 year, but remained elevated relative to 1-year-old naïve controls. However, the number of CCSP(pos) /pro-SPC(pos) BADJ cells ≥1-month following PNY was equivalent to that found in naïve controls even after 12 months of continued RAL growth. Notably, no donor bone marrow-derived cells engrafted as airway or alveolar epithelial cells, including those at the BADJ, up to 3 months after PNY. These studies suggest that lung epithelial cells, including CCSP(pos) /pro-SPC(pos) cells, are not replenished from marrow-derived cells during post-PNY lung growth in mice.
Collapse
Affiliation(s)
- Philip Eisenhauer
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity. ScientificWorldJournal 2014; 2014:859817. [PMID: 24563632 PMCID: PMC3916026 DOI: 10.1155/2014/859817] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/20/2013] [Indexed: 12/21/2022] Open
Abstract
Chronic lung diseases, such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) are incurable and represent a very high social burden. Stem cell-based treatment may represent a hope for the cure of these diseases. In this paper, we revise the overall knowledge about the plasticity and engraftment of exogenous marrow-derived stem cells into the lung, as well as their usefulness in lung repair and therapy of chronic lung diseases. The lung is easily accessible and the pathophysiology of these diseases is characterized by injury, inflammation, and eventually by remodeling of the airways. Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal (stem) cells (MSCs), encompass a wide array of cell subsets with different capacities of engraftment and injured tissue regenerating potential. Proof-of-principle that marrow cells administered locally may engraft and give rise to specialized epithelial cells has been given, but the efficiency of this conversion is too limited to give a therapeutic effect. Besides the identification of plasticity mechanisms, the characterization/isolation of the stem cell subpopulations represents a major challenge to improving the efficacy of transplantation protocols used in regenerative medicine for lung diseases.
Collapse
|
22
|
Sun H, Calle E, Chen X, Mathur A, Zhu Y, Mendez J, Zhao L, Niklason L, Peng X, Peng H, Herzog EL. Fibroblast engraftment in the decellularized mouse lung occurs via a β1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT. Am J Physiol Lung Cell Mol Physiol 2013; 306:L463-75. [PMID: 24337923 DOI: 10.1152/ajplung.00100.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Creation of bioartificial organs has been enhanced by the development of strategies involving decellularized mammalian lung. Because fibroblasts critically support lung function through a number of mechanisms, study of these cells in the context of the decellularized lung has the potential to improve the structure and function of tissue-engineered lungs. We characterized the engraftment and survival of a mouse fibroblast cell line in decellularized rat lung slices and found a time-dependent increase in cell numbers assessed by hematoxylin and eosin staining, cell proliferation assessed by Ki67 staining, and minimal cell death assessed by TUNEL staining. We developed a repopulation index to allow quantification of cell survival that accounts for variation in cell density throughout the seeded scaffold. We then applied this method to the study of mouse lung scaffolds and found that decellularization of presliced mouse lungs produced matrices with preserved alveolar architecture and proteinaceous components including fibronectin, collagens I and IV, laminin, and elastin. Treatment with a β1-integrin-neutralizing antibody significantly reduced the repopulation index after 24 h of culture. Treatment with focal adhesion kinase (FAK) inhibitor and extracellular signal-regulated kinase (ERK) inhibitor further reduced initial repopulation scores while treatment with AKT inhibitor increased initial scores. Rho-associated kinase inhibitor had no discernible effect. These data indicate that initial adhesion and survival of mouse fibroblasts in the decellularized mouse lung occur in a β1-integrin-dependent, FAK/ERK-dependent manner that is opposed by AKT.
Collapse
Affiliation(s)
- Huanxing Sun
- Yale School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, 300 Cedar St. TAC 441S, New Haven CT 06520-8057.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Citrin DE, Shankavaram U, Horton JA, Shield W, Zhao S, Asano H, White A, Sowers A, Thetford A, Chung EJ. Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst 2013; 105:1474-84. [PMID: 24052614 DOI: 10.1093/jnci/djt212] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Radiation is a commonly delivered therapeutic modality for cancer. The causes underlying the chronic, progressive nature of radiation injury in the lung are poorly understood. METHODS C57Bl/6NCr mice were exposed to thoracic irradiation (n = 3 per dose and time point for tissue collection). Microarray analysis of gene expression from irradiated murine lung was performed using one-way analysis of variance with post hoc Scheffe analysis. Senescence and type II airway epithelial cell (AECII) count were assayed in irradiated murine lung tissue (n = 3 per condition). Irradiated mice were treated with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase (NOX), and fibrosis was assessed by collagen assays. All statistical tests were two-tailed. RESULTS Gene expression in lung tissue from mice irradiated to 17.5 Gy clustered with that of aged unirradiated mice. Only fibrogenic exposures led to AECII senescence (0 Gy: 0.66% ± 0.67%; 5 Gy: 4.5% ± 1.19%; 17.5 Gy: 18.7% ± 3.05; P = .007) and depletion (0 Gy: 2.89 per alveolus ± 0.26; 5 Gy: 2.41 ± 0.19; 17.5 Gy: 1.6 ± 0.14; P < .001) at 30 weeks. Treatment of irradiated mice with DPI for 16 weeks markedly reduced collagen accumulation (5×6 Gy: 57.26 μg/lung ± 9.91; 5×6 Gy ± DPI: 36.54μg/lung ± 4.39; P = .03) and AECII senescence (5×6 Gy: 37.61% ± 4.82%; 5×6 Gy ± DPI: 12.38% ± 2.78; P < .001). CONCLUSIONS These studies identify senescence as an important process in AECII in vivo and indicate that NOX is a critical mediator of radiation-induced AECII senescence and pulmonary fibrosis.
Collapse
Affiliation(s)
- Deborah E Citrin
- Affiliations of authors: Radiation Oncology Branch (DEC, US, JAH, WS, SZ, HA, AY, EJC) and Radiation Biology Branch (AS, AT), Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Murphy SV, Atala A. Cell therapy for cystic fibrosis. J Tissue Eng Regen Med 2013; 9:210-23. [DOI: 10.1002/term.1746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/11/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| |
Collapse
|
25
|
Demicheli R. Tumours and tissues: similar homeostatic systems? Target Oncol 2013; 8:97-105. [PMID: 23636780 DOI: 10.1007/s11523-013-0277-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/03/2013] [Indexed: 12/26/2022]
|
26
|
Yousem SA, Sherer C, Fuhrer K, Cieply K. Myofibroblasts of recipient origin are not the predominant mesenchymal cell in bronchiolitis obliterans in lung allografts. J Heart Lung Transplant 2013; 32:266-8. [DOI: 10.1016/j.healun.2012.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/31/2012] [Accepted: 11/10/2012] [Indexed: 11/25/2022] Open
|
27
|
Angelini DJ, Dorsey RM, Willis KL, Hong C, Moyer RA, Oyler J, Jensen NS, Salem H. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies? Inhal Toxicol 2013; 25:37-62. [DOI: 10.3109/08958378.2012.750406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Abreu SC, Antunes MA, Maron-Gutierrez T, Cruz FF, Ornellas DS, Silva AL, Diaz BL, Ab'Saber AM, Capelozzi VL, Xisto DG, Morales MM, Rocco PRM. Bone marrow mononuclear cell therapy in experimental allergic asthma: intratracheal versus intravenous administration. Respir Physiol Neurobiol 2012; 185:615-24. [PMID: 23164835 DOI: 10.1016/j.resp.2012.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/14/2022]
Abstract
We hypothesized that the route of administration would impact the beneficial effects of bone marrow-derived mononuclear cell (BMDMC) therapy on the remodelling process of asthma. C57BL/6 mice were randomly assigned to two main groups. In the OVA group, mice were sensitized and challenged with ovalbumin, while the control group received saline using the same protocol. Twenty-four hours before the first challenge, control and OVA animals were further randomized into three subgroups to receive saline (SAL), BMDMCs intravenously (2×10(6)), or BMDMCs intratracheally (2×10(6)). The following changes were induced by BMDMC therapy in OVA mice regardless of administration route: reduction in resistive and viscoelastic pressures, static elastance, eosinophil infiltration, collagen fibre content in airways and lung parenchyma; and reduction in the levels of interleukin (IL)-4, IL-13, transforming growth factor-β and vascular endothelial growth factor. In conclusion, BMDMC modulated inflammatory and remodelling processes regardless of administration route in this experimental model of allergic asthma.
Collapse
Affiliation(s)
- Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pietzner J, Baer PC, Duecker RP, Merscher MB, Satzger-Prodinger C, Bechmann I, Wietelmann A, Del Turco D, Doering C, Kuci S, Bader P, Schirmer S, Zielen S, Schubert R. Bone marrow transplantation improves the outcome of Atm-deficient mice through the migration of ATM-competent cells. Hum Mol Genet 2012; 22:493-507. [DOI: 10.1093/hmg/dds448] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Majka SM, Miller HL, Sullivan T, Erickson PF, Kong R, Weiser-Evans M, Nemenoff R, Moldovan R, Morandi SA, Davis JA, Klemm DJ. Adipose lineage specification of bone marrow-derived myeloid cells. Adipocyte 2012; 1:215-229. [PMID: 23700536 PMCID: PMC3609111 DOI: 10.4161/adip.21496] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have reported the production of white adipocytes in adipose tissue from hematopoietic progenitors arising from bone marrow. However, technical challenges have hindered detection of this adipocyte population by certain other laboratories. These disparate results highlight the need for sensitive and definitive techniques to identify bone marrow progenitor (BMP)-derived adipocytes. In these studies we exploited new models and methods to enhance detection of this adipocyte population. Here we showed that confocal microscopy with spectrum acquisition could effectively identify green fluorescent protein (GFP) positive BMP-derived adipocytes by matching their fluorescence spectrum to that of native GFP. Likewise, imaging flow cytometry made it possible to visualize intact unilocular and multilocular GFP-positive BMP-derived adipocytes and distinguished them from non-fluorescent adipocytes and cell debris in the cytometer flow stream. We also devised a strategy to detect marker genes in flow-enriched adipocytes from which stromal cells were excluded. This technique also proved to be an efficient means for detecting genetically labeled adipocytes and should be applicable to models in which marker gene expression is low or absent. Finally, in vivo imaging of mice transplanted with BM from adipocyte-targeted luciferase donors showed a time-dependent increase in luciferase activity, with the bulk of luciferase activity confined to adipocytes rather than stromal cells. These results confirmed and extended our previous reports and provided proof-of-principle for sensitive techniques and models for detection and study of these unique cells.
Collapse
|
31
|
Kassmer SH, Bruscia EM, Zhang PX, Krause DS. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells 2012; 30:491-9. [PMID: 22162244 DOI: 10.1002/stem.1003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520-8035, USA.
| | | | | | | |
Collapse
|
32
|
Gan Y, Reilkoff R, Peng X, Russell T, Chen Q, Mathai SK, Homer R, Gulati M, Siner J, Elias J, Bucala R, Herzog E. Role of semaphorin 7a signaling in transforming growth factor β1-induced lung fibrosis and scleroderma-related interstitial lung disease. ACTA ACUST UNITED AC 2011; 63:2484-94. [PMID: 21484765 DOI: 10.1002/art.30386] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Semaphorin 7a regulates transforming growth factor β1 (TGFβ1)-induced fibrosis. This study was undertaken to test the hypothesis that semaphorin 7a exerts its profibrotic effects in part by promoting the tissue accumulation of CD45+ fibrocytes. METHODS A murine model of pulmonary fibrosis in which an inducible, bioactive form of the human TGFβ1 gene is overexpressed in the lung was used. Fibrosis and fibrocytes were evaluated in TGFβ1-transgenic mice in which the semaphorin 7a locus had been disrupted. The effect of replacement or deletion of semaphorin 7a on bone marrow-derived cells was ascertained using bone marrow transplantation. The role of the semaphorin 7a receptor β1 integrin was assessed using neutralizing antibodies. The applicability of these findings to TGFβ1-driven fibrosis in humans was examined in patients with scleroderma-related interstitial lung disease (ILD). RESULTS The appearance of fibrocytes in the lungs of TGFβ1-transgenic mice required semaphorin 7a. Replacement of semaphorin 7a on bone marrow-derived cells restored lung fibrosis and fibrocytes. Immunoneutralization of β1 integrin reduced pulmonary fibrocytes and fibrosis. Peripheral blood mononuclear cells (PBMCs) from patients with scleroderma-related ILD showed increased levels of messenger RNA for semaphorin 7a and its receptors, with semaphorin 7a located on collagen-producing fibrocytes and CD19+ lymphocytes. Peripheral blood fibrocyte outgrowth was enhanced in these patients. Stimulation of normal human PBMCs with recombinant semaphorin 7a enhanced fibrocyte differentiation; these effects were attenuated by β1 integrin neutralization. CONCLUSION Our findings indicate that interventions that reduce semaphorin 7a expression or prevent the semaphorin 7a-β1 integrin interaction may ameliorate TGFβ1-driven or fibrocyte-associated autoimmune fibroses.
Collapse
Affiliation(s)
- Ye Gan
- Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Buckley S, Shi W, Carraro G, Sedrakyan S, Da Sacco S, Driscoll BA, Perin L, De Filippo RE, Warburton D. The milieu of damaged alveolar epithelial type 2 cells stimulates alveolar wound repair by endogenous and exogenous progenitors. Am J Respir Cell Mol Biol 2011; 45:1212-21. [PMID: 21700959 DOI: 10.1165/rcmb.2010-0325oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar epithelial integrity is dependent upon the alveolar milieu, yet the milieu of the damaged alveolar epithelial cell type 2 (AEC2) has been little studied. Characterization of its components may offer the potential for ex vivo manipulation of stem cells to optimize their therapeutic potential. We examined the cytokine profile of AEC2 damage milieu, hypothesizing that it would promote endogenous epithelial repair while recruiting cells from other locations and instructing their engraftment and differentiation. Bronchoalveolar lavage and lung extract from hyperoxic rats represented AEC2 in vivo damage milieu, and medium from a scratch-damaged AEC2 monolayer represented in vitro damage. CINC-2 and ICAM, the major cytokines detected by proteomic cytokine array in AEC2 damage milieu, were chemoattractive to normoxic AECs and expedited in vitro wound healing, which was blocked by their respective neutralizing antibodies. The AEC2 damage milieu was also chemotactic for exogenous uncommitted human amniotic fluid stem cells (hAFSCs), increasing migration greater than 20-fold. hAFSCs attached within an in vitro AEC2 wound and expedited wound repair by contributing cytokines migration inhibitory factor and plasminogen activator inhibitor 1 to the AEC2 damage milieu, which promoted wound healing. The AEC2 damage milieu also promoted differentiation of a subpopulation of hAFSCs to express SPC, TTF-1, and ABCA3, phenotypic markers of distal alveolar epithelium. Thus, the microenvironment created by AEC2 damage not only promotes autocrine repair but also can attract uncommitted stem cells, which further augment healing through cytokine secretion and differentiation.
Collapse
Affiliation(s)
- Susan Buckley
- Developmental Biology and Regenerative Medicine, Saban Research Institute, Childrens Hospital Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mechanisms of cellular therapy in respiratory diseases. Intensive Care Med 2011; 37:1421-31. [PMID: 21656291 DOI: 10.1007/s00134-011-2268-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/05/2011] [Indexed: 01/08/2023]
Abstract
PURPOSE Stem cells present a variety of clinical implications in the lungs. According to their origin, these cells can be divided into embryonic and adult stem cells; however, due to the important ethical and safety limitations that are involved in the embryonic stem cell use, most studies have chosen to focus on adult stem cell therapy. This article aims to present and clarify the recent advances in the field of stem cell biology, as well as to highlight the effects of mesenchymal stem cell (MSC) therapy in the context of acute lung injury/acute respiratory distress syndrome and chronic disorders such as lung fibrosis and chronic obstructive pulmonary disease. METHODS For this purpose, we performed a critical review of adult stem cell therapies, covering the main clinical and experimental studies published in Pubmed databases in the past 11 years. Different characteristics were extracted from these articles, such as: the experimental model, strain, cellular type and administration route used as well as the positive or negative effects obtained. RESULTS There is evidence for beneficial effects of MSC on lung development, repair, and remodeling. The engraftment in the injured lung does not occur easily, but several studies report that paracrine factors can be effective in reducing inflammation and promoting tissue repair. MSC releases several growth factors and anti-inflammatory cytokines that regulate endothelial and epithelial permeability and reduce the severity of inflammation. CONCLUSION A better understanding of the mechanisms that control cell division and differentiation, as well as of their paracrine effects, is required to enable the optimal use of bone marrow-derived stem cell therapy to treat human respiratory diseases.
Collapse
|
35
|
Jackson IL, Vujaskovic Z, Down JD. A further comparison of pathologies after thoracic irradiation among different mouse strains: finding the best preclinical model for evaluating therapies directed against radiation-induced lung damage. Radiat Res 2011; 175:510-18. [PMID: 21338245 DOI: 10.1667/rr2421.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human lung is among the most sensitive and critical tissues of concern in localized and systemic radiation exposures, and it is a subject of active preclinical research for evaluating mitigating therapies within the radiation countermeasures program. Our previous study comparing C57BL/6, CBA and C57L mice after whole-thorax irradiation pointed to the problems of late pleural effusions that prevented the full development of lung injury in C57BL/6 mice and suggested that the CBA and C57L strains are more favorable for modeling lung injury in humans (Jackson et al., Radiat. Res. 173, 10-20, 2010). We extended these comparisons to include three other mouse strains (BALB/c, C57BR/J and A/J mice) irradiated with 10, 12.5 or 15 Gy. Most of these mice were unable to survive the first 6 months and presented with a mixture of lung injury and pleural effusions as determined from gross pathology, histology and micro-CT. The independent and varying development of compressive pleural effusions of ill-defined etiology represents a concern for these strains in that they may not satisfy the preclinical requirements for approval of medical countermeasures (e.g. radiation mitigators) for human use. Thus, among the various different mouse strains studied so far for these pathologies, only three (CBA, C3H and C57L) appear to be desirable in exhibiting an early wave of pulmonary dysfunction attributed exclusively to radiation pneumonitis and for further assessment of radioprotective and mitigating therapies. C57L mice are particularly relevant in that they show significant lung damage at lower radiation doses that are closer to what is predicted for humans.
Collapse
Affiliation(s)
- Isabel L Jackson
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
36
|
Intravenous delivery of bone marrow-derived endothelial progenitor cells improves survival and attenuates lipopolysaccharide-induced lung injury in rats. Shock 2010; 34:196-204. [PMID: 20090567 DOI: 10.1097/shk.0b013e3181d49457] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is a devastating disease, which is characterized by diffuse endothelium, epithelial damage, and increased pulmonary capillary permeability. Recent data have suggested that the circulating endothelial progenitor cells (EPCs) play an important role in endothelial repair after vascular injury. This study was undertaken to investigate possible endothelial-repairing effects of EPC transplantation after LPS-induced ALI in rats. Using Y-chromosome in situ hybridization and reverse transcription polymerase chain reaction assay, we detected the expression of sex-determining region y in the injured lungs of female model rats, suggesting that allogenic EPCs can migrate to the injured lung tissues. Rats that have received the EPC treatment had a reduced pulmonary edema level, inflammation, hemorrhage, and hyaline membrane formation, as well as an increased survival rate from 44% to 81%. Furthermore, anti-inflammatory cytokine IL-10 levels were dramatically increased in the EPC-treated rats compared with the phosphate buffered saline-treated rats. On the contrary, endothelin-1 and iNOS were downregulated in the EPC-treated group. These findings provide evidence that i.v. EPC treatment results in engraftment of EPCs to the injured lung tissue, which can significantly attenuate lung injury and improve survival in ALI rats. The beneficial effects of EPC engraftment is likely to come from maintaining the integrity of pulmonary alveolar-capillary barrier, reestablishing the endothelial function in vessels and ameliorating the inflammatory state.
Collapse
|
37
|
Abreu SC, Antunes MA, Maron-Gutierrez T, Cruz FF, Carmo LGRR, Ornellas DS, Junior HC, Absaber AM, Parra ER, Capelozzi VL, Morales MM, Rocco PRM. Effects of bone marrow-derived mononuclear cells on airway and lung parenchyma remodeling in a murine model of chronic allergic inflammation. Respir Physiol Neurobiol 2010; 175:153-63. [PMID: 21050897 DOI: 10.1016/j.resp.2010.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/17/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 × 10⁶) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-β, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes.
Collapse
Affiliation(s)
- Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Down JD, Yanch JC. Identifying the high radiosensitivity of the lungs of C57L mice in a model of total-body irradiation and bone marrow transplantation. Radiat Res 2010; 174:258-63. [PMID: 20681792 DOI: 10.1667/rr2149.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pulmonary tissue is sensitive and often treatment-limiting in patients exposed to total-body irradiation (TBI) in preparation for hematopoietic stem cell transplantation. Many rodent strains, however, exhibit a relatively high resistance to radiation lung damage that often requires extra radiation doses to be delivered locally to the thorax to generate significant levels of pulmonary injury. The present study compared the effects of TBI and bone marrow transplantation (BMT) on two mouse strains that are known to differ in lung radiosensitivity after whole-thorax irradiation, namely the relatively resistant CBA mice and the sensitive C57L mice. Evaluation by survival, microcomputerized tomography (micro-CT), lung tissue weights and histopathology showed that the C57L mice responded with severe lethal radiation pneumonitis at 4 months after 12.5 Gy while CBA mice showed only minimal sublethal damage at this dose. C57L mice receiving 10 Gy TBI also had focal fibrotic lesions in the lungs out to 8 months. The manifestation of both pneumonitis and focal fibrosis in the lungs of C57L mice at relatively low radiation doses points to the merits of using this strain in further studies aimed at exploring and ameliorating the high susceptibility of the lung as encountered in clinical TBI.
Collapse
Affiliation(s)
- Julian D Down
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
39
|
Quesenberry PJ, Aliotta JM. Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev 2010; 62:1141-8. [PMID: 20558219 DOI: 10.1016/j.addr.2010.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022]
Abstract
Cell phenotype alteration by cell-derived vesicles presents a new aspect for consideration of cell fate. Accumulating data indicates that vesicles from many cells interact with or enter different target cells from other tissues, altering their phenotype toward that of the cell releasing the vesicles. Cells may be changed by direct interactions, transfer of cell surface receptors or epigenetic reprogramming via transcriptional regulators. Induced epigenetic changes appear to be stable and result in significant functional effects. These data force a reconsideration of the cellular context in which transcription regulates the proliferative and differentiative fate of tissues and suggests a highly plastic cellular system, which might underlay a relatively stable tissue system. The capacity of marrow to convert to non-hematopoietic cells related to vesicle cross-communication may underlie the phenomena of stem cell plasticity. Additionally, vesicles have promise in the clinical arenas of disease biomarkers, tissue restoration and control of neoplastic cell growth.
Collapse
|
40
|
Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res 2010; 156:188-205. [PMID: 20801416 PMCID: PMC4201367 DOI: 10.1016/j.trsl.2010.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
Cell-based therapies with embryonic or adult stem cells, including induced pluripotent stem cells, have emerged as potential novel approaches for several devastating and otherwise incurable lung diseases, including emphysema, pulmonary fibrosis, pulmonary hypertension, and the acute respiratory distress syndrome. Although initial studies suggested engraftment of exogenously administered stem cells in lung, this is now generally felt to be a rare occurrence of uncertain physiologic significance. However, more recent studies have demonstrated paracrine effects of administered cells, including stimulation of angiogenesis and modulation of local inflammatory and immune responses in mouse lung disease models. Based on these studies and on safety and initial efficacy data from trials of adult stem cells in other diseases, groundbreaking clinical trials of cell-based therapy have been initiated for pulmonary hypertension and for chronic obstructive pulmonary disease. In parallel, the identity and role of endogenous lung progenitor cells in development and in repair from injury and potential contribution as lung cancer stem cells continue to be elucidated. Most recently, novel bioengineering approaches have been applied to develop functional lung tissue ex vivo. Advances in each of these areas will be described in this review with particular reference to animal models.
Collapse
Key Words
- aec, alveolar epithelial cell
- ali, acute lung injury
- ards, acute respiratory distress syndrome
- basc, bronchioalveolar stem cell
- ccsp, clara cell secretory protein
- cf, cystic fibrosis
- cftr, cystic fibrosis transmembrane conductance regulator
- clp, cecal ligation and puncture
- copd, chronic obstructive pulmonary disease
- enos, endothelial nitric oxide synthetase
- epc, endothelial progenitor cell
- esc, embryonic stem cell
- fev1, forced expiratory volume in 1 second
- fvc, forced vital capacity
- gfp, green fluorescent protein
- hsc, hematopoietic stem cell
- ipf, idiopathic pulmonary fibrosis
- kgf, keratinocyte growth factor
- lps, lipopolysaccharide
- mct, monocrotaline
- mhc, major histocompatibility complex
- msc, mesenchymal stromal (stem) cell
- ph, pulmonary hypertension
- pro-spc, pro-surfactant protein c
- sca-1, stem cell antigen-1
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Critical Care and Allergy, Department of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
41
|
Piro D, Rejman J, Conese M. Stem cell therapy for cystic fibrosis: current status and future prospects. Expert Rev Respir Med 2010; 2:365-80. [PMID: 20477199 DOI: 10.1586/17476348.2.3.365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although cystic fibrosis (CF), an autosomal recessive disease caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR), seems a good candidate for gene therapy, 15 years of intense investigation and a number of clinical trials have not yet produced a viable clinical gene-therapy strategy. In addition, the duration of gene expression has been shown to be limited, only lasting 1-4 weeks. Therefore, alternative approaches involve the search for, and use of, stem cell populations. Bone marrow contains different stem cell types, including hematopoietic stem cells and multipotent mesenchymal stromal cells. Numerous studies have now demonstrated the ability of hematopoietic stem cells and mesenchymal stromal cells to home to the lung and differentiate into epithelial cells of both the conducting airways and the alveolar region. However, engraftment of bone marrow-derived stem cells into the airways is a very inefficient process. Detailed knowledge of the cellular and molecular determinants governing homing to the lung and transformation of marrow cells into lung epithelial cells would benefit this process. Despite a very low level of engraftment of donor cells into the nose and gut, significant CFTR mRNA expression and a measurable level of correction of the electrophysiological defect were observed after transplantation of wild-type marrow cells into CF mice. It is uncertain whether this effect is due to the presence of CFTR-expressing epithelial cells derived from donor cells or to the immunomodulatory role of transplanted cells. Finally, initial studies on the usefulness of umbilical cord blood and embryonic stem cells in the generation of airway epithelial cells will be discussed in this review.
Collapse
Affiliation(s)
- Donatella Piro
- Department of Biomedical Sciences, University of Foggia, c/o Ospedali Riuniti, Viale L. Pinto 1, 71100 Foggia, Italy.
| | | | | |
Collapse
|
42
|
Stem cell plasticity: recapping the decade, mapping the future. Exp Hematol 2010; 38:529-39. [PMID: 20438800 DOI: 10.1016/j.exphem.2010.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 12/20/2022]
Abstract
In slightly more than a decade of stem cell plasticity research, 24 peer-reviewed articles have demonstrated plasticity across organ and/or embryonic lineage boundaries at the single-cell level, with only 1 article showing negative results. These data, taken together with data about reversibility of gene restrictions that have also accumulated during the same period, indicate that postnatal cells, even "terminally differentiated" ones, have a degree of plasticity not appreciated previously. This review looks back at the four known pathways of cell plasticity and at previously described "plasticity principles" of Genomic Completeness, Cellular Uncertainty, Stochasticity of Cell Origin and Fate, relating these to issues of experimental design and discourse that are key to understanding and evaluating plasticity data. Although the physiologic roles played by such plasticity may still be debated, the manipulations of these phenomena for therapeutic or industrial purposes should finally be considered ripe for exploration. For the future, plasticity, indeed all stem cell biology, must be considered as part of a larger web of cell-to-cell and cell-to-matrix interactions that function fully only at the tissue level; thus, the success of stem cell biology necessarily must involve assembling data from cell and molecular biology research into systems of interactions that might be reasonably called "tissue biology." Interdisciplinary collaborations with complexity and chaos theorists, using mathematical/computer modeling of cell behaviors, will be vital to fully exploring stem cell behaviors in the coming decades.
Collapse
|
43
|
Kassmer SH, Krause DS. Detection of bone marrow-derived lung epithelial cells. Exp Hematol 2010; 38:564-73. [PMID: 20447442 DOI: 10.1016/j.exphem.2010.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Studies on the ability of bone marrow-derived cells to adopt the morphology and protein expression pattern of epithelial cells in vivo have expanded rapidly during the last decade, and hundreds of publications report that bone marrow-derived cells can become epithelial cells of multiple organs, including lung, liver, gastrointestinal tract, skin, pancreas, and others. In this review, we critically evaluate the literature related to engraftment of bone marrow-derived cells as epithelial cells in the lung. More than 40 articles focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow-derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow-derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published articles identifying marrow-derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of bone marrow-derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor bone marrow origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single-cell isolation. Once these stringent criteria for identification of marrow-derived epithelial cells are used universally, then the field can move forward to address the critical questions about which bone marrow-derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06509, USA.
| | | |
Collapse
|
44
|
Janssen WJ, Muldrow A, Kearns MT, Barthel L, Henson PM. Development and characterization of a lung-protective method of bone marrow transplantation in the mouse. J Immunol Methods 2010; 357:1-9. [DOI: 10.1016/j.jim.2010.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
|
45
|
Miller JD, Lankford SM, Adler KB, Brody AR. Mesenchymal stem cells require MARCKS protein for directed chemotaxis in vitro. Am J Respir Cell Mol Biol 2010; 43:253-8. [PMID: 20224071 DOI: 10.1165/rcmb.2010-0015rc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) reside within tissues such as bone marrow, cord blood, and dental pulp and can differentiate into other mesenchymal cell types. Differentiated MSCs, called circulating fibrocytes, have been demonstrated in human lungs and migrate to injured lung tissue in experimental models. It is likely that MSCs migrate from the bone marrow to sites of injury by following increasing chemokine concentrations. In the present study, we show that primary mouse bone marrow mesenchymal stem cells (BM-MSCs) exhibit directed chemotaxis through transwell inserts toward increasing concentrations of the chemokines complement component 5a, stromal cell-derived factor-1alpha, and monocyte chemotactic protein-1. Prior research has indicated that myristoylated alanine-rich C kinase substrate (MARCKS) protein is critically important for motility in macrophages, neutrophils, and fibroblasts, and here we investigated a possible role for MARCKS in BM-MSC directed chemotaxis. The presence of MARCKS in these cells as well as in human cord blood MSC was verified by Western blotting, and MARCKS was rapidly phosphorylated in these cells after exposure to chemokines. A synthetic peptide that inhibits MARCKS function attenuated, in a concentration-dependent manner, directed chemotaxis of BM-MSCs, while a missense control peptide had no effect. Our results illustrate, for the first time, that MARCKS protein plays an integral role in BM-MSC-directed chemotaxis in vitro.
Collapse
Affiliation(s)
- Jeffrey D Miller
- Dept. of Molecular Biomedical Sciences, NC State University, Raleigh, 27606, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Aliotta JM, Keaney PJ, Warburton RR, DelTatto M, Dooner MS, Passero MA, Quesenberry PJ, Klinger JR. Marrow cell infusion attenuates vascular remodeling in a murine model of monocrotaline-induced pulmonary hypertension. Stem Cells Dev 2009; 18:773-82. [PMID: 19072290 DOI: 10.1089/scd.2008.0237] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There have been reports of marrow cells converting into pulmonary epithelial cells after marrow transplantation in irradiated mice. We evaluated the impact of whole bone marrow (WBM) infusion in mice, with or without total body irradiation (TBI), treated with saline or monocrotaline (MCT), which induces pulmonary hypertension (PH). C57BL/6 mice were injected with MCT or saline weekly for 4 weeks. Cohorts were then infused with saline vehicle (vehicle) or WBM from C57BL/-Tg(UBC-GFP)30Scha/J mice, with or without previous TBI (WBM or WBM/TBI). Four weeks later, right ventricular peak pressures (RVPP), right ventricular free wall-to-body weight ratios (RV/BW), and pulmonary vessel wall thickness-to-blood vessel diameter ratios (PVWT/D) were determined. WBM infusion and WBM following TBI induced increases in RVPP and RV/BW in saline-treated mice, while only TBI-exposed mice showed additional increases in PVWT/D. MCT increased RVPP, RV/BW, and PVWT/D in mice given vehicle or WBM alone, but not in mice given WBM/TBI. RVPP and RV/BW were not significantly lower in MCT mice given WBM/TBI than in MCT mice treated with vehicle, but MCT-treated mice given WBM or TBI/WBM had significantly lower PVWT/D compared to MCT-treated mice given saline vehicle. No donor WBM-derived pulmonary vascular cells were detected, suggesting that the observed effects of WBM infusion may be due to paracrine effects separate from cell conversions. The observation of PH after marrow infusion suggests an additional mechanism for lung toxicity seen in marrow transplantation. In conclusion, WBM alone appears to increase RVPP and RV/BW in normal mice but the combination of WBM and TBI attenuates MCT-induced PH.
Collapse
Affiliation(s)
- Jason M Aliotta
- Division of Hematology and Oncology, Sleep, and Critical Care Medicine, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Engraftment of bone marrow-derived stem cells to the lung in a model of acute respiratory infection by Pseudomonas aeruginosa. Mol Ther 2009; 17:1257-65. [PMID: 19417738 DOI: 10.1038/mt.2009.96] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Stem cell therapy presents an attractive approach to cure cystic fibrosis (CF) lung disease. We set out to investigate the effect of epithelial damage caused by Pseudomonas aeruginosa, a pathogenic bacterium widely occurring in CF, on the engraftment of bone marrow cells in airway epithelium. Intravenous or intratracheal administration of unfractionated green fluorescent protein (GFP(+)) bone marrow cells in P. aeruginosa-infected mice resulted in none or very few GFP(+) cells detected in the lungs of the recipient mice, respectively. Only when GFP(+) bone marrow cells were purified to obtain a cell suspension enriched in progenitor cells and injected intratracheally, significant numbers of GFP(+) cells were detected. Localization of the donor cells at the level of airway epithelium was confirmed by Y-chromosome fluorescence in situ hybridization (FISH) analysis. All donor-derived Y-chromosome(+) cells were found to express cytokeratin (CK). The fractions of GFP(+) cells expressing CK were 0.34 and 0.76% for the 10(5) and 10(6) colony forming units (cfu) bacterial inoculums, respectively. When scored by Y-chromosome positivity these numbers were 0.60 and 1.12%, respectively. Our results show for the first time that tissue damage inflicted by bacteria like P. aeruginosa facilitates the airway engraftment of heterologous bone marrow-derived stem cells and their epithelial transformation.
Collapse
|
49
|
Germano D, Blyszczuk P, Valaperti A, Kania G, Dirnhofer S, Landmesser U, Lüscher TF, Hunziker L, Zulewski H, Eriksson U. Prominin-1/CD133+ lung epithelial progenitors protect from bleomycin-induced pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179:939-49. [PMID: 19234103 DOI: 10.1164/rccm.200809-1390oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RATIONALE The mouse model of bleomycin-induced lung injury offers an approach to study idiopathic pulmonary fibrosis, a progressive interstitial lung disease with poor prognosis. Progenitor cell-based treatment strategies might combine antiinflammatory effects and the capacity for tissue repair. OBJECTIVES To expand progenitor cells with reparative and regenerative capacities and to evaluate their protective effects on pulmonary fibrosis in vivo. METHODS Prominin-1/CD133(+) epithelial progenitor cells (PEPs) were expanded from adult mouse lungs after digestion and culture of distal airways. Lung fibrosis was induced in C57Bl/6 mice by instillation of bleomycin. Two hours later, animals were transplanted with PEPs. Inflammation and fibrosis were assessed by immunohistochemistry, bronchoalveolar lavage fluid differentials, and real-time polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS PEPs expanded from mouse lungs were of bone marrow origin, coexpressed stem and hematopoietic cell markers, and differentiated in vitro into alveolar type II surfactant protein-C(+) epithelial cells. In bleomycin-challenged mice, intratracheally injected PEPs engrafted into the lungs and differentiated into type II pneumocytes. Furthermore, PEPs suppressed proinflammatory and profibrotic gene expression, prevented the recruitment of inflammatory cells, and protected bleomycin-challenged mice from pulmonary fibrosis. Mechanistically, the protective effect depended on upregulation of inducible nitric oxide synthase in PEPs and nitric oxide-mediated suppression of alveolar macrophage proliferation. Accordingly, PEPs from iNOS(-/-) but not iNOS(+/+) mice failed to protect from bleomycin-induced lung injury. CONCLUSIONS The combined antiinflammatory and regenerative capacity of bone marrow-derived pulmonary epithelial progenitors offers a promising approach for development of cell-based therapeutic strategies against pulmonary fibrosis.
Collapse
Affiliation(s)
- Davide Germano
- Experimental Critical Care Medicine, Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stem cells and cell therapies in lung biology and lung diseases. Ann Am Thorac Soc 2008; 5:637-67. [PMID: 18625757 DOI: 10.1513/pats.200804-037dw] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|