1
|
Motta LCB, Pereira VM, Pinto PAF, Mançanares CAF, Pieri NCG, de Oliveira VC, Fantinato-Neto P, Ambrósio CE. 3D culture of mesenchymal stem cells from the yolk sac to generate intestinal organoid. Theriogenology 2023; 209:98-106. [PMID: 37379588 DOI: 10.1016/j.theriogenology.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Organoids are in vitro models that originated from the three-dimensional culture of stem cells with the ability to reproduce part of the in vivo structural and functional specificities of body organs. Intestinal organoids have great relevance in cell therapy, as they provide more accurate information about tissue composition and architecture in relation to two-dimensional culture, in addition to serving as a study model for host interaction and drug testing. The yolk sac (YS) is a promising source of mesenchymal stem cells (MSCs), which are multipotent stem cells with self-renewal ability and potential to differentiated into mesenchymal lineages. Besides this, the YS is responsible for the formation of intestinal epithelium during embryonic development. Thus, the aim of this study was to verify if the three-dimensional in vitro culture of stem cells derived from the canine YS is capable of developing intestinal organoids. MSCs from the canine YS and gut cells were isolated and characterized, then three-dimensionally cultured in Matrigel. In both cells lineages, spherical organoids were observed and after 10 days the gut cells formed crypt-like buds and villus-like structures. Despite having the same induction of differentiation process and having the expression of intestinal markers, the MSC from the YS morphology was not in the form of crypt budding. The hypothesis is that these cells could generate structures equivalent to the intestinal organoids of the colon that other studies showed formed only spherical structures. The culture of MSC from the YS, as well as the establishment of protocols for 3D cultivation of this tissue, is relevant, as it will serve as a tool in various applications in basic and scientific biology.
Collapse
Affiliation(s)
- Lina Castelo Branco Motta
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil; Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, São Paulo, Brazil; Graduate Program in Translational Medicine, Drug Research and Development Center (NPDM), Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Vitória Mattos Pereira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil; School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Priscilla Avelino Ferreira Pinto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil; Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Celina Almeida Furlanetto Mançanares
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Naira Caroline Godoi Pieri
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Paulo Fantinato-Neto
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, São Paulo, Brazil.
| |
Collapse
|
2
|
Differential Effects of Extracellular Matrix Glycoproteins Fibronectin and Laminin-5 on Dental Pulp Stem Cell Phenotypes and Responsiveness. J Funct Biomater 2023; 14:jfb14020091. [PMID: 36826890 PMCID: PMC9963712 DOI: 10.3390/jfb14020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) with the potential to differentiate in a limited number of other tissue types. Some evidence has suggested the modulation of DPSC growth may be mediated, in part, by exogenous extracellular matrix (ECM) glycoproteins, including fibronectin (FN) and laminin-5 (LN5). Although preliminary research suggests that some ECM glycoproteins may work as functional biomaterials to modulate DPSC growth responses, the primary goal of this project is to determine the specific effects of FN and LN5 on DPSC growth and viability. Using an existing DPSC repository, n = 16 DPSC isolates were cultured and 96-well growth assays were performed, which revealed FN, LN5 and the combination of these were sufficient to induce statistically significant changes in growth among five (n = 5) DPSC isolates. In addition, the administration of FN (either alone or in combination) was sufficient to induce the expression of alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), while LN5 induced the expression of ALP only, suggesting differential responsiveness among DPSCs. Moreover, these responses appeared to correlate with the expression of MSC biomarkers NANOG, Oct4 and Sox2. These results add to the growing body of evidence suggesting that functional biomaterials, such as ECM glycoproteins FN and LN5, are sufficient to induce phenotypic and differentiation-specific effects in a specific subset of DPSC isolates. More research will be needed to determine which biomarkers or additional factors are necessary and sufficient to induce the differentiation and development of DPSCs ex vivo and in vitro for biomedical applications.
Collapse
|
3
|
He X, Wang S, Sun H, He H, Shi Y, Wu Y, Wu H, Liu Z, Zhuang J, Li W. Lacrimal Gland Microenvironment Changes After Obstruction of Lacrimal Gland Ducts. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35289845 PMCID: PMC8934564 DOI: 10.1167/iovs.63.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate microenvironment changes of the lacrimal gland after obstruction of lacrimal gland ducts. Methods The ducts of rat exorbital lacrimal gland were ligated by sutures for different durations. After that, the sutures in some animals were released, and they were observed for 21 days to evaluate the recovery of the lacrimal gland. Slit lamp and tear secretion test was performed to evaluate ocular surface and lacrimal gland function. The lacrimal gland and cornea were harvested and processed for hematoxylin and eosin staining, oil red O staining, LipidTOX staining, Masson staining, quantitative real time polymerase chain reaction, and immunofluorescence staining. Results After the lacrimal gland ducts were blocked, tear secretion and the weight of the lacrimal gland were reduced. Incidence of corneal neovascularization increased after seven days. Intraglandular ducts dilated and acini destroyed. Long-term ligation induced fibrosis and lipid accumulation of the lacrimal glands. Inflammatory cell infiltrated and inflammatory factors upregulated. Proliferative and apoptotic cells increased. Structure of myoepithelial cells and basement membrane was destroyed. The p63 expression increased whereas Pax6 expression decreased. After suture release, tear secretion and structure of acini could recover in less than seven days after ligation, with a decrease in inflammatory cell infiltration and fibrosis relief. Apoptotic cells and proliferative cells increased at five days thereafter. The structure of the myoepithelial cells and basement membrane could not recover three days after ligation, and the number of mesenchymal cells increased in ligation after five to 14 days. Conclusions Blockage of the lacrimal gland ducts results in dystrophy of lacrimal gland acini cells, inflammation, and lipid accumulation of the lacrimal gland microenvironment. Long-term duct blockage will cause irreversible lacrimal gland failure.
Collapse
Affiliation(s)
- Xin He
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Shaopan Wang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.,Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
| | - Huimin Sun
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Hui He
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Yalin Shi
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yiming Wu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Han Wu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Jingyi Zhuang
- Department of Ophthalmology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei Li
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| |
Collapse
|
4
|
Skowron-Kandzia K, Tomsia M, Koryciak-Komarska H, Plewka D, Wieczorek P, Czekaj P. Gene Expression in Amnion-Derived Cells Cultured on Recombinant Laminin 332-A Preliminary Study. Front Med (Lausanne) 2021; 8:719899. [PMID: 34859000 PMCID: PMC8631290 DOI: 10.3389/fmed.2021.719899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Human amniotic cells (hAC) exhibit characteristics of undifferentiated cells and immunomodulatory properties. Recognition of the relationship between amniotic cells and components of the extracellular matrix is an important condition for their ex vivo preparation and further successful clinical application in regenerative medicine and transplantology. Laminin 332 (LN-332), as a natural component of the basement membrane of amniotic epithelial cells and a ligand for integrin receptors, may strongly influence the phenotype and fate of amniotic cells. We investigated the impact of recombinant LN-332 on hAC viability and expression of markers for pluripotency, early differentiation, adhesion, and immunomodulatory properties. During 14 days of culture, hAC were quantified and qualified by light microscopy, immunohistochemistry, immunocytochemistry, and flow cytometry. Gene expression was assessed with real-time polymerase chain reaction (RT-PCR) arrays and compared with differentiated cells originated from the three germ layers. LN-332 caused an over 2-fold increase in the total number of hAC, accompanied by a 75% reduction of SSEA-4-positive cells and an increase in HLA-ABC-positive cells. In particular, we observed that the presence of laminin 332 in the medium of a short-time culture modifies the effect of culture duration on hAC, enhancing time-dependent inhibition of expression of certain genes, including pluripotency and differentiation markers, laminin 332 subunits (which may be part of self-regulation of LN-332 synthesis by amniotic cells), and integrins. The changes observed in hAC were more distinct with respect to differentiated mesenchymal cells, resulting in more comparable phenotypes than those represented by differentiated endo- and ectodermal cells. We concluded that laminin 332 present in the culture medium influences to a certain extent proliferation, adhesion, and differentiation of amniotic cells in culture.
Collapse
Affiliation(s)
- Katarzyna Skowron-Kandzia
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marcin Tomsia
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Halina Koryciak-Komarska
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Danuta Plewka
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Wieczorek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Delivery of extracellular matrix-enriched stem cells encapsulated with enzyme-free pH-sensitive polymer for enhancing therapeutic angiogenesis. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Godavarthy PS, Walter CB, Lengerke C, Klein G. The Laminin Receptors Basal Cell Adhesion Molecule/Lutheran and Integrin α7β1 on Human Hematopoietic Stem Cells. Front Cell Dev Biol 2021; 9:675240. [PMID: 34746117 PMCID: PMC8570280 DOI: 10.3389/fcell.2021.675240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
In the adult organism, hematopoietic stem and progenitor cells (HSPC) reside in the bone marrow (BM) in specialized hematopoietic stem cell niches of which the extracellular matrix (ECM) is an integral component. Laminins (LM) are a family of heterotrimeric ECM molecules of which mainly family members containing an α4 or α5 chain are expressed in cells from BM niches and involved in HSPC homing and proliferation. Various integrin and non-integrin laminin receptors have been identified and characterized. Among these, the integrins α6β1 and α3β1 were reported to be strongly expressed on human and mouse HSPC. In the present study, we focus on two further specific laminin receptors, namely integrin α7β1 and basal cell adhesion molecule/Lutheran (BCAM/Lu). Using RT-PCR analyses, immunofluorescence staining, immunoblotting and flow cytometry, we show that both are strongly expressed by human lineage-negative CD34 + HSPC. Treatment with function-blocking antibodies against BCAM/Lu neither inhibits the strong adhesive interaction of CD34 + HSPC with LM-511/LM-521 nor the LM-511/LM-521 mediated changes in CD34 + HSPC proliferation, but however, influences the cytokine-induced differentiation of HSPC in colony formation assays. In addition, stromal-derived factor (SDF) 1α-mediated transmigration of CD34 + HSPC through an endothelial cell layer was effectively diminished by BCAM/Lu antibodies, suggesting a direct involvement of BCAM/Lu in the migration process. This study indicates that both laminin receptors newly identified on human CD34 + HSPC should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Parimala Sonika Godavarthy
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Christina B Walter
- Department of Gynecology and Obstetrics, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Gerd Klein
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Matsumoto NM, Aoki M, Okubo Y, Kuwahara K, Eura S, Dohi T, Akaishi S, Ogawa R. Gene Expression Profile of Isolated Dermal Vascular Endothelial Cells in Keloids. Front Cell Dev Biol 2020; 8:658. [PMID: 32850798 PMCID: PMC7403211 DOI: 10.3389/fcell.2020.00658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/01/2020] [Indexed: 01/01/2023] Open
Abstract
Wound healing is a complex biological process, and imbalances of various substances in the wound environment may prolong healing and lead to excessive scarring. Keloid is abnormal proliferation of scar tissue beyond the original wound margins with excessive deposition of extracellular matrix (ECM) and chronic inflammation. Despite numerous previous research efforts, the pathogenesis of keloid remains unknown. Vascular endothelial cells (VECs) are a major type of inductive cell in inflammation and fibrosis. Despite several studies on vascular morphology in keloid formation, there has been no functional analysis of the role of VECs. In the present study, we isolated living VECs from keloid tissues and investigated gene expression patterns using microarray analysis. We obtained 5 keloid tissue samples and 6 normal skin samples from patients without keloid. Immediately after excision, tissue samples were gently minced and living cells were isolated. Magnetic-activated cell sorting of VECs was performed by negative selection of fibroblasts and CD45+ cells and by positive selection of CD31+cells. After RNA extraction, gene expression analysis was performed to compare VECs isolated from keloid tissue (KVECs) with VECs from normal skin (NVECs). After cell isolation, the percentage of CD31+ cells as measured by flow cytometry ranged from 81.8%–98.6%. Principal component analysis was used to identify distinct molecular phenotypes in KVECs versus NVECs and these were divided into two subgroups. In total, 15 genes were upregulated, and 3 genes were downregulated in KVECs compared with NVECs using the t-test (< 0.05). Quantitative RT-PCR and immunohistochemistry showed 16-fold and 11-fold overexpression of SERPINA3 and LAMC2, respectively. SERPINA3 encodes the serine protease inhibitor, α1-antichymotripsin. Laminin γ2-Chain (LAMC2) is a subunit of laminin-5 that induces retraction of vascular endothelial cells and enhances vascular permeability. This is the first report of VEC isolation and gene expression analysis in keloid tissue. Our data suggest that SERPINA3 and LAMC2 upregulation in KVECs may contribute to the development of fibrosis and prolonged inflammation in keloid. Further functional investigation of these genes will help clarify the mechanisms of abnormal scar tissue proliferation.
Collapse
Affiliation(s)
- Noriko M Matsumoto
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Masayo Aoki
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Yuri Okubo
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Kosuke Kuwahara
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Shigeyoshi Eura
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Teruyuki Dohi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Satoshi Akaishi
- Department of Plastic Surgery, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
8
|
Liguori GR, Liguori TTA, de Moraes SR, Sinkunas V, Terlizzi V, van Dongen JA, Sharma PK, Moreira LFP, Harmsen MC. Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity. Front Bioeng Biotechnol 2020; 8:520. [PMID: 32548106 PMCID: PMC7273975 DOI: 10.3389/fbioe.2020.00520] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37°C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-β1 and SM22α used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 ± 895 Pa) was significantly higher than those derived from the left ventricle (3,384 ± 698 Pa) and the mitral valve (3,233 ± 323 Pa) (One-way ANOVA, p = 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-β1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-β1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.
Collapse
Affiliation(s)
- Gabriel Romero Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Tácia Tavares Aquinas Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio Rodrigues de Moraes
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viktor Sinkunas
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Terlizzi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris A van Dongen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Luiz Felipe Pinho Moreira
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Immobilized Laminin-derived Peptide Can Enhance Expression of Stemness Markers in Mesenchymal Stem Cells. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0118-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Andreeva ER, Matveeva DK. Multipotent Mesenchymal Stromal Cells and Extracellular Matrix: Regulation under Hypoxia. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s0362119718060038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Intervertebral Disc-Derived Stem/Progenitor Cells as a Promising Cell Source for Intervertebral Disc Regeneration. Stem Cells Int 2018; 2018:7412304. [PMID: 30662469 PMCID: PMC6312624 DOI: 10.1155/2018/7412304] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is considered to be the primary reason for low back pain. Despite remarkable improvements in both pharmacological and surgical management of IVD degeneration (IVDD), therapeutic effects are still unsatisfactory. It is because of the fact that these therapies are mainly focused on alleviating the symptoms rather than treating the underlying cause or restoring the structure and biomechanical function of the IVD. Accumulating evidence has revealed that the endogenous stem/progenitor cells exist in the IVD, and these cells might be a promising cell source in the regeneration of degenerated IVD. However, the biological characteristics and potential application of IVD-derived stem/progenitor cells (IVDSCs) have yet to be investigated in detail. In this review, the authors aim to perform a review to systematically discuss (1) the isolation, surface markers, classification, and biological characteristics of IVDSCs; (2) the aging- and degeneration-related changes of IVDSCs and the influences of IVD microenvironment on IVDSCs; and (3) the potential for IVDSCs to promote regeneration of degenerated IVD. The authors believe that this review exclusively address the current understanding of IVDSCs and provide a novel approach for the IVD regeneration.
Collapse
|
12
|
Shakouri-Motlagh A, O'Connor AJ, Kalionis B, Heath DE. Improved ex vivo expansion of mesenchymal stem cells on solubilized acellular fetal membranes. J Biomed Mater Res A 2018; 107:232-242. [PMID: 30378728 DOI: 10.1002/jbm.a.36557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
Abstract
Coatings produced from extracellular matrixes (ECMs) have emerged as promising surfaces for the improved ex vivo expansion of mesenchymal stem cells (MSCs). However, identifying a readily available source of ECM to generate these coatings is currently the bottleneck of this technology. In this study, we assessed if ECM coatings derived from decellularized fetal membranes were a suitable substrate for MSC expansion. We separated and decellularized the two main components of the fetal membranes, the amnion and the chorion. Characterization of the decellularized membranes revealed that each membrane component has a distinct composition, implying that coatings produced from these materials would have unique biological properties. The membranes were processed further to produce solubilized forms of the decellularized amniotic membrane (s-dAM) and decellularized chorionic membrane (s-dCM). On s-dAM coatings decidual MSCs (DMSC) were more proliferative than those cultured on tissue culture plastic alone or on Matrigel coatings; were smaller in size (a measure of MSC potency); exhibited greater adipogenic differentiation capacity; and improved osteogenic capacity. Additionally, long term culture studies showed late passage DMSCs (passage 8) cultured on s-dAM showed a decrease in cell diameter over three passages. These data support the use of s-dAM as a substrate for improved MSC expansion. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 232-242, 2019.
Collapse
Affiliation(s)
- Aida Shakouri-Motlagh
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia.,Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia.,University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Wang O, Ismail A, Fabian FM, Lin H, Li Q, Elowsky C, Carlson MA, Burgess W, Velander WH, Kidambi S, Lei Y. A totally recombinant fibrin matrix for mesenchymal stem cell culture and delivery. J Biomed Mater Res A 2018; 106:3135-3142. [PMID: 30152030 DOI: 10.1002/jbm.a.36508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) have been widely studied for tissue engineering and treating diseases in laboratories, clinical trials, and clinics. Fibrin matrices are often used to culture MSCs or increase the retention of MSCs at the injection site. However, fibrins made with the human plasma derived fibrinogen have high cost and risk of human pathogen transmission. In this article, we studied if fibrin matrices made with recombinant human fibrinogen, recombinant human thrombin, and recombinant human factor XIII could be used to culture and deliver MSCs. We systematically investigated the relationships between the fibrin matrix formulation, its nanostructure, and the behaviors of the cells in the matrix including the cell morphology, viability, and growth. We found that the fibrinogen concentration significantly affected the matrix structure and cell behaviors. We then used an optimized fibrin matrix to deliver human MSCs into mice subcutaneously. We found that the matrix could significantly enhance the retention of MSCs at the injection site. To our best knowledge, this is the first study on using fibrin matrices made with entirely recombinant proteins for culturing and delivering MSCs. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3135-3142, 2018.
Collapse
Affiliation(s)
- Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska.,Biomedical Engineering Program, University of Nebraska, Lincoln, Nebraska
| | - Ayman Ismail
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Frank Marco Fabian
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Qiang Li
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center and the Omaha VA Medical Center, Omaha, Nebraska
| | - Wilson Burgess
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - William H Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska.,Biomedical Engineering Program, University of Nebraska, Lincoln, Nebraska.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska.,Biomedical Engineering Program, University of Nebraska, Lincoln, Nebraska.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
14
|
Beaufils C, Farlay D, Machuca-Gayet I, Fassier A, Zenker M, Freychet C, Bonnelye E, Bertholet-Thomas A, Ranchin B, Bacchetta J. Skeletal impairment in Pierson syndrome: Is there a role for lamininβ2 in bone physiology? Bone 2018; 106:187-193. [PMID: 29051055 DOI: 10.1016/j.bone.2017.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Pierson syndrome is caused by a mutation of LAMB2, encoding for laminin β2. Clinical phenotype is variable but usually associates congenital nephrotic syndrome (CNS) and ocular abnormalities. Neuromuscular impairment has also been described. METHODS We report on a 15-year old girl, suffering from Pierson Syndrome, who developed severe bone deformations during puberty. This patient initially displayed CNS and microcoria, leading to the clinical diagnosis of Pierson syndrome. Genetic analysis revealed a truncating mutation and a splice site mutation of LAMB2. The patient received a renal transplantation (R-Tx) at the age of 3. After R-Tx, renal evolution was simple, the patient receiving low-dose corticosteroids, tacrolimus and mycophenolate mofetil. At the age of 12, bone deformations progressively appeared. At the time of bone impairment, renal function was subnormal (glomerular filtration rate using iohexol clearance 50mL/min per 1.73m2), and parameters of calcium/phosphate metabolism were normal (calcium 2.45mmol/L, phosphorus 1.30mmol/L, PTH 81ng/L, ALP 334U/L, 25OH-D 73nmol/L). Radiographs showed major deformations such as scoliosis, genu varum and diffuse epiphyseal abnormalities. A high resolution scanner (HR-pQCT) was performed, demonstrating a bone of "normal low" quantity and quality; major radial and cubital deformations were observed. Stainings of laminin β2 were performed on bone and renal samples from the patient and healthy controls: as expected, laminin β2 was expressed in the control kidney but not in the patient's renal tissue, and a similar pattern was observed in bone. CONCLUSION This is the first case of skeletal impairment ever described in Pierson syndrome. Integrin α3β1, receptor for laminin β2, are found in podocytes and osteoblasts, and the observation of both the presence of laminin β2 staining in healthy bone and its absence in the patient's bone raises the question of a potential role of laminin β2 in bone physiology.
Collapse
Affiliation(s)
- Camille Beaufils
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices, Civils de Lyon, 69677 Bron, France.
| | - Delphine Farlay
- INSERM, UMR 1033, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Alice Fassier
- Service de Chirurgie Orthopédique Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Germany
| | - Caroline Freychet
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices, Civils de Lyon, 69677 Bron, France
| | - Edith Bonnelye
- INSERM, UMR 1033, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurélia Bertholet-Thomas
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices, Civils de Lyon, 69677 Bron, France
| | - Bruno Ranchin
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices, Civils de Lyon, 69677 Bron, France
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Hôpital Femme Mère Enfant, Hospices, Civils de Lyon, 69677 Bron, France; INSERM, UMR 1033, Université Claude Bernard Lyon 1, Lyon, France; Service de Chirurgie Orthopédique Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France; Institute of Human Genetics, University Hospital Magdeburg, Germany; Faculté de Médecine Lyon Est, Université de Lyon, France, Lyon.
| |
Collapse
|
15
|
Xeno-Free Strategies for Safe Human Mesenchymal Stem/Stromal Cell Expansion: Supplements and Coatings. Stem Cells Int 2017; 2017:6597815. [PMID: 29158740 PMCID: PMC5660800 DOI: 10.1155/2017/6597815] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have generated great interest in regenerative medicine mainly due to their multidifferentiation potential and immunomodulatory role. Although hMSC can be obtained from different tissues, the number of available cells is always low for clinical applications, thus requiring in vitro expansion. Most of the current protocols for hMSC expansion make use of fetal bovine serum (FBS) as a nutrient-rich supplement. However, regulatory guidelines encourage novel xeno-free alternatives to define safer and standardized protocols for hMSC expansion that preserve their intrinsic therapeutic potential. Since hMSCs are adherent cells, the attachment surface and cell-adhesive components also play a crucial role on their successful expansion. This review focuses on the advantages/disadvantages of FBS-free media and surfaces/coatings that avoid the use of animal serum, overcoming ethical issues and improving the expansion of hMSC for clinical applications in a safe and reproducible way.
Collapse
|
16
|
Sun Y, Wang T, Toh W, Pei M. The role of laminins in cartilaginous tissues: from development to regeneration. Eur Cell Mater 2017; 34:40-54. [PMID: 28731483 PMCID: PMC7315463 DOI: 10.22203/ecm.v034a03] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
As a key molecule of the extracellular matrix, laminin provides a delicate microenvironment for cell functions. Recent findings suggest that laminins expressed by cartilage-forming cells (chondrocytes, progenitor cells and stem cells) could promote chondrogenesis. However, few papers outline the effect of laminins on providing a favorable matrix microenvironment for cartilage regeneration. In this review, we delineated the expression of laminins in hyaline cartilage, fibrocartilage and cartilage-like tissue (nucleus pulposus) throughout several developmental stages. We also examined the effect of laminins on the biological activities of chondrocytes, including adhesion, migration and survival. Furthermore, we scrutinized the potential influence of various laminin isoforms on cartilage-forming cells' proliferation and chondrogenic differentiation. With this information, we hope to facilitate the understanding of the spatial and temporal interactions between cartilage-forming cells and laminin microenvironment to eventually advance cell-based cartilage engineering and regeneration.
Collapse
Affiliation(s)
- Y. Sun
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA,Department of Orthopaedics, Orthopaedics Institute, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu, 225001, China
| | - T.L. Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - W.S. Toh
- Faculty of Dentistry, National University of Singapore, Singapore
| | - M. Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA,Exercise Physiology, West Virginia University, Morgantown, WV, USA,Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
17
|
Park YM, Park JS, Lee IH, Lee JS. Effects of Human Serum on Human Corneal Epithelial Cells in Vitro. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2017. [DOI: 10.3341/jkos.2017.58.12.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Young Min Park
- Department of Ophthalmology, Gyeongsang National University School of Medicine, Jinju, Korea
- Department of Ophthalmology, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | | | - In Ho Lee
- Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, Korea
| | - Jong Soo Lee
- Department of Ophthalmology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
18
|
Clements LE, Garvican ER, Dudhia J, Smith RKW. Modulation of mesenchymal stem cell genotype and phenotype by extracellular matrix proteins. Connect Tissue Res 2016; 57:443-453. [PMID: 27448620 DOI: 10.1080/03008207.2016.1215442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM To investigate the effect of extracellular matrix (ECM) proteins on characteristics of mesenchymal stem cells (MSCs) and tendon-derived cells (TDCs). MATERIALS AND METHODS MSCs and TDCs, cultured in a monolayer (2D) or hydrogels (3D), with or without ECM protein supplementation, and on a non-viable native tendon (NNT) matrix were assayed for adhesion, proliferation, gene expression, and integrin expression. RESULTS MSCs exhibited a fibroblastic, spindle-shaped morphology on 2D matrices except in the presence of fibronectin. In 3D matrices, MSCs displayed a rounded phenotype except when cultured on NNTs where cells aligned along the collagen fibrils but, unlike TDCs, did not form inter-cellular cytoplasmic processes. MSC proliferation was significantly (p < 0.01) increased by collagen type I in 2D culture and fibronectin in 3D culture. TDC proliferation was unaffected by substrata. MSCs and TDCs differentially expressed α2 integrin. Adhesion to substrata was reduced by RGD-blocking peptide and β1 integrin antibody. The presence of collagen I or fibronectin upregulated MSC expression of collagen type I and collagen type III, COMP, decorin, osteopontin, and fibronectin. CONCLUSIONS The morphology, gene expression, and adhesion of both MSCs and TDCs are sensitive to the presence of specific ECM components. Interaction with the ECM is, therefore, likely to affect the mechanism of action of MSCs in vitro and may contribute to phenotypic modulation in vivo.
Collapse
Affiliation(s)
- Lucy E Clements
- a Department Clinical Sciences and Services , Royal Veterinary College , Hatfield , UK
| | - Elaine R Garvican
- a Department Clinical Sciences and Services , Royal Veterinary College , Hatfield , UK
| | - Jayesh Dudhia
- a Department Clinical Sciences and Services , Royal Veterinary College , Hatfield , UK
| | - Roger K W Smith
- a Department Clinical Sciences and Services , Royal Veterinary College , Hatfield , UK
| |
Collapse
|
19
|
Qin Y, Rodin S, Simonson OE, Hollande F. Laminins and cancer stem cells: Partners in crime? Semin Cancer Biol 2016; 45:3-12. [PMID: 27491691 DOI: 10.1016/j.semcancer.2016.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/30/2016] [Indexed: 01/31/2023]
Abstract
As one of the predominant protein families within the extracellular matrix both structurally and functionally, laminins have been shown to be heavily involved in tumor progression and drug resistance. Laminins participate in key cellular events for tumor angiogenesis, cell invasion and metastasis development, including the regulation of epithelial-mesenchymal transition and basement membrane remodeling, which are tightly associated with the phenotypic characteristics of stem-like cells, particularly in the context of cancer. In addition, a great deal of studies and reports has highlighted the critical roles of laminins in modulating stem cell phenotype and differentiation, as part of the stem cell niche. Stemming from these discoveries a growing body of literature suggests that laminins may act as regulators of cancer stem cells, a tumor cell subpopulation that plays an instrumental role in long-term cancer maintenance, metastasis development and therapeutic resistance. The accumulating evidence in this emerging research area suggests that laminins represent potential therapeutic targets for anti-cancer treatments against cancer stem cells, and that they may be used as predictive and prognostic markers to inform clinical management and improve patient survival.
Collapse
Affiliation(s)
- Yan Qin
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Sergey Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Oscar E Simonson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; Department of Cardiothoracic Surgery, Uppsala University Hospital, Uppsala, Sweden.
| | - Frédéric Hollande
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
20
|
de Lima KA, de Oliveira GLV, Yaochite JNU, Pinheiro DG, de Azevedo JTC, Silva WA, Covas DT, Couri CEB, Simões BP, Voltarelli JC, Oliveira MC, Malmegrim KCR. Transcriptional profiling reveals intrinsic mRNA alterations in multipotent mesenchymal stromal cells isolated from bone marrow of newly-diagnosed type 1 diabetes patients. Stem Cell Res Ther 2016; 7:92. [PMID: 27406064 PMCID: PMC4942931 DOI: 10.1186/s13287-016-0351-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. Methods Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. Results T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. Conclusions Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0351-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalil A de Lima
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil. .,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil. .,, Tenente Catao Roxo, 2501, Monte Alegre, 14051-140, Ribeirao Preto, Sao Paulo, Brazil.
| | - Gislane L V de Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana N U Yaochite
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceara, Brazil
| | - Daniel G Pinheiro
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Júlia T C de Azevedo
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Wilson Araujo Silva
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Dimas T Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos E B Couri
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Belinda P Simões
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Julio C Voltarelli
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Maria C Oliveira
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-Based Research, Regional Blood Center of Ribeirao Preto, Ribeirao Preto Medical, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
21
|
Assi R, Foster TR, He H, Stamati K, Bai H, Huang Y, Hyder F, Rothman D, Shu C, Homer-Vanniasinkam S, Cheema U, Dardik A. Delivery of mesenchymal stem cells in biomimetic engineered scaffolds promotes healing of diabetic ulcers. Regen Med 2016; 11:245-60. [PMID: 26986810 DOI: 10.2217/rme-2015-0045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM We hypothesized that delivery of mesenchymal stem cells (MSCs) in a biomimetic collagen scaffold improves wound healing in a diabetic mouse model. MATERIALS & METHODS Rolled collagen scaffolds containing MSCs were implanted or applied topically to diabetic C57BL/6 mice with excisional wounds. RESULTS Rolled scaffolds were hypoxic, inducing MSC synthesis and secretion of VEGF. Diabetic mice with wounds treated with rolled scaffolds containing MSCs showed increased healing compared with controls. Histologic examination showed increased cellular proliferation, increased VEGF expression and capillary density, and increased numbers of macrophages, fibroblasts and smooth muscle cells. Addition of laminin to the collagen scaffold enhanced these effects. CONCLUSION Activated MSCs delivered in a biomimetic-collagen scaffold enhanced wound healing in a translationally relevant diabetic mouse model.
Collapse
Affiliation(s)
- Roland Assi
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Trenton R Foster
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hao He
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Katerina Stamati
- UCL Institute of Orthopaedics & Musculoskeletal Sciences, UCL Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Hualong Bai
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Yuegao Huang
- Departments of Diagnostic Radiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Departments of Diagnostic Radiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Douglas Rothman
- Departments of Diagnostic Radiology & Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shervanthi Homer-Vanniasinkam
- UCL Institute of Orthopaedics & Musculoskeletal Sciences, UCL Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Umber Cheema
- UCL Institute of Orthopaedics & Musculoskeletal Sciences, UCL Division of Surgery & Interventional Sciences, University College London, London, UK
| | - Alan Dardik
- Vascular Biology & Therapeutics Program & the Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.,Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT, USA
| |
Collapse
|
22
|
Lohmer LL, Kelley LC, Hagedorn EJ, Sherwood DR. Invadopodia and basement membrane invasion in vivo. Cell Adh Migr 2015; 8:246-55. [PMID: 24717190 DOI: 10.4161/cam.28406] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over 20 years ago, protrusive, F-actin-based membrane structures, termed invadopodia, were identified in highly metastatic cancer cell lines. Invadopodia penetrate artificial or explanted extracellular matrices in 2D culture conditions and have been hypothesized to facilitate the migration of cancer cells through basement membrane, a thin, dense, barrier-like matrix surrounding most tissues. Despite intensive study, the identification of invadopodia in vivo has remained elusive and until now their possible roles during invasion or even existence have remained unclear. Studies in remarkably different cellular contexts-mouse tumor models, zebrafish intestinal epithelia, and C. elegans organogenesis-have recently identified invadopodia structures associated with basement membrane invasion. These studies are providing the first in vivo insight into the regulation, function, and role of these fascinating subcellular devices with critical importance to both development and human disease.
Collapse
|
23
|
Mehta M, Madl CM, Lee S, Duda GN, Mooney DJ. The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels. J Biomed Mater Res A 2015; 103:3516-25. [PMID: 25953514 DOI: 10.1002/jbm.a.35497] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/22/2015] [Accepted: 05/04/2015] [Indexed: 01/08/2023]
Abstract
Interactions between cells and the extracellular matrix (ECM) are known to play critical roles in regulating cell phenotype. The identity of ECM ligands presented to mesenchymal stem cells (MSCs) has previously been shown to direct the cell fate commitment of these cells. To enhance osteogenic differentiation of MSCs, alginate hydrogels were prepared that present the DGEA ligand derived from collagen I. When presented from hydrogel surfaces in 2D, the DGEA ligand did not facilitate cell adhesion, while hydrogels presenting the RGD ligand derived from fibronectin did encourage cell adhesion and spreading. However, the osteogenic differentiation of MSCs encapsulated within alginate hydrogels presenting the DGEA ligand was enhanced when compared with unmodified alginate hydrogels and hydrogels presenting the RGD ligand. MSCs cultured in DGEA-presenting gels exhibited increased levels of osteocalcin production and mineral deposition. These data suggest that the presentation of the collagen I-derived DGEA ligand is a feasible approach for selectively inducing an osteogenic phenotype in encapsulated MSCs.
Collapse
Affiliation(s)
- Manav Mehta
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, 02138.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Christopher M Madl
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138
| | - Shimwoo Lee
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany.,Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, 02138
| |
Collapse
|
24
|
Rutledge K, Jabbarzadeh E. Nanoengineered Platforms to Guide Pluripotent Stem Cell Fate. JOURNAL OF NANOMEDICINE & NANOTECHNOLOGY 2014; 5:217. [PMID: 26918198 PMCID: PMC4764045 DOI: 10.4172/2157-7439.1000217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tissue engineering utilizes cells, signaling molecules, and scaffolds towards creating functional tissue to repair damaged organs. Pluripotent stem cells (PSCs) are a promising cell source due to their ability to self-renewal indefinitely and their potential to differentiate into almost any cell type. Great strides have been taken to parse the physiological mechanisms by which PSCs respond to their microenvironment and commit to a specific lineage. The combination of physical cues and chemical factors is thought to have the most profound influence on stem cell behavior, therefore a major focus of tissue engineering strategies is scaffold design to incorporate these signals. One overlooked component of the in vivo microenvironment researchers attempt to recapitulate with three dimensional (3D) substrates is the nanoarchitecture formed by the fibrillar network of extracellular matrix (ECM) proteins. These nanoscale features have the ability to impact cell adhesion, migration, proliferation, and lineage commitment. Significant advances have been made in deciphering how these nanoscale cues interact with stem cells to determine phenotype, but much is still unknown as to how the interplay between physical and chemical signals regulate in vitro and in vivo cellular fate. This review dives deeper to investigate nanoscale platforms for engineering tissue, as well use the use of these nanotechnologies to drive pluripotent stem cell lineage determination.
Collapse
Affiliation(s)
- Katy Rutledge
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
- Department of Orthopaedic Surgery, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| |
Collapse
|
25
|
Gasparotto VPO, Landim-Alvarenga FC, Oliveira ALR, Simões GF, Lima-Neto JF, Barraviera B, Ferreira RS. A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells. Stem Cell Res Ther 2014; 5:78. [PMID: 24916098 PMCID: PMC4100340 DOI: 10.1186/scrt467] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. METHODS The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. RESULTS The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. CONCLUSIONS The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need.
Collapse
|
26
|
Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials 2014; 35:4046-57. [DOI: 10.1016/j.biomaterials.2014.01.081] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
|
27
|
Nakamura R, Nakamura F, Fukunaga S. Changes in the composition of the extracellular matrix accumulated by mesenchymal stem cells during in vitro expansion. Anim Sci J 2014; 85:706-13. [PMID: 24612364 DOI: 10.1111/asj.12187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/29/2013] [Indexed: 01/13/2023]
Abstract
One of the approaches to preserve the properties of mesenchymal stem cells (MSCs) during in vitro expansion is to use cell culture substrates. MSCs are known to generate the extracellular matrix (ECM) proper to preserve their proliferative capacity in vitro, but extensive expansion is considered to deprive MSCs of the capacity to prepare such ECM. In order to examine the features of ECM proper that is required to preserve the proliferative capacity of MSCs, we analyzed the changes in the composition of ECM accumulated by MSCs during in vitro expansion. Biochemical and immunological analysis showed that collagen and laminin content decreased during expansion. Immunofluorescence and ultrastructural analyses showed that the ECM structure changed from a dynamic fibrous, porous and steric structure to a static, crammed, and planar one. The results of Western blotting analysis suggested loose intermolecular association in ECM molecules accumulated by extensively proliferated MSCs. The ECM prepared by extensively proliferated MSCs was less effective to recover their proliferative capacity than that prepared by less proliferated cells. Our results suggest that a cell culture substrate to expand MSCs requires abundance in collagen and basement membrane components, and steric, porous and fibrous structure in which ECM molecules are tightly associated.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Laboratory of Animal By-Product Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
28
|
Liu DD, Ge K, Jin Y, Sun J, Wang SX, Yang MS, Zhang JC. Terbium promotes adhesion and osteogenic differentiation of mesenchymal stem cells via activation of the Smad-dependent TGF-β/BMP signaling pathway. J Biol Inorg Chem 2014; 19:879-91. [DOI: 10.1007/s00775-014-1119-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/11/2014] [Indexed: 12/22/2022]
|
29
|
Wu KC, Tseng CL, Wu CC, Kao FC, Tu YK, C So E, Wang YK. Nanotechnology in the regulation of stem cell behavior. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:054401. [PMID: 27877605 PMCID: PMC5090368 DOI: 10.1088/1468-6996/14/5/054401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 05/19/2023]
Abstract
Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell-scaffold combinations in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chang Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Feng-Chen Kao
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Edmund C So
- Department of Anesthesiology, Tainan Municipal An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yang-Kao Wang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
- Medical Device Innovation Center, National Cheng-Kung University, Tainan, Taiwan
| |
Collapse
|
30
|
Wang YK, Chen CS. Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. J Cell Mol Med 2013; 17:823-32. [PMID: 23672518 PMCID: PMC3741348 DOI: 10.1111/jcmm.12061] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/01/2013] [Indexed: 12/15/2022] Open
Abstract
Stem cells have been shown to have the potential to provide a source of cells for applications to tissue engineering and organ repair. The mechanisms that regulate stem cell fate, however, mostly remain unclear. Mesenchymal stem cells (MSCs) are multipotent progenitor cells that are isolated from bone marrow and other adult tissues, and can be differentiated into multiple cell lineages, such as bone, cartilage, fat, muscles and neurons. Although previous studies have focused intensively on the effects of chemical signals that regulate MSC commitment, the effects of physical/mechanical cues of the microenvironment on MSC fate determination have long been neglected. However, several studies provided evidence that mechanical signals, both direct and indirect, played important roles in regulating a stem cell fate. In this review, we summarize a number of recent studies on how cell adhesion and mechanical cues influence the differentiation of MSCs into specific lineages. Understanding how chemical and mechanical cues in the microenvironment orchestrate stem cell differentiation may provide new insights into ways to improve our techniques in cell therapy and organ repair.
Collapse
Affiliation(s)
- Yang-Kao Wang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan.
| | | |
Collapse
|
31
|
Su PJ, Tran QA, Fong JJ, Eliceiri KW, Ogle BM, Campagnola PJ. Mesenchymal stem cell interactions with 3D ECM modules fabricated via multiphoton excited photochemistry. Biomacromolecules 2012; 13:2917-25. [PMID: 22876971 DOI: 10.1021/bm300949k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To understand complex micro/nanoscale ECM stem cell interactions, reproducible in vitro models are needed that can strictly recapitulate the relative content and spatial arrangement of native tissue. Additionally, whole ECM proteins are required to most accurately reflect native binding dynamics. To address this need, we use multiphoton excited photochemistry to create 3D whole protein constructs or "modules" to study how the ECM governs stem cell migration. The constructs were created from mixtures of BSA/laminin (LN) and BSA alone, whose comparison afforded studying how the migration dynamics are governed from the combination of morphological and ECM cues. We found that mesenchymal stem cells interacted for significantly longer durations with the BSA/LN constructs than pure BSA, pointing to the importance of binding cues of the LN. Critical to this work was the development of an automated system with feedback based on fluorescence imaging to provide quality control when synthesizing multiple identical constructs.
Collapse
Affiliation(s)
- Ping-Jung Su
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
32
|
Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev 2012; 112:4507-40. [PMID: 22621236 DOI: 10.1021/cr3000169] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, 32001 Taiwan.
| | | | | | | |
Collapse
|
33
|
Karam JP, Muscari C, Montero-Menei CN. Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 2012; 33:5683-95. [PMID: 22594970 DOI: 10.1016/j.biomaterials.2012.04.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 04/08/2012] [Indexed: 12/18/2022]
Abstract
An increasing number of studies in cardiac cell therapy have provided encouraging results for cardiac repair. Adult stem cells may overcome ethical and availability concerns, with the additional advantages, in some cases, to allow autologous grafts to be performed. However, the major problems of cell survival, cell fate determination and engraftment after transplantation, still remain. Tissue-engineering strategies combining scaffolds and cells have been developed and have to be adapted for each type of application to enhance stem cell function. Scaffold properties required for cardiac cell therapy are here discussed. New tissue engineering advances that may be implemented in combination with adult stem cells for myocardial infarction therapy are also presented. Biomaterials not only provide a 3D support for the cells but may also mimic the structural architecture of the heart. Using hydrogels or particulate systems, the biophysical and biochemical microenvironments of transplanted cells can also be controlled. Advances in biomaterial engineering have permitted the development of sophisticated drug-releasing materials with a biomimetic 3D support that allow a better control of the microenvironment of transplanted cells.
Collapse
|
34
|
Regeneration of cartilage and bone by defined subsets of mesenchymal stromal cells--potential and pitfalls. Adv Drug Deliv Rev 2011; 63:342-51. [PMID: 21184789 DOI: 10.1016/j.addr.2010.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 01/09/2023]
Abstract
Mesenchymal stromal cells, also referred to as mesenchymal stem cells, can be obtained from various tissues. Today the main source for isolation of mesenchymal stromal cells in mammals is the bone marrow. Mesenchymal stromal cells play an important role in tissue formation and organogenesis during embryonic development. Moreover, they provide the cellular and humoral basis for many processes of tissue regeneration and wound healing in infancy, adolescence and adulthood as well. There is increasing evidence that mesenchymal stromal cells from bone marrow and other sources including term placenta or adipose tissue are not a homogenous cell population. Only a restricted number of appropriate stem cells markers have been explored so far. But routine preparations of mesenchymal stromal cells contain phenotypically and functionally distinct subsets of stromal cells. Knowledge on the phenotypical characteristics and the functional consequences of such subsets will not only extend our understanding of stem cell biology, but might allow to develop improved regimen for regenerative medicine and wound healing and novel protocols for tissue engineering as well. In this review we will discuss novel strategies for regenerative medicine by specific selection or separation of subsets of mesenchymal stromal cells in the context of osteogenesis and bone regeneration. Mesenchymal stromal cells, which express the specific cell adhesion molecule CD146, also known as MCAM or MUC18, are prone for bone repair. Other cell surface proteins may allow the selection of chondrogenic, myogenic, adipogenic or other pre-determined subsets of mesenchymal stromal cells for improved regenerative applications as well.
Collapse
|
35
|
Bay-Jensen AC, Nielsen RH, Segovia-Silvestre T, Azria M, Staedtler F, Letzkus M, Hartmann N, Brachat AH, Karsdal MA. A microarray analysis of full depth knee cartilage of ovariectomized rats. BMC Res Notes 2011; 4:63. [PMID: 21406075 PMCID: PMC3068969 DOI: 10.1186/1756-0500-4-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/15/2011] [Indexed: 11/15/2022] Open
Abstract
Background This short communication focuses the on articular cartilage and the subchondral bone, both of which play important roles in the development of osteoarthritis (OA). There are indications that estrogen-deficiency, as the post-menopausal state, accelerate the development of OA. Findings We investigated, which extracellular matrix (ECM) protein, proteases and different pro-inflammatory factors was up- or down-regulated in the knee joint tissue in response to estrogen-deficiency in rats induced by ovariectomy. These data support previous findings that several metalloproteinases (MMPs) and cysteine proteases are co-regulated with numerous collagens and proteoglycans that are important for cartilage integrity. Furthermore quite a few pro-inflammatory cytokines were regulated by estrogen deprivation. Conclusion We found multiple genes where regulated in the joint by estrogen-deficiency, many of which correspond well with our current knowledge of the pathogenesis of OA. It supports that estrogen-deficiency (e.g. OVX) may accelerate joint deterioration. However, there are also data that draw attention the need for better understanding of the synergy between proteases and tissue turnover.
Collapse
Affiliation(s)
- Anne C Bay-Jensen
- Cartilage biology and biomarkers, Nordic Bioscience, Herlev, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kisiday JD, Hale BW, Almodovar JL, Lee CM, Kipper MJ, Wayne McIlwraith C, Frisbie DD. Expansion of mesenchymal stem cells on fibrinogen-rich protein surfaces derived from blood plasma. J Tissue Eng Regen Med 2010; 5:600-11. [DOI: 10.1002/term.352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 07/12/2010] [Indexed: 02/06/2023]
|
37
|
Lindner U, Kramer J, Behrends J, Driller B, Wendler NO, Boehrnsen F, Rohwedel J, Schlenke P. Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins. Cytotherapy 2010; 12:992-1005. [PMID: 20807021 DOI: 10.3109/14653249.2010.510503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS In vitro cultured mesenchymal stromal cells (MSC) are characterized by a short proliferative lifespan, an increasing loss of proliferation capacity and progressive reduction of differentiation potential. Laminin-1, laminin-5, collagen IV and fibronectin are important constituents of the basement membrane extracellular matrix (ECM) that are involved in a variety of cellular activities, including cell attachment and motility. METHODS AND RESULTS The in vitro proliferation capacity of MSC was significantly improved when the cells were incubated in the presence of basement membrane ECM proteins. For example, a mixture of proteins improved proliferation capacity 250-fold in comparison with standard conditions after five passages. Furthermore, in colony-forming unit-fibroblast (CFU-F) assays colony numbers and size were significantly extended. Blocking specific integrin cell-surface receptors, positive effects on the proliferation capacity of MSC were inhibited. Additionally, when MSC were co-cultivated with ECM proteins, cells maintained their multipotential differentiation capacity throughout many culture passages in comparison with cells cultivated on plastic. However, expansion of MSC on laminin-5 suppressed any subsequent chondrogenic differentiation. CONCLUSIONS Our results suggest that expansion of bone marrow-derived MSC in the presence of ECM proteins is a powerful approach for generating large numbers of MSC, showing a prolonged capacity to differentiate into mesodermal cell lineages, with the exception of the lack of chondrogenesis by using laminin-5 coating.
Collapse
Affiliation(s)
- Ulrich Lindner
- Medical Department I, Division of Nephrology and Transplantation Unit, University of Luebeck, Luebeck, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kruegel J, Miosge N. Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci 2010; 67:2879-95. [PMID: 20428923 PMCID: PMC2921489 DOI: 10.1007/s00018-010-0367-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 01/11/2023]
Abstract
More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches.
Collapse
Affiliation(s)
- Jenny Kruegel
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Nicolai Miosge
- Tissue Regeneration Work Group, Department of Prosthodontics, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
39
|
Hamill KJ, Kligys K, Hopkinson SB, Jones JCR. Laminin deposition in the extracellular matrix: a complex picture emerges. J Cell Sci 2010; 122:4409-17. [PMID: 19955338 DOI: 10.1242/jcs.041095] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Laminins are structural components of basement membranes. In addition, they are key extracellular-matrix regulators of cell adhesion, migration, differentiation and proliferation. This Commentary focuses on a relatively understudied aspect of laminin biology: how is laminin deposited into the extracellular matrix? This topic has fascinated researchers for some time, particularly considering the diversity of patterns of laminin that can be visualized in the matrix of cultured cells. We discuss current ideas of how laminin matrices are assembled, the role of matrix receptors in this process and how laminin-associated proteins modulate matrix deposition. We speculate on the role of signaling pathways that are involved in laminin-matrix deposition and on how laminin patterns might play an important role in specifying cell behaviors, especially directed migration. We conclude with a description of new developments in the way that laminin deposition is being studied, including the use of tagged laminin subunits that should allow the visualization of laminin-matrix deposition and assembly by living cells.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
40
|
Hu J, Deng L, Wang X, Xu XM. Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. J Neurosci Res 2010; 87:2854-62. [PMID: 19472225 DOI: 10.1002/jnr.22111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) is a component of neural cell niches and regulates multiple functions of diverse cell types. To date, limited information is available concerning its biological effects on the growth properties of oligodendrocyte progenitor cells (OPCs). In the present study, we examined effects of several ECM components, i.e., fibronectin, laminin, and Matrigel, on the survival, proliferation, migration, process extension, and purity of OPCs isolated from embryonic day 15 rat spinal cords. All three ECM components enhanced these biological properties of the OPCs compared with a non-ECM substrate, poly-D-lysine. However, the extents of their effects were somewhat different. Among these ECMs, fibronectin showed the strongest effect on almost all aspects of the growth properties of OPCs, implying that this molecule is a better substrate for the growth of OPCs in vitro. Because of its survival- and growth-promoting effects on OPCs, fibronectin may be considered as a candidate substrate for enhancing OPC-mediated repair under conditions when exogenous delivery or endogenous stimulation of OPCs is applied.
Collapse
Affiliation(s)
- Jianguo Hu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
41
|
Maass PG, Wirth J, Aydin A, Rump A, Stricker S, Tinschert S, Otero M, Tsuchimochi K, Goldring MB, Luft FC, Bähring S. A cis-regulatory site downregulates PTHLH in translocation t(8;12)(q13;p11.2) and leads to Brachydactyly Type E. Hum Mol Genet 2009; 19:848-60. [PMID: 20015959 DOI: 10.1093/hmg/ddp553] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Parathyroid hormone-like hormone (PTHLH) is an important chondrogenic regulator; however, the gene has not been directly linked to human disease. We studied a family with autosomal-dominant Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation with breakpoints (BPs) upstream of PTHLH on chromosome 12p11.2 and a disrupted KCNB2 on 8q13. We sequenced the BPs and identified a highly conserved Activator protein 1 (AP-1) motif on 12p11.2, together with a C-ets-1 motif translocated from 8q13. AP-1 and C-ets-1 bound in vitro and in vivo at the derivative chromosome 8 breakpoint [der(8) BP], but were differently enriched between the wild-type and BP allele. We differentiated fibroblasts from BDE patients into chondrogenic cells and found that PTHLH and its targets, ADAMTS-7 and ADAMTS-12 were downregulated along with impaired chondrogenic differentiation. We next used human and murine chondrocytes and observed that the AP-1 motif stimulated, whereas der(8) BP or C-ets-1 decreased, PTHLH promoter activity. These results are the first to identify a cis-directed PTHLH downregulation as primary cause of human chondrodysplasia.
Collapse
Affiliation(s)
- Philipp G Maass
- Department of Genetics, Nephrology, Hypertension, and Vascular Injury, Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jongpaiboonkit L, King WJ, Murphy WL. Screening for 3D environments that support human mesenchymal stem cell viability using hydrogel arrays. Tissue Eng Part A 2009; 15:343-53. [PMID: 18759676 DOI: 10.1089/ten.tea.2008.0096] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study we generated 3D poly(ethylene glycol) (PEG) hydrogel arrays to screen for the individual and combinatorial effects of extracellular matrix (ECM) degradability, cell adhesion ligand type, and cell adhesion ligand density on human mesenchymal stem cell (hMSC) viability. In particular, we explored the influence of two well-characterized ECM-derived cell adhesion ligands: the fibronectin-derived Arg-Gly-Asp-Ser-Pro (RGDSP) sequence, and the laminin-derived Ile-Lys-Val-Ala-Val (IKVAV) sequence. PEG network degradation, the RGDSP ligand, and the IKVAV ligand each individually increased hMSC viability in a dose-dependent manner. The RGDSP ligand also improved hMSC viability in a dose-dependent manner in degradable PEG hydrogels, while the effect of IKVAV was less pronounced in degradable hydrogels. Combinations of RGDSP and IKVAV promoted high viability of hMSCs in nondegradable PEG networks, while the combined effects of the ligands were not significant in degradable PEG hydrogels. Although hMSC spreading was not commonly observed within PEG hydrogels, we qualitatively observed hMSC spreading after 5 days only in degradable PEG hydrogels prepared with 2.5 mM of both RGDSP and IKVAV. These results suggest that the enhanced throughput approach described herein can be used to rapidly study the influence of a broad range of ECM parameters, as well as their combinations, on stem cell behavior.
Collapse
|
43
|
Henning TD, Sutton EJ, Kim A, Golovko D, Horvai A, Ackerman L, Sennino B, McDonald D, Lotz J, Daldrup-Link HE. The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. CONTRAST MEDIA & MOLECULAR IMAGING 2009; 4:165-73. [PMID: 19670250 DOI: 10.1002/cmmi.276] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For in vivo applications of magnetically labeled stem cells, biological effects of the labeling procedure have to be precluded. This study evaluates the effect of different ferucarbotran cell labeling protocols on chondrogenic differentiation of human mesenchymal stem cells (hMSC) as well as their implications for MR imaging. hMSC were labeled with ferucarbotran using various protocols: cells were labeled with 100 microg Fe/ml for 4 and 18 h and additional samples were cultured for 6 or 12 days after the 18 h labeling. Supplementary samples were labeled by transfection with protamine sulfate. Iron uptake was quantified by ICP-spectrometry and labeled cells were investigated by transmission electron microscopy and by immunostaining for ferucarbotran. The differentiation potential of labeled cells was compared with unlabeled controls by staining with Alcian blue and Hematoxylin and Eosin, then quantified by measurements of glucosaminoglycans (GAG). Contrast agent effect at 3 T was investigated on days 1 and 14 of chondrogenic differentiation by measuring signal-to-noise ratios on T(2)-SE and T(2)*-GE sequences. Iron uptake was significant for all labeling protocols (p < 0.05). The uptake was highest after transfection with protamine sulfate (25.65 +/- 3.96 pg/cell) and lowest at an incubation time of 4 h without transfection (3.21 +/- 0.21 pg/cell). While chondrogenic differentiation was decreased using all labeling protocols, the decrease in GAG synthesis was not significant after labeling for 4 h without transfection. After labeling by simple incubation, chondrogenesis was found to be dose-dependent. MR imaging showed markedly lower SNR values of all labeled cells compared with the unlabeled controls. This contrast agent effect persisted for 14 days and the duration of differentiation. Magnetic labeling of hMSC with ferucarbotran inhibits chondrogenesis in a dose-dependent manner when using simple incubation techniques. When decreasing the incubation time to 4 h, inhibition of chondrogenesis was not significant.
Collapse
Affiliation(s)
- Tobias D Henning
- Department of Radiology, UCSF Medical Center, University of California, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lozito TP, Taboas JM, Kuo CK, Tuan RS. Mesenchymal stem cell modification of endothelial matrix regulates their vascular differentiation. J Cell Biochem 2009; 107:706-13. [PMID: 19415686 DOI: 10.1002/jcb.22166] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mesenchymal stem cells (MSCs) respond to a variety of differentiation signal provided by their local environments. A large portion of these signals originate from the extracellular matrix (ECM). At the same time, MSCs secrete various matrix-altering agents, including proteases, that alter ECM-encoded differentiation signals. Here we investigated the interactions between MSC and ECM produced by endothelial cells (EC-matrix), focusing not only on the differentiation signals provided by EC-matrix, but also on MSC-alteration of these signals and the resultant affects on MSC differentiation. MSCs were cultured on EC-matrix modified in one of three distinct ways. First, MSCs cultured on native EC-matrix underwent endothelial cell (EC) differentiation early during the culture period and smooth muscle cell (SMC) differentiation at later time points. Second, MSCs cultured on crosslinked EC-matrix, which is resistant to MSC modification, differentiated towards an EC lineage only. Third, MSCs cultured on EC-matrix pre-modified by MSCs underwent SMC-differentiation only. These MSC-induced matrix alterations were found to deplete the factors responsible for EC-differentiation, yet activate the SMC-differentiation factors. In conclusion, our results demonstrate that the EC-matrix contains factors that support MSC differentiation into both ECs and SMCs, and that these factors are modified by MSC-secreted agents. By analyzing the framework by which EC-matrix regulates differentiation in MSCs, we have uncovered evidence of a feedback system in which MSCs are able to alter the very matrix signals acting upon them.
Collapse
Affiliation(s)
- Thomas P Lozito
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
45
|
Lozito TP, Kuo CK, Taboas JM, Tuan RS. Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem 2009; 107:714-22. [PMID: 19415687 PMCID: PMC5543930 DOI: 10.1002/jcb.22167] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mesenchymal stem cells (MSCs) are thought to occupy a perivascular niche where they are exposed to signals originating from vascular cells. This study focused on the effects of endothelial cell (EC)-derived signals on MSC differentiation toward vascular cell lineages. Upon co-culture with two types of ECs, macrovascular (macro) ECs and microvascular (micro) ECs, the former caused MSCs to increase expression of both EC and smooth muscle cell (SMC) markers, while the latter induced expression of EC markers only. These marker changes in MSCs were linked to the extracellular matrixes secreted by the ECs (EC-matrix) rather than soluble EC-secreted factors. Beyond enhanced marker expression, EC-matrix also induced functional changes in MSCs indicative of development of a genuine vascular cell phenotype. These included enhanced incorporation into vessels and cytoskeletal localization of vascular SMC-specific contractile elements. The bioactivity of EC-matrix was sensitive to EDTA washes and required sulfated glycosaminoglycans. However, neither soluble VEGF nor substrate surfaces coated with fibronectin, collagen type IV, or laminin recreated the effects of EC-matrix on MSC vascular differentiation. In conclusion, these results identified EC-matrix as a critical regulator of vascular cell differentiation of MSCs. Elucidating these MSC-EC-matrix interactions and identifying the specific EC-matrix components involved will shed light on the perivascular signals seen by MSCs in vivo.
Collapse
Affiliation(s)
- Thomas P. Lozito
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Catherine K. Kuo
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Juan M. Taboas
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| |
Collapse
|
46
|
van Dijk A, Niessen HWM, Zandieh Doulabi B, Visser FC, van Milligen FJ. Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell Tissue Res 2008; 334:457-67. [PMID: 18989703 DOI: 10.1007/s00441-008-0713-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 09/25/2008] [Indexed: 11/30/2022]
Abstract
Adipose-derived stem cells (ASCs) are promising candidates for therapy in myocardial infarction (MI). However, the frequency of human ASCs that differentiate towards cardiomyocytes is low. We hypothesized that adherence to extracellular matrix molecules that are upregulated after MI might increase human stem cell differentiation towards cardiomyocytes. We analysed putative ASC differentiation on fibronectin-coated, laminin-coated and uncoated culture plates. Expression of cardiac markers in cells was analysed 1, 3 and 5 weeks after stimulation with 5-aza-2-deoxycytidine. After 1 week, mRNA expression of myosin light chain-2alpha (MLC-2alpha), an early marker in cardiomyocyte development, was increased significantly in treated cells, independent of coating. At 5 weeks, however, mRNA expression of the late cardiomyocyte development marker SERCA2alpha was only significantly increased in 5-aza-2-deoxycytidine-treated cells cultured on laminin. Significantly higher numbers of cells were immunopositive for MLC-2alpha in cultures of treated cells grown on laminin-coated wells, when compared with cultures of treated cells grown on uncoated wells, both at 1 week and at 5 weeks. Furthermore, after 3 weeks, significantly more alpha-actinin- and desmin-positive cells were detected after treatment with 5-aza-2-deoxycytidine, but only in uncoated wells. After 5 weeks, however, the number of desmin-positive cells was only significantly increased after treatment of cells with 5-aza-2-deoxycytidine and culture on laminin (61% positive cells). Thus, we have found that a high percentage of human ASCs can be differentiated towards cardiomyocytes; this effect can be improved by laminin, especially during late differentiation.
Collapse
Affiliation(s)
- A van Dijk
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
47
|
Liu CM, Yu CH, Chang CH, Hsu CC, Huang LLH. Hyaluronan substratum holds mesenchymal stem cells in slow-cycling mode by prolonging G1 phase. Cell Tissue Res 2008; 334:435-43. [PMID: 18953571 DOI: 10.1007/s00441-008-0699-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
We examined, in vitro, whether hyaluronan induces slow cycling in placenta-derived mesenchymal stem cells (PDMSCs) by comparing cell growth on a hyaluronan-coated surface with cell growth on a tissue-culture polystyrene surface. The hyaluronan-coated surface significantly downregulated the proliferation of PDMSCs, more of which were maintained in the G(0)/G(1) phases than were cells on the tissue-culture polystyrene surface. Both PKH-26 labeling and BrdU incorporation assays showed that most PDMSCs grown on a hyaluronan-coated surface duplicated during cultivation indicating that the hyaluronan-coated surface did not inhibit PDMSCs from entering the cell cycle. Mitotic synchronization showed that the G(1)-phase transit was prolonged in PDMSCs growing on a hyaluronan-coated surface. Increases in p27(Kip1) and p130 were the crucial factors that allowed hyaluronan to lengthen the G(1) phase. Thus, hyaluronan might be a promising candidate for maintaining stem cells in slow-cycling mode by prolonging their G(1)-phase transit.
Collapse
Affiliation(s)
- Chi-Mou Liu
- Institute of Biotechnology and Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
48
|
Kvist AJ, Nyström A, Hultenby K, Sasaki T, Talts JF, Aspberg A. The major basement membrane components localize to the chondrocyte pericellular matrix — A cartilage basement membrane equivalent? Matrix Biol 2008; 27:22-33. [PMID: 17825545 DOI: 10.1016/j.matbio.2007.07.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 11/23/2022]
Abstract
In this study, we demonstrate that articular cartilage chondrocytes are surrounded by the defining basement membrane proteins laminin, collagen type IV, nidogen and perlecan, and suggest that these form the functional equivalent of a basement membrane. We found by real-time PCR that mouse chondrocytes express these four cardinal components of basement membranes and demonstrated by immunohistochemistry that the proteins are present in bovine and mouse cartilage tissues and are deposited in a thin pericellular structure. Immunoelectron microscopy confirmed high laminin concentration in the pericellular matrix. In cartilage from newborn mice, basement membrane components are widespread in the territorial and interterritorial matrix, while in mature cartilage of adult mice the basement membrane components are localized mainly to a narrow pericellular zone. With progression into old age, this layer becomes less distinct, especially in areas of obvious mechanical attrition. Interestingly, individual laminin subunits were located in different zones of the cartilage, with laminin alpha1 showing preferential localization around a select population of superficial layer chondrocytes. We propose that the chondrocyte, like several other cell types of mesenchymal origin, is surrounded by the functional equivalent of a basement membrane. This structure is presumably involved in maintaining chondrocyte phenotype and viability and may well allow a new understanding of cartilage development and provide clues to the progression of degenerative joint disorders.
Collapse
Affiliation(s)
- Alexander J Kvist
- Department of Experimental Medical Sciences, Lund University, SE-22184 Lund, Sweden
| | | | | | | | | | | |
Collapse
|