1
|
Rapizzi E, Benvenuti S, Deledda C, Martinelli S, Sarchielli E, Fibbi B, Luciani P, Mazzanti B, Pantaleo M, Marroncini G, Vannelli GB, Maggi M, Mannelli M, Luconi M, Peri A. A unique neuroendocrine cell model derived from the human foetal neural crest. J Endocrinol Invest 2020; 43:1259-1269. [PMID: 32157664 DOI: 10.1007/s40618-020-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Nowadays, no human neuroendocrine cell models derived from the neural crest are available. In this study, we present non-transformed long-term primary Neural Crest Cells (NCCs) isolated from the trunk region of the neural crest at VIII-XII gestational weeks of human foetuses obtained from voluntary legal abortion. METHODS AND RESULTS In NCC, quantitative real-time RT PCR demonstrated the expression of neural crest specifier genes, such as Snail1, Snail2/SLUG, Sox10, FoxD3, c-Myc, and p75NTR. Moreover, these cell populations expressed stemness markers (such as Nanog and nestin), as well as markers of motility and invasion (TAGLN, MMP9, CXCR4, and CXCR7), and of neuronal/glial differentiation (MAP2, GFAP, SYP, and TAU). Functional analysis demonstrated that these cells not only possessed high migration properties, but most importantly, they expressed markers of sympatho-adrenal lineage, such as ASCL1 and tyrosine hydroxylase (TH). Moreover, the expression of TH increased after the induction with two different protocols of differentiation towards neuronal and sympatho-adrenal phenotypes. Finally, exposure to conditioned culture media from NCC induced a mature phenotype in a neuronal cell model (namely SH-SY5Y), suggesting that NCC may also act like Schwann precursors. CONCLUSION This unique human cell model provides a solid tool for future studies addressing the bases of human neural crest-derived neuroendocrine tumours.
Collapse
Affiliation(s)
- E Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Benvenuti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - C Deledda
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - S Martinelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - B Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - P Luciani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - B Mazzanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Pantaleo
- Genetics and Molecular Medicine Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - G Marroncini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - M Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - M Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| | - A Peri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
2
|
Pouraghaei S, Moztarzadeh F, Chen C, Ansari S, Moshaverinia A. Microenvironment Can Induce Development of Auditory Progenitor Cells from Human Gingival Mesenchymal Stem Cells. ACS Biomater Sci Eng 2020; 6:2263-2273. [PMID: 33455314 DOI: 10.1021/acsbiomaterials.9b01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sensorineural hearing loss in mammals occurs due to irreversible damage to the sensory epithelia of the inner ear and has very limited treatment options. The ability to regenerate the auditory progenitor cells is a promising approach for the treatment of sensorineural hearing loss; therefore, finding an appropriate and easily accessible stem cell source for restoring the sense of hearing would be of great interest. Here, we proposed a novel easy-to-access source of cells with the ability to recover auditory progenitor cells. In this study, gingival mesenchymal stem cells (GMSCs) were utilized, as these cells have high self-renewal and multipotent differentiation capacity and can be obtained easily from the oral cavity or discarded tissue samples at dental clinics. To manipulate the biophysical properties of the cellular microenvironment for promoting GMSC differentiation toward the target cells, we also tried to propose a candidate biomaterial. GMSCs in combination with an appropriate scaffold material can, therefore, present advantageous therapeutic options for a number of conditions. Here, we report the potential of GMSCs to differentiate into auditory progenitor cells while supporting them with an optimized three-dimensional scaffold and certain growth factors. A hybrid hydrogel scaffold based on peptide modified alginate and Matrigel was used here in addition to the presence of fibroblast growth factor-basic (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF). Our in vitro and in vivo studies confirmed the auditory differentiation potential of GMSCs within the engineered microenvironment.
Collapse
Affiliation(s)
- Sevda Pouraghaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, United States
| | - Fathollah Moztarzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sahar Ansari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, United States
- California NanoSystems Institute, University of California, Los Angeles, California, United States
| |
Collapse
|
3
|
Lebedev TD, Vagapova ER, Popenko VI, Leonova OG, Spirin PV, Prassolov VS. Two Receptors, Two Isoforms, Two Cancers: Comprehensive Analysis of KIT and TrkA Expression in Neuroblastoma and Acute Myeloid Leukemia. Front Oncol 2019; 9:1046. [PMID: 31681584 PMCID: PMC6813278 DOI: 10.3389/fonc.2019.01046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
Pediatric cancers represent a wide variety of different tumors, though they have unique features that distinguish them from adult cancers. Receptor tyrosine kinases KIT and TrkA functions in AML and NB, respectively, are well-characterized. Though expression of these receptors is found in both tumors, little is known about KIT function in NB and TrkA in AML. By combining gene enrichment analysis with multidimensional scaling we showed that pediatric AMLs with t(8;21) or inv16 and high KIT expression levels stand out from other AML subtypes as they share prominent transcriptomic features exclusively with KIT-overexpressing NBs. We showed that AML cell lines had a predominant expression of an alternative TrkAIII isoform, which reportedly has oncogenic features, while NB cell lines had dominating TrkAI-II isoforms. NB cells, on the other hand, had an abnormal ratio of KIT isoforms as opposed to AML cells. Both SCF and NGF exerted protective action against doxorubicin and cytarabine for t(8;21) AML and NB cells. We identified several gene sets both unique and common for pediatric AML and NB, and this expression is associated with KIT or TrkA levels. NMU, DUSP4, RET, SUSD5, NOS1, and GABRA5 genes are differentially expressed in NBs with high KIT expression and are associated with poor survival in NB. We identified HOXA10, BAG3, and MARCKS genes that are connected with TrkA expression and are marker genes of poor outcome in AML. We also report that SLC18A2, PLXNC1, and MRPL33 gene expression is associated with TrkA or KIT expression levels in both AML and NB, and these genes have a prognostic value for both cancers. Thus, we have provided a comprehensive characterization of TrkA and KIT expression along with the oncogenic signatures of these genes across two pediatric tumors.
Collapse
Affiliation(s)
- Timofey D Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Elmira R Vagapova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Vladimir I Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Olga G Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| |
Collapse
|
4
|
Stage-dependent differential gene expression profiles of cranial neural crest-like cells derived from mouse-induced pluripotent stem cells. Med Mol Morphol 2019; 53:28-41. [PMID: 31297611 PMCID: PMC7033077 DOI: 10.1007/s00795-019-00229-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Cranial neural crest cells are multipotent cells that migrate into the pharyngeal arches of the vertebrate embryo and differentiate into various craniofacial organ derivatives. Therefore, migrating cranial neural crest cells are considered one of the most attractive candidate cell sources in regenerative medicine. We generated cranial neural crest like cell (cNCCs) using mouse-induced pluripotent stem cells cultured in neural crest-inducing medium for 14 days. Subsequently, we conducted RNA sequencing experiments to analyze gene expression profiles of cNCCs at different time points after induction. cNCCs expressed several neural crest specifier genes; however, some previously reported specifier genes such as paired box 3 and Forkhead box D3, which are essential for embryonic neural crest development, were not expressed. Moreover, ETS proto-oncogene 1, transcription factor and sex-determining region Y-box 10 were only expressed after 14 days of induction. Finally, cNCCs expressed multiple protocadherins and a disintegrin and metalloproteinase with thrombospondin motifs enzymes, which may be crucial for their migration.
Collapse
|
5
|
MSX2 Initiates and Accelerates Mesenchymal Stem/Stromal Cell Specification of hPSCs by Regulating TWIST1 and PRAME. Stem Cell Reports 2018; 11:497-513. [PMID: 30033084 PMCID: PMC6092836 DOI: 10.1016/j.stemcr.2018.06.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
The gap in knowledge of the molecular mechanisms underlying differentiation of human pluripotent stem cells (hPSCs) into the mesenchymal cell lineages hinders the application of hPSCs for cell-based therapy. In this study, we identified a critical role of muscle segment homeobox 2 (MSX2) in initiating and accelerating the molecular program that leads to mesenchymal stem/stromal cell (MSC) differentiation from hPSCs. Genetic deletion of MSX2 impairs hPSC differentiation into MSCs. When aided with a cocktail of soluble molecules, MSX2 ectopic expression induces hPSCs to form nearly homogeneous and fully functional MSCs. Mechanistically, MSX2 induces hPSCs to form neural crest cells, an intermediate cell stage preceding MSCs, and further differentiation by regulating TWIST1 and PRAME. Furthermore, we found that MSX2 is also required for hPSC differentiation into MSCs through mesendoderm and trophoblast. Our findings provide novel mechanistic insights into lineage specification of hPSCs to MSCs and effective strategies for applications of stem cells for regenerative medicine.
Collapse
|
6
|
Abstract
Neural crest cells (NCCs) are multipotent cells that emerge from the edges of the neural folds and extensively migrate throughout developing embryos. Dorsolaterally migrating NCCs colonize skin, differentiate into skin melanocytes, and lose their multipotency. Multipotent NCCs or NCCs derived multipotent stem cells (MSCs) were recently detected in their migrated locations, including skin, despite restrictions in cell fate acquisition following migration. Since many features of NCCs have yet to be revealed, the novel properties of NCCs represent an important and interesting field in stem cell biology. We previously reported the direct conversion of mouse embryonic fibroblasts (MEFs) into NCCs by the forced expression of the transcription factors C-MYC, KLF4, and SOX10. We herein describe the methods employed for direct conversion: retrovirus infection for the forced expression of transcription factors, a flow cytometry-sorting method for the isolation of converted NCCs, and culture methods for the maintenance and differentiation of the converted NCCs.
Collapse
|
7
|
Artificial Pigmented Human Skin Created by Muse Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:255-271. [PMID: 30484234 DOI: 10.1007/978-4-431-56847-6_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The skin composes physiological and chemical barrier and renews skin component cells throughout the human life. Melanocytes locate in the basal layer of the epidermis and produce melanin to protect the skin from ultraviolet. Melanin plays key roles in determining human skin and hair color. Melanocyte dysfunction observed in albinism and vitiligo not only causes cosmetic problems but also increases risk of skin cancer. As rejuvenate therapy, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have been reported to generate melanocytes. Other than ES and iPS cells, human skin tissues maintain pluripotent stem cells, named multilineage-differentiating stress-enduring (Muse) cells. We employ Muse cells isolated from human fibroblasts and adipose tissue to differentiate into melanocytes (Muse-MC). Muse-MC express melanocyte-related molecules, such as tyrosinase and DCT, and show tyrosinase activity. We also succeeded to differentiate Muse cells into fibroblasts and keratinocytes and created three-dimensional (3D) reconstituted skin with Muse cell-derived melanocytes, fibroblasts, and keratinocytes. The 3D reconstituted skin of Muse cell-derived cells coordinately showed epidermis layers and Muse-MC localized in the basal layer of the epidermis. Thus Muse cells in the human skin can be a source of rejuvenation medicine for the skin reconstruction.
Collapse
|
8
|
Acuna-Mendoza S, Martin S, Kuchler-Bopp S, Ribes S, Thalgott J, Chaussain C, Creuzet S, Lesot H, Lebrin F, Poliard A. A New Wnt1-CRE TomatoRosa Embryonic Stem Cell Line: A Tool for Studying Neural Crest Cell Integration Capacity. Stem Cells Dev 2017; 26:1682-1694. [DOI: 10.1089/scd.2017.0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Soledad Acuna-Mendoza
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
- Department of Pathology and Oral Medicine, Dental Faculty, University of Chile, Santiago, Chile
| | - Sabrina Martin
- CNRS UMR 7241/INSERM U1050, CIRB, Collège de France, Paris, France
| | - Sabine Kuchler-Bopp
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Sandy Ribes
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| | - Jérémy Thalgott
- The Einthoven Laboratory for Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Catherine Chaussain
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
- AP-HP Department of Odontology, Bretonneau Hospital, Paris, France
| | - Sophie Creuzet
- Laboratoire Neurobiologie et Développement, Institut de Neurobiologie, CNRS-UPR3294, Gif-sur-Yvette, France
| | - Hervé Lesot
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Franck Lebrin
- CNRS UMR 7241/INSERM U1050, CIRB, Collège de France, Paris, France
- The Einthoven Laboratory for Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Poliard
- EA 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| |
Collapse
|
9
|
Münst S, Koch P, Kesavan J, Alexander-Mays M, Münst B, Blaess S, Brüstle O. In vitro segregation and isolation of human pluripotent stem cell-derived neural crest cells. Methods 2017; 133:65-80. [PMID: 29037816 DOI: 10.1016/j.ymeth.2017.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 01/17/2023] Open
Abstract
The neural crest (NC) is a transient embryonic cell population with remarkable characteristics. After delaminating from the neural tube, NC cells (NCCs) migrate extensively, populate nearly every tissue of the body and differentiate into highly diverse cell types such as peripheral neurons and glia, but also mesenchymal cells including chondrocytes, osteocytes, and adipocytes. While the NC has been extensively studied in several animal models, little is known about human NC development. A number of methods have been established to derive NCCs in vitro from human pluripotent stem cells (hPSC). Typically, these protocols comprise several cell culture steps to enrich for NCCs in the neural derivatives of the differentiating hPSCs. Here we report on a remarkable and hitherto unnoticed in vitro segregation phenomenon that enables direct extraction of virtually pure NCCs during the earliest stages of hPSC differentiation. Upon aggregation to embryoid bodies (EB) and replating, differentiating hPSCs give rise to a population of NCCs, which spontaneously segregate from the EB outgrowth to form conspicuous, macroscopically visible atoll-shaped clusters in the periphery of the EB outgrowth. Isolation of these NC clusters yields p75NTR(+)/SOXE(+) NCCs, which differentiate to peripheral neurons and glia as well as mesenchymal derivatives. Our data indicate that differentiating hPSC cultures recapitulate, in a simplified manner, the physical segregation of central nervous system (CNS) tissue and NCCs. This phenomenon may be exploited for NCC purification and for studying segregation and differentiation processes observed during early human NC development in vitro.
Collapse
Affiliation(s)
- Sabine Münst
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Philipp Koch
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Jaideep Kesavan
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Michael Alexander-Mays
- Institute of Human Genetics, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Bernhard Münst
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty, 53127 Bonn, Germany.
| |
Collapse
|
10
|
Yamauchi T, Yamasaki K, Tsuchiyama K, Koike S, Aiba S. A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction. J Dermatol Sci 2017; 86:198-205. [PMID: 28292562 DOI: 10.1016/j.jdermsci.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
We have shown previously that multilineage-differentiating stress-enduring (Muse) cells in neonatal fibroblasts can differentiate into functional melanocytes. In this study, we quantitate Muse cells in adipose-mesenchymal stem cells (adipose-MSCs) of human subcutaneous tissue obtained from 11 subjects of various ages, and measured efficacy of melanocytes induction from Adipose-MSC-derived Muse cells (hASC-Muse cells). There was a statistically significant negative correlation between the age of donors and the numbers of adipose-MSCs recovered per g fat as well as the percentage of SSEA3+ cells in the adipose-MSC populations, but isolated hASC-Muse cells showed pluripotency and growth curves equally regardless the age of donors. Adipose-Muse cells sequentially expressed melanocyte-related genes including KIT, MITF, TYRP1 PMEL, DCT, melanocortin 1 receptor (MC1R), and TYR at a comparable level to melanocytes during 6-week culture. Parallel with MC1R expression, adipose-Muse cells increased melanin content by α-MSH stimulation. By quantitating the cell numbers recovered at each step, we found that 10g of adipose tissue could produce at least 2.5×106 melanocytes after 6 weeks of culture. These studies suggest that induction of melanocytes from adipose-Muse is a novel approach to obtain sufficient numbers of melanocytes for clinical application and in vitro study of melanocyte differentiation.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Japan.
| | | | - Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
11
|
Liu JA, Cheung M. Neural crest stem cells and their potential therapeutic applications. Dev Biol 2016; 419:199-216. [PMID: 27640086 DOI: 10.1016/j.ydbio.2016.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The neural crest (NC) is a remarkable transient structure generated during early vertebrate development. The neural crest progenitors have extensive migratory capacity and multipotency, harboring stem cell-like characteristics such as self-renewal. They can differentiate into a variety of cell types from craniofacial skeletal tissues to the trunk peripheral nervous system (PNS). Multiple regulators such as signaling factors, transcription factors, and migration machinery components are expressed at different stages of NC development. Gain- and loss-of-function studies in various vertebrate species revealed epistatic relationships of these molecules that could be assembled into a gene regulatory network defining the processes of NC induction, specification, migration, and differentiation. These basic developmental studies led to the subsequent establishment and molecular validation of neural crest stem cells (NCSCs) derived by various strategies. We provide here an overview of the isolation and characterization of NCSCs from embryonic, fetal, and adult tissues; the experimental strategies for the derivation of NCSCs from embryonic stem cells, induced pluripotent stem cells, and skin fibroblasts; and recent developments in the use of patient-derived NCSCs for modeling and treating neurocristopathies. We discuss future research on further refinement of the culture conditions required for the differentiation of pluripotent stem cells into axial-specific NC progenitors and their derivatives, developing non-viral approaches for the generation of induced NC cells (NCCs), and using a genomic editing approach to correct genetic mutations in patient-derived NCSCs for transplantation therapy. These future endeavors should facilitate the therapeutic applications of NCSCs in the clinical setting.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Zheng J, Choi KA, Kang PJ, Hyeon S, Kwon S, Moon JH, Hwang I, Kim YI, Kim YS, Yoon BS, Park G, Lee J, Hong S, You S. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochem Biophys Res Commun 2016; 476:42-8. [DOI: 10.1016/j.bbrc.2016.05.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 01/07/2023]
|
13
|
Watanabe N, Motohashi T, Nishioka M, Kawamura N, Hirobe T, Kunisada T. Multipotency of melanoblasts isolated from murine skin depends on the Notch signal. Dev Dyn 2016; 245:460-71. [PMID: 26773337 DOI: 10.1002/dvdy.24385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Melanoblasts (MBs), derived from neural crest cells, only differentiate into melanocytes (Ms) in vivo. We previously showed that MBs isolated from mouse skin were multipotent, generating neurons (Ns) and glial cells (Gs) together with Ms. Using Sox10-IRES-Venus mice and mouse embryonic stem cells, we investigated how MBs expressed their multipotency. RESULTS MBs generated colonies containing Ns, Gs, and Ms in the presence of ST2 stromal cells, but they generated only M colonies when incubated with keratinocytes or ST2 culture supernatant, thus showing that MBs required contact with ST2 stromal cells for expression of their multipotency. Notch signaling was shown to be one of the important cues for the maintenance and differentiation of MBs through cell-cell contact. When Notch signaling was inhibited, MBs mainly generated colonies that contained just one type of cells, Ns, Gs, or Ms; the number of colonies containing two or three types of cells markedly decreased even on ST2 stromal cells, showing restriction of their differentiation potency. Whereas when Notch signaling was activated, the number of colonies containing two or three types of cells increased, indicating that their multipotency had been maintained. CONCLUSIONS Our results demonstrate that Notch signaling played novel roles in MB multipotency.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masahiro Nishioka
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Norito Kawamura
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohisa Hirobe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
14
|
Motohashi T, Watanabe N, Nishioka M, Nakatake Y, Yulan P, Mochizuki H, Kawamura Y, Ko MSH, Goshima N, Kunisada T. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells. Biol Open 2016; 5:311-22. [PMID: 26873953 PMCID: PMC4810742 DOI: 10.1242/bio.015735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. Summary: In this study, we identified the transcription factors specifically expressed in developing neural crest cells, and showed that SOX10 and SOX9 directly converted fibroblasts into neural crest cells.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0076, Japan
| | - Natsuki Watanabe
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Masahiro Nishioka
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuhki Nakatake
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Piao Yulan
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Hiromi Mochizuki
- Japan Biological Informatics Consortium (JBiC), Tokyo 135-8073, Japan
| | | | - Minoru S H Ko
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA Department of Systems Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0076, Japan
| |
Collapse
|
15
|
Abstract
Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitulating the various stages of in vivo neural crest formation and SC differentiation. In this review, we survey the cellular and molecular mechanisms underlying these in vivo processes. We then focus on the current in vitro strategies for generating SCs from two sources of pluripotent stem cells, namely embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different methods for SC engineering from ESCs and iPSCs are reviewed and suggestions are proposed for optimizing the existing protocols. Potential safety issues regarding the clinical application of iPSC-derived SCs are discussed as well. Lastly, we will address future aspects of SC engineering.
Collapse
|
16
|
Karbalaie K, Tanhaei S, Rabiei F, Kiani-Esfahani A, Masoudi NS, Nasr-Esfahani MH, Baharvand H. Stem cells from human exfoliated deciduous tooth exhibit stromal-derived inducing activity and lead to generation of neural crest cells from human embryonic stem cells. CELL JOURNAL 2015; 17:37-48. [PMID: 25870833 PMCID: PMC4393670 DOI: 10.22074/cellj.2015.510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/17/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The neural crest is a transient structure of early vertebrate embryos that generates neural crest cells (NCCs). These cells can migrate throughout the body and produce a diverse array of mature tissue types. Due to the ethical and technical problems surrounding the isolation of these early human embryo cells, researchers have focused on in vitro studies to produce NCCs and increase their knowledge of neural crest development. MATERIALS AND METHODS In this experimental study, we cultured human embryonic stem cells (hESCs) on stromal stem cells from human exfoliated deciduous teeth (SHED) for a two-week period. We used different approaches to characterize these differentiated cells as neural precursor cells (NPCs) and NCCs. RESULTS In the first co-culture week, hESCs appeared as crater-like structures with marginal rosettes. NPCs derived from these structures expressed the early neural crest marker p75 in addition to numerous other genes associated with neural crest induction such as SNAIL, SLUG, PTX3 and SOX9. Flow cytometry analysis showed 70% of the cells were AP2/P75 positive. Moreover, the cells were able to self-renew, sustain multipotent differentiation potential, and readily form neurospheres in suspension culture. CONCLUSION SHED, as an adult stem cell with a neural crest origin, has stromal-derived inducing activity (SDIA) and can be used as an NCC inducer from hESCs. These cells provide an invaluable resource to study neural crest differentiation in both normal and disordered human neural crest development.
Collapse
Affiliation(s)
- Khadijeh Karbalaie
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayyeh Tanhaei
- Department of Molecular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farzaneh Rabiei
- Department of Molecular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Molecular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
17
|
Motohashi T, Kunisada T. Extended multipotency of neural crest cells and neural crest-derived cells. Curr Top Dev Biol 2015; 111:69-95. [PMID: 25662258 DOI: 10.1016/bs.ctdb.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural crest cells (NCC) are migratory multipotent cells that give rise to diverse derivatives. They generate various cell types during embryonic development, including neurons and glial cells of the peripheral sensory and autonomic ganglia, Schwann cells, melanocytes, endocrine cells, smooth muscle, and skeletal and connective tissue cells of the craniofacial complex. The multipotency of NCC is thought to be transient at the early stage of NCC generation; once NCC emerge from the neural tube, they change into lineage-restricted precursors. Although many studies have described the clear segregation of NCC lineages right after their delamination from the neural tube, recent reports suggest that multipotent neural crest stem cells (NCSC) are present not only in migrating NCC in the embryo, but also in their target tissues in the fetus and adult. Furthermore, fully differentiated NCC-derived cells such as glial cells and melanocytes have been shown to dedifferentiate or transdifferentiate into other NCC derivatives. The multipotency of migratory and postmigratory NCC-derived cells was found to be similar to that of NCSC. Collectively, these findings support the multipotency or plasticity of NCC and NCC-derived cells.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| |
Collapse
|
18
|
The Use of Human Pluripotent Stem Cells for the In Vitro Derivation of Cranial Placodes and Neural Crest Cells. Curr Top Dev Biol 2015; 111:497-514. [PMID: 25662270 DOI: 10.1016/bs.ctdb.2014.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
|
19
|
Kunisada T, Tezulka KI, Aoki H, Motohashi T. The stemness of neural crest cells and their derivatives. ACTA ACUST UNITED AC 2014; 102:251-62. [DOI: 10.1002/bdrc.21079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/22/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Ken-Ichi Tezulka
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| |
Collapse
|
20
|
Ciurea ME, Georgescu AM, Purcaru SO, Artene SA, Emami GH, Boldeanu MV, Tache DE, Dricu A. Cancer stem cells: biological functions and therapeutically targeting. Int J Mol Sci 2014; 15:8169-85. [PMID: 24821540 PMCID: PMC4057726 DOI: 10.3390/ijms15058169] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 12/18/2022] Open
Abstract
Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells.
Collapse
Affiliation(s)
- Marius Eugen Ciurea
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Ada Maria Georgescu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Stefana Oana Purcaru
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Stefan-Alexandru Artene
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Ghazaleh Hooshyar Emami
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Mihai Virgil Boldeanu
- Stem Cell Bank Unit, Medico Science SRL, Str. Brazda lui Novac nr. 1B, Craiova 200690, Romania.
| | - Daniela Elise Tache
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| | - Anica Dricu
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, Craiova 710204, Romania.
| |
Collapse
|
21
|
Tang C, Yang L, Jiang X, Xu C, Wang M, Wang Q, Zhou Z, Xiang Z, Cui H. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells. Biochem Biophys Res Commun 2014; 446:105-12. [PMID: 24582751 DOI: 10.1016/j.bbrc.2014.02.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 12/25/2022]
Abstract
Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.
Collapse
Affiliation(s)
- Chunling Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Xiaolan Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Chuan Xu
- Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083, PR China
| | - Mei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Qinrui Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zhansong Zhou
- Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
22
|
IN VITRO PROPERTIES OF NEURAL CREST-DERIVED MULTIPOTENT STEM CELLS FROM A BULGE REGION OF WHISKER FOLLICLE. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.04.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Functional Melanocytes Are Readily Reprogrammable from Multilineage-Differentiating Stress-Enduring (Muse) Cells, Distinct Stem Cells in Human Fibroblasts. J Invest Dermatol 2013; 133:2425-2435. [DOI: 10.1038/jid.2013.172] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
|
24
|
Implication of tumor stem-like cells in the tumorigenesis of sporadic paraganglioma. Med Oncol 2013; 30:659. [PMID: 23996239 DOI: 10.1007/s12032-013-0659-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023]
Abstract
It is commonly believed that paragangliomas are rare tumors arising from the neural crest-derived chromaffin cells. Although it has been speculated that paraganglioma is related to stem cell origin, there has been lack of direct evidence demonstrating the presence of (neural) stem cells in these tumor tissues. In this study, we found a subgroup of human paraganglioma from ten clinical samples displayed definitive markers of CD133 and/or nestin, the fundamental features of neural stem cell capable of self-renewal and differentiation. A panel of lineage-specific markers was also manifest in some of these tumors, consistent with the hierarchical and heterogeneous nature of these tumors. These observations strongly suggest that at least some forms of paraganglioma maintain tumor stem-like cells (TSCs) that potentially contribute to the histologic complexity of human paraganglioma. Finally, we found that the genomic DNA structure becomes highly unstable in tumor cells of paraganglioma, indicating the loss of tight control of genomic surveillance system be an important transitory event from normal multi-potent tissue stem cells to TSCs.
Collapse
|
25
|
Saxena S, Wahl J, Huber-Lang MS, Stadel D, Braubach P, Debatin KM, Beltinger C. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands. PLoS One 2013; 8:e64454. [PMID: 23675538 PMCID: PMC3651195 DOI: 10.1371/journal.pone.0064454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/15/2013] [Indexed: 11/18/2022] Open
Abstract
Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS.
Collapse
Affiliation(s)
- Shobhit Saxena
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Joachim Wahl
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus S. Huber-Lang
- Institute of Traumatology, Hand- and Reconstructive Surgery, Ulm University, Ulm, Germany
| | - Dominic Stadel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter Braubach
- Division of Neurophysiology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
26
|
Aoki H, Hara A, Motohashi T, Kunisada T. Keratinocyte stem cells but not melanocyte stem cells are the primary target for radiation-induced hair graying. J Invest Dermatol 2013; 133:2143-51. [PMID: 23549419 DOI: 10.1038/jid.2013.155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 12/17/2022]
Abstract
Ionizing radiation (IR)-induced hair graying is caused by the ectopic differentiation of melanocyte stem cells (MSCs) in their niche located at the bulge region of the hair follicle. Keratinocyte stem cells (KSCs) in the bulge region are an important component of that niche. However, little is known about the relationship between MSC differentiation and the KSC niche during IR-induced hair graying. We found that both follicular MSCs and KSCs were affected by IR by using immunohistochemical detection of γH2AX as a genotoxicity marker. We also found that KSCs prepared from irradiated mice were functionally affected by IR as indicated by their reduced colony-forming activity in culture and the delayed hair cycle in vivo. However, these effects of IR on KSCs were temporal. The MSC population, which proliferated and differentiated to melanocytes, was persistently maintained after irradiation. In addition to the loss of colony-forming activity, irradiated keratinocytes including KSCs suppressed the colony formation of MSCs in vitro. Furthermore, pigmented hairs were not reconstituted in vivo in the presence of irradiated KSCs or keratinocytes. These results provide a previously unreported insight that the primary target of IR during the induction of hair graying is follicular KSCs rather than MSCs.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu, Japan
| | | | | | | |
Collapse
|
27
|
Yoshimura N, Motohashi T, Aoki H, Tezuka KI, Watanabe N, Wakaoka T, Era T, Kunisada T. Dual origin of melanocytes defined by Sox1 expression and their region-specific distribution in mammalian skin. Dev Growth Differ 2013; 55:270-81. [DOI: 10.1111/dgd.12034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 01/10/2023]
Affiliation(s)
- Naoko Yoshimura
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Ken-ichi Tezuka
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Natsuki Watanabe
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Takanori Wakaoka
- Department of Otolaryngology; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| | - Takumi Era
- Department of Cell Modulation; Institute of Molecular Embryology and Genetics (IMEG); Kumamoto University; 2-2-1 Honjo; 860-0811; Kumamoto; Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science; Gifu University Graduate School of Medicine; 1-1 Yanagido; 501-1194; Gifu; Japan
| |
Collapse
|
28
|
Jones GN, Moschidou D, Puga-Iglesias TI, Kuleszewicz K, Vanleene M, Shefelbine SJ, Bou-Gharios G, Fisk NM, David AL, De Coppi P, Guillot PV. Ontological differences in first compared to third trimester human fetal placental chorionic stem cells. PLoS One 2012; 7:e43395. [PMID: 22962584 PMCID: PMC3433473 DOI: 10.1371/journal.pone.0043395] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/19/2012] [Indexed: 12/16/2022] Open
Abstract
Human mesenchymal stromal/stem cells (MSC) isolated from fetal tissues hold promise for use in tissue engineering applications and cell-based therapies, but their collection is restricted ethically and technically. In contrast, the placenta is a potential source of readily-obtainable stem cells throughout pregnancy. In fetal tissues, early gestational stem cells are known to have advantageous characteristics over neonatal and adult stem cells. Accordingly, we investigated whether early fetal placental chorionic stem cells (e-CSC) were physiologically superior to their late gestation fetal chorionic counterparts (l-CSC). We showed that e-CSC shared a common phenotype with l-CSC, differentiating down the osteogenic, adipogenic and neurogenic pathways, and containing a subset of cells endogenously expressing NANOG, SOX2, c-MYC, and KLF4, as well as an array of genes expressed in pluripotent stem cells and primordial germ cells, including CD24, NANOG, SSEA4, SSEA3, TRA-1-60, TRA-1-81, STELLA, FRAGILIS, NANOS3, DAZL and SSEA1. However, we showed that e-CSC have characteristics of an earlier state of stemness compared to l-CSC, such as smaller size, faster kinetics, uniquely expressing OCT4A variant 1 and showing higher levels of expression of NANOG, SOX2, c-MYC and KLF4 than l-CSC. Furthermore e-CSC, but not l-CSC, formed embryoid bodies containing cells from the three germ layer lineages. Finally, we showed that e-CSC demonstrate higher tissue repair in vivo; when transplanted in the osteogenesis imperfecta mice, e-CSC, but not l-CSC increased bone quality and plasticity; and when applied to a skin wound, e-CSC, but not l-CSC, accelerated healing compared to controls. Our results provide insight into the ontogeny of the stemness phenotype during fetal development and suggest that the more primitive characteristics of early compared to late gestation fetal chorionic stem cells may be translationally advantageous.
Collapse
Affiliation(s)
- Gemma N. Jones
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Dafni Moschidou
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | | | - Katarzyna Kuleszewicz
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Maximilien Vanleene
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - George Bou-Gharios
- Kennedy Institute of Rheumatology, University of Oxford, London, United Kingdom
| | - Nicholas M. Fisk
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Anna L. David
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Surgery Unit, UCL Institute of Child Health, London, United Kingdom
| | - Pascale V. Guillot
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Ju C, Zhang K, Wu X. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro. PLoS One 2012; 7:e42378. [PMID: 22860120 PMCID: PMC3409168 DOI: 10.1371/journal.pone.0042378] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/04/2012] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the feasibility of inducing rat neural crest cells (NCC) to differentiate to functional corneal endothelial cell (CEC)-like cells in vitro. Rat NCC were induced with adult CEC-derived conditioned medium. Immunofluorescence, flow cytometry and real time RT-PCR assay were used to detect expression of the corneal endothelium differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2. CFDA SE-labeled CEC-like cells were transplanted to the corneal endothelium of a rat corneal endothelium deficiency model, and an eye-down position was maintained for 24 hours to allow cell attachment. The animals were observed for as long as 2 months after surgery and underwent clinical and histological examination. Spindle-like NCC turned to polygonal CEC-like after induction and expressed N-cadherin, FoxC1, Pitx2, zonula occludens-1 and sodium-potassium pump Na+/K+ ATPase. The corneas of the experimental group were much clearer than those of the control group and the mean corneal thickness in the experimental group was significantly less than in the control group7, 14, 21 and 28 days after surgery. Confocal microscopy through focusing and histological analysis confirmed that green fluorescence-positive CEC-like cells formed a monolayer covering the Descemet’s membrane in the experimental group. In conclusion, CEC-like cells derived from NCCs displayed characters of native CEC, and the induction protocol provides guidance for future human CEC induction from NCC.
Collapse
Affiliation(s)
- Chengqun Ju
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Kai Zhang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
- * E-mail:
| |
Collapse
|
30
|
Inoue Y, Hasegawa S, Yamada T, Date Y, Mizutani H, Nakata S, Matsunaga K, Akamatsu H. Bimodal effect of retinoic acid on melanocyte differentiation identified by time-dependent analysis. Pigment Cell Melanoma Res 2012; 25:299-311. [DOI: 10.1111/j.1755-148x.2012.00988.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 2012; 22:288-304. [PMID: 22231630 DOI: 10.1038/cr.2012.11] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution. They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone, connective tissue, pigment and endocrine cells as well as neurons and glia amongst many others. Such incredible lineage potential combined with a limited capacity for self-renewal, which persists even into adult life, demonstrates that NC cells bear the key hallmarks of stem and progenitor cells. In this review, we describe the identification, characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms. We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.
Collapse
Affiliation(s)
- Annita Achilleos
- Stowers Institute for Medical Research, 1000 East 50th Street Kansas City, MO 64110, USA
| | | |
Collapse
|
32
|
Motohashi T, Yamanaka K, Chiba K, Miyajima K, Aoki H, Hirobe T, Kunisada T. Neural crest cells retain their capability for multipotential differentiation even after lineage-restricted stages. Dev Dyn 2011; 240:1681-93. [PMID: 21594952 DOI: 10.1002/dvdy.22658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2011] [Indexed: 11/06/2022] Open
Abstract
Multipotency of neural crest cells (NC cells) is thought to be a transient phase at the early stage of their generation; after NC cells emerge from the neural tube, they are specified into the lineage-restricted precursors. We analyzed the differentiation of early-stage NC-like cells derived from Sox10-IRES-Venus ES cells, where the expression of Sox10 can be visualized with a fluorescent protein. Unexpectedly, both the Sox10+/Kit- cells and the Sox10+/Kit+ cells, which were restricted in vivo to the neuron (N)-glial cell (G) lineage and melanocyte (M) lineage, respectively, generated N, G, and M, showing that they retain multipotency. We generated mice from the Sox10-IRES-Venus ES cells and analyzed the differentiation of their NC cells. Both the Sox10+/Kit- cells and Sox10+/Kit+ cells isolated from these mice formed colonies containing N, G, and M, showing that they are also multipotent. These findings suggest that NC cells retain multipotency even after the initial lineage-restricted stages.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, CREST-JST, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Goldstein RS. Transplantation of mammalian embryonic stem cells and their derivatives to avian embryos. Stem Cell Rev Rep 2010; 6:473-83. [PMID: 20533000 DOI: 10.1007/s12015-010-9161-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Xenografting of normal and transformed mammalian tissues and cells to chick embryos has been performed for almost 100 years. Embryonic stem cells, derived more than 25 years ago from murine, and more than 10 years ago from human blastocysts, have transformed many fields of biological research. There is a growing body of studies combining these two widely-used experimental systems. This review surveys those reports in which murine or human embryonic stem cells, or differentiated derivatives of these pluripotent stem cells, were transplanted to embryonated chick eggs. Many of these studies have utilized the unique characteristics of both experimental models to obtain answers to developmental questions that are difficult or impossible to approach with xenografting to adult rodents or tissue culture-only techniques.
Collapse
Affiliation(s)
- Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
34
|
Kamata M, Liang M, Liu S, Nagaoka Y, Chen ISY. Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One 2010; 5:e11834. [PMID: 20676373 PMCID: PMC2911382 DOI: 10.1371/journal.pone.0011834] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/29/2010] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells.
Collapse
Affiliation(s)
- Masakazu Kamata
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Min Liang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Shirley Liu
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yoshiko Nagaoka
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Irvin S. Y. Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Chimge NO, Bayarsaihan D. Generation of neural crest progenitors from human embryonic stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:95-103. [PMID: 19780036 DOI: 10.1002/jez.b.21321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neural crest (NC) is a transient population of multipotent progenitors arising at the lateral edge of the neural plate in vertebrate embryos, which then migrate throughout the body to generate diverse array of tissues such as the peripheral nervous system, skin melanocytes, and craniofacial cartilage, bone and teeth. The transient nature of neural crest stem cells make extremely challenging to study the biology of these important cells. In humans induction and differentiation of embryonic NC occurs very early, within a few weeks of fertilization giving rise to technical and ethical issues surrounding isolation of early embryonic tissues and therefore severely limiting the study of human NC cells. For that reason our current knowledge of the biology of NC mostly derives from the studies of lower organisms. Recent progress in human embryonic stem cell research provides a unique opportunity for generation of a useful source of cells for basic developmental studies. The development of cost-effective, time and labor efficient improved differentiation protocols for the production of human NC cells is a critical step toward a better understanding of NC biology.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
36
|
|
37
|
Kawaguchi J, Nichols J, Gierl MS, Faial T, Smith A. Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development 2010; 137:693-704. [PMID: 20147374 PMCID: PMC2827682 DOI: 10.1242/dev.046896] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neural crest is a source of diverse cell types, including the peripheral nervous system. The transcription factor Sox10 is expressed throughout early neural crest. We exploited Sox10 reporter and selection markers created by homologous recombination to investigate the generation, maintenance and expansion of neural crest progenitors. Sox10-GFP-positive cells are produced transiently from mouse embryonic stem (ES) cells by treatment with retinoic acid in combination with Fgf8b and the cytokine leukaemia inhibitory factor (Lif). We found that expression of Sox10 can be maintained using noggin, Wnt3a, Lif and endothelin (NWLE). ES cell-derived Sox10-GFP-positive cells cultured in NWLE exhibit molecular markers of neural crest progenitors. They differentiate into peripheral neurons in vitro and are able to colonise the enteric network in organotypic gut cultures. Neural crest cells purified from embryos using the Sox10 reporter also survive in NWLE, but progressively succumb to differentiation. We therefore applied selection to eliminate differentiating cells. Sox10-selected cells could be clonally expanded, cryopreserved, and multiplied for over 50 days in adherent culture. They remained neurogenic in vitro and in foetal gut grafts. Generation of neural crest from mouse ES cells opens a new route to the identification and validation of determination factors. Furthermore, the ability to propagate undifferentiated progenitors creates an opportunity for experimental dissection of the stimuli and molecular circu that govern neural crest lineage progression. Finally, the demonstration of robust enteric neurogenesis provides a system for investigating and modelling cell therapeutic approaches to neurocristopathies such as Hirschsprung's disease.
Collapse
Affiliation(s)
- Jitsutaro Kawaguchi
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK
| | - Mathias S. Gierl
- Max-Delbruck-Centrum for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany
| | - Tiago Faial
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QR Cambridge, UK., Author for correspondence ()
| |
Collapse
|
38
|
Jiang X, Gwye Y, McKeown SJ, Bronner-Fraser M, Lutzko C, Lawlor ER. Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells Dev 2009; 18:1059-70. [PMID: 19099373 DOI: 10.1089/scd.2008.0362] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The neural crest is a transient structure of vertebrate embryos that initially generates neural crest stem cells (NCSCs) which then migrate throughout the body to produce a diverse array of mature tissue types. Due to the rarity of adult NCSCs as well as ethical and technical issues surrounding isolation of early embryonic tissues, biologic studies of human NCSCs are extremely challenging. Thus, much of what is known about human neural crest development has been inferred from model organisms. In this study, we report that functional NCSCs can be rapidly generated and isolated from in vitro-differentiated human embryonic stem cells (hESCs). Using the stromal-derived inducing activity (SDIA) of PA6 fibroblast co-culture we have induced hESCs to differentiate into neural crest. Within 1 week, migrating cells that express the early neural crest markers p75 and HNK1 as well as numerous other genes associated with neural crest induction such as SNAIL, SLUG, and SOX10 are detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the p75-positive population enriches for cells with genetic, phenotypic, and functional characteristics of NCSCs. These p75-enriched cells readily form neurospheres in suspension culture, self-renew to form secondary spheres, and give rise under differentiation conditions to multiple neural crest lineages including peripheral nerves, glial, and myofibroblastic cells. Importantly, these cells differentiate into neural crest derivatives when transplanted into developing chick embryos in vivo. Thus, this SDIA protocol can be used to successfully and efficiently isolate early human NCSCs from hESCs in vitro. This renewable source of NCSCs provides an invaluable source of cells for studies of both normal and disordered human neural crest development.
Collapse
Affiliation(s)
- Xiaohua Jiang
- Divisions of Hematology-Oncology, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chute JP, Ross JR, McDonnell DP. Minireview: Nuclear receptors, hematopoiesis, and stem cells. Mol Endocrinol 2009; 24:1-10. [PMID: 19934345 DOI: 10.1210/me.2009-0332] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) regulate a panoply of biological processes, including the function and development of cells within the hematopoietic and immune system, such as erythrocytes, monocytes, and lymphocytes. Significantly less is known regarding the function of NRs in regulating the fate of hematopoietic stem cells (HSCs), the self-renewing, pluripotent cells that give rise to the entirety of the blood and immune systems throughout the lifetime of an individual. Several recent studies suggest, either directly or indirectly, a role for members of the NR family in regulating the differentiation and self-renewal of HSCs, embryonic stem cells, and induced pluripotent stem cells. Herein, we review in detail the function of specific NRs in controlling HSC and other stem cell fate and propose a framework through which these observations can be translated into therapeutic amplification of HSCs for clinical purposes.
Collapse
Affiliation(s)
- John P Chute
- Division of Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
40
|
Aoki H, Yamada Y, Hara A, Kunisada T. Two distinct types of mouse melanocyte: differential signaling requirement for the maintenance of non-cutaneous and dermal versus epidermal melanocytes. Development 2009; 136:2511-21. [PMID: 19553284 DOI: 10.1242/dev.037168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Unlike the thoroughly investigated melanocyte population in the hair follicle of the epidermis, the growth and differentiation requirements of the melanocytes in the eye, harderian gland and inner ear - the so-called non-cutaneous melanocytes - remain unclear. In this study, we investigated the in vitro and in vivo effects of the factors that regulate melanocyte development on the stem cells or the precursors of these non-cutaneous melanocytes. In general, a reduction in KIT receptor tyrosine kinase signaling leads to disordered melanocyte development. However, melanocytes in the eye, ear and harderian gland were revealed to be less sensitive to KIT signaling than cutaneous melanocytes. Instead, melanocytes in the eye and harderian gland were stimulated more effectively by endothelin 3 (ET3) or hepatocyte growth factor (HGF) signals than by KIT signaling, and the precursors of these melanocytes expressed the lowest amount of KIT. The growth and differentiation of these non-cutaneous melanocytes were specifically inhibited by antagonists for ET3 and HGF. In transgenic mice induced to express ET3 or HGF in their skin and epithelial tissues from human cytokeratin 14 promoters, the survival and differentiation of non-cutaneous and dermal melanocytes, but not epidermal melanocytes, were enhanced, apparently irrespective of KIT signaling. These results provide a molecular basis for the clear discrimination between non-cutaneous or dermal melanocytes and epidermal melanocytes, a difference that might be important in the pathogenesis of melanocyte-related diseases and melanomas.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | | | | | |
Collapse
|
41
|
Motohashi T, Yamanaka K, Chiba K, Aoki H, Kunisada T. Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells 2009; 27:888-97. [PMID: 19350691 DOI: 10.1634/stemcells.2008-0678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melanoblasts, precursor of melanocytes, are generated from the neural crest and differentiate into melanocytes during their migration throughout the entire body. The melanoblasts are thought to be progenitor cells that differentiate only into melanocyte. Here, we show that melanoblasts, even after they have already migrated throughout the skin, are multipotent, being able to generate neurons, glial cells, and smooth muscle cells in addition to melanocytes. We isolated Kit-positive and CD45-negative (Kit+/CD45-) cells from both embryonic and neonate skin by flow cytometry and cultured them on stromal cells. The Kit+/CD45- cells formed colonies containing neurons, glial cells, and smooth muscle cells, together with melanocytes. The Kit+/CD45- cells expressed Mitf-M, Sox10, and Trp-2, which are genes known to be expressed in melanoblasts. Even a single Kit+/CD45- cell formed colonies that contained neurons, glial cells, and melanocytes, confirming their multipotential cell fate. The colonies formed from Kit+/CD45- cells retained Kit+/CD45- cells even after 21 days in culture and these retained cells also differentiated into neurons, glial cells, and melanocytes, confirming their self-renewal capability. When the Kit signal was inhibited by the antagonist ACK2, the Kit+/CD45- cells did not form colonies that contained multidifferentiated cells. These results indicate that melanoblasts isolated from skin have multipotency and self-renewal capabilities.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Animal models play a crucial role in fundamental and medical research. Progress in the fields of drug discovery, regenerative medicine and cancer research among others are heavily dependent on in vivo models to validate in vitro observations, and develop new therapeutic approaches. However, conventional rodent and large animal experiments face ethical, practical and technical issues that limit their usage. The chick embryo represents an accessible and economical in vivo model, which has long been used in developmental biology, gene expression analysis and loss/gain of function experiments. It is also an established model for tissue/cell transplantation, and because of its lack of immune system in early development, the chick embryo is increasingly recognised as a model of choice for mammalian biology with new applications for stem cell and cancer research. Here, we review novel applications of the chick embryo model, and discuss future developments of this in vivo model for biomedical research.
Collapse
Affiliation(s)
- Hassan Rashidi
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
43
|
Acosta S, Lavarino C, Paris R, Garcia I, de Torres C, Rodríguez E, Beleta H, Mora J. Comprehensive characterization of neuroblastoma cell line subtypes reveals bilineage potential similar to neural crest stem cells. BMC DEVELOPMENTAL BIOLOGY 2009; 9:12. [PMID: 19216736 PMCID: PMC2647534 DOI: 10.1186/1471-213x-9-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 02/12/2009] [Indexed: 12/30/2022]
Abstract
Background Neuroblastic tumors (NBT) derive from neural crest stem cells (NCSC). Histologically, NBT are composed by neuroblasts and Schwannian cells. In culture, neuroblastic (N-), substrate-adherent (S-) and intermediate phenotype (I-) cell subtypes arise spontaneously. Methods Here, neuroblastoma (NB) cell line subtypes were characterized according to embryonic peripheral nervous system development markers (GAP43, Phox2b, Sox10, c-kit, GD2, NF68, vimentin, S100β, calcyclin and ABCG2), morphological features, gene expression and differentiation potential. I-type cells were investigated as a bipotential (neuronal and glial) differentiation stage. Results Positive immunostaining of NCSC (GAP43, c-kit, NF68, vimentin and Phox2b) and undifferentiated cell (ABCG2) markers was observed in all NB subtypes. N- and I-type cells displayed cytoplasmic membrane GD2 staining, while nuclear calcyclin was restricted to S-type. N- and I-type cells showed similar phenotype and immunoreactivity pattern. Differential gene expression was associated with each cell subtype. N- and I-type cells displayed similar differentiation capacity towards neuronal and glial lineage fates. S-type cells, upon induction, did not show a neuronal-like phenotype, despite gene expression changes. Conclusion Results suggest that N- and I-type NB cell subtypes represent an immature bilineage stage, able to progress towards neuronal and glial fates upon induction of differentiation. S-type cells appear irreversibly committed to a glial lineage fate.
Collapse
Affiliation(s)
- Sandra Acosta
- Developmental tumor biology laboratory, Hospital Sant Joan de Déu, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jheon AH, Schneider RA. The cells that fill the bill: neural crest and the evolution of craniofacial development. J Dent Res 2009; 88:12-21. [PMID: 19131312 DOI: 10.1177/0022034508327757] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Avian embryos, which have been studied scientifically since Aristotle, continue to persevere as invaluable research tools, especially for our understanding of the development and evolution of the craniofacial skeleton. Whether the topic is beak shape in Darwin's finches or signaling interactions that underlie bone and tooth formation, birds offer advantages for craniofacial biology that uniquely complement the strengths of other vertebrate model systems, such as fish, frogs, and mice. Several papers published during the past few years have helped pinpoint molecular and cellular mechanisms that pattern the face and jaws through experiments that could only have been done together with our feathered friends. Ultimately, such knowledge will be essential for devising novel clinical approaches to treat and/or prevent diseases, injuries, and birth defects that affect the human craniofacial skeleton. Here we review recent insights plucked from avians on key developmental processes that generate craniofacial diversity.
Collapse
Affiliation(s)
- A H Jheon
- Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, USA
| | | |
Collapse
|
45
|
Aoki H, Hara A, Motohashi T, Chem H, Kunisada T. Iris as a recipient tissue for pigment cells: organized in vivo differentiation of melanocytes and pigmented epithelium derived from embryonic stem cells in vitro. Dev Dyn 2009; 237:2394-404. [PMID: 18729218 DOI: 10.1002/dvdy.21656] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Regenerative transplantation of embryonic stem (ES) cell-derived melanocytes into adult tissues, especially skin that includes hair follicles or the hair follicle itself, generally not possible, whereas that of ES cell-derived pigmented epithelium was reported previously. We investigated the in vivo differentiation of these two pigment cell types derived from ES cells after their transfer into the iris. Melanocytes derived from ES cells efficiently integrated into the iris and expanded to fill the stromal layer of the iris, like those prepared from neonatal skin. Transplanted pigmented epithelium from either ES cells or the neonatal eye was also found to be integrated into the iris. Both types of these regenerated pigment cells showed the correct morphology. Regenerated pigment epithelium expressed its functional marker. Functional blocking of signals required for melanocyte development abolished the differentiation of transplanted melanocytes. These results indicate successful in vivo regenerative transfer of pigment cells induced from ES cells in vitro.
Collapse
Affiliation(s)
- Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | |
Collapse
|
46
|
Thomas AJ, Erickson CA. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res 2008; 21:598-610. [DOI: 10.1111/j.1755-148x.2008.00506.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Abstract
It is now well established that a subpopulation of tumor stem cells (TSCs) are present within cancer tissues. This suggests that tumors evolve from stem cells; however, the exact cell of tumor origin, the potential role of dedifferentiation, and the role of plasticity in tumor development are largely unknown. A model cancer for the study of the oncologic process is melanoma. The developmental biology of melanocytes is relatively well understood, the cells pigment as they differentiate making them easy to identify, and benign and malignant tumors develop on the skin surface allowing direct observation of growth features, early detection, and removal. This ready access to early-stage tumors will facilitate study of the early oncologic processes and the role of tissue stem cells. Melanomas, like other cancers, include a subpopulation of TSCs. These TSCs have access to embryologic developmental programs, including the capacity to differentiate along multiple cell lineages. For example, melanomas can activate germ-cell pathways with major implications for TSC self-renewal through the activation of telomerase and genomic instability through the collision of meiotic and mitotic pathways (meiomitosis). The TSC model is still evolving, but the existence of TSCs has significant ramifications for tumor development, diagnosis, prognosis, and treatment of melanoma and other cancers.
Collapse
|
48
|
Thomas S, Thomas M, Wincker P, Babarit C, Xu P, Speer MC, Munnich A, Lyonnet S, Vekemans M, Etchevers HC. Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Hum Mol Genet 2008; 17:3411-25. [PMID: 18689800 PMCID: PMC2566525 DOI: 10.1093/hmg/ddn235] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells.
Collapse
Affiliation(s)
- Sophie Thomas
- INSERM, U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kawaguchi A, Chiba K, Tanimura Y, Motohashi T, Aoki H, Takeda T, Hayashi SI, Shimizu K, Kunisada T. Isolation and characterization of Kit-independent melanocyte precursors induced in the skin of Steel factor transgenic mice. Dev Growth Differ 2007; 50:63-9. [DOI: 10.1111/j.1440-169x.2007.00976.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 2007; 25:1468-75. [PMID: 18037878 DOI: 10.1038/nbt1365] [Citation(s) in RCA: 399] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 11/08/2007] [Indexed: 02/07/2023]
Abstract
Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders.
Collapse
Affiliation(s)
- Gabsang Lee
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Ave., New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|