1
|
Alizada A, Martins A, Mouniée N, Rodriguez Suarez JV, Bertin B, Gueguen N, Mirouse V, Papameletiou AM, Rivera AJ, Lau NC, Akkouche A, Maupetit-Mehouas S, Hannon GJ, Nicholson BC, Brasset E. The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.10.612307. [PMID: 39314383 PMCID: PMC11419008 DOI: 10.1101/2024.09.10.612307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for transposable element (TE) silencing in animal gonads. While the transcriptional regulation of piRNA pathway components in germ cells has been documented in mice and flies, their control in somatic cells of Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), the Drosophila orthologue of large Maf transcription factors in mammals, is a master regulator of the somatic piRNA pathway. Tj binds to regulatory regions of somatic piRNA factors and the major piRNA cluster flamenco , which carries a Tj-bound enhancer downstream of its promoter. Depletion of Tj in somatic follicle cells causes downregulation of piRNA factors, loss of flam expression and de-repression of gypsy -family TEs. We propose that the arms race between the host and TEs led to the co-evolution of promoters in piRNA pathway genes as well as TE regulatory regions that both rely on a shared transcription factor. Highlights - Traffic jam (Tj) acts as a master regulator of the somatic piRNA pathway in Drosophila . - Tj regulates a network of piRNA pathway genes, mirroring the gene-regulatory mechanism of A-MYB in the mouse testis and Ovo in fly ovaries. - Cis -regulatory elements with Tj motifs are present at the promoters of somatic piRNA pathway genes. - The expression of the flamenco piRNA cluster is directly controlled by Tj.
Collapse
|
2
|
Pérez-Posada A, Lin CY, Fan TP, Lin CY, Chen YC, Gómez-Skarmeta JL, Yu JK, Su YH, Tena JJ. Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes. Nat Ecol Evol 2024; 8:2213-2227. [PMID: 39424956 PMCID: PMC11618098 DOI: 10.1038/s41559-024-02562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes. However, a comprehensive, quantitative catalogue of gene expression and chromatin dynamics in hemichordates is still lacking. In this study, we analysed the transcriptomes and chromatin accessibility of multiple developmental stages of the indirect-developing hemichordate Ptychodera flava. We observed that P. flava development is underpinned by a biphasic transcriptional program probably controlled by distinct genetic networks. Comparisons with other bilaterian species revealed similar transcriptional and regulatory dynamics during hemichordate gastrulation, cephalochordate neurulation and elongation stages of annelids. By means of regulatory networks analysis and functional validations by transgenesis experiments in echinoderms, we propose that gastrulation is the stage of highest molecular resemblance in deuterostomes and that much of the molecular basis of deuterostome development was probably present in the bilaterian last common ancestor.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
3
|
Bagheri MJ, Valojerdi MR, Salehnia M. Formation of ovarian organoid by co-culture of human endometrial mesenchymal stem cells and mouse oocyte in 3-dimensional culture system. Cytotechnology 2024; 76:571-584. [PMID: 39188652 PMCID: PMC11344741 DOI: 10.1007/s10616-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 08/28/2024] Open
Abstract
The purpose of this study was to compare the formation of organoid structures by co-culturing of human endometrial mesenchymal stem cells (hEnMSCs) and mouse germinal vesicle (GV) oocytes in hanging drop and sodium alginate hydrogel co-culture methods. Following the preparation of hEnMSCs and partially denuded mouse germinal vesicle oocytes, they were co-cultured in hanging drop and sodium alginate hydrogel systems as two experimental groups. In respected control groups the hEnMSCs were cultured without oocytes. The organoid formation was evaluated under the inverted microscope in all studied groups during the culture period. The hematoxylin and eosin, alcian blue, periodic acid Schiff, and Masson's trichrome methods, were applied for morphological evaluation and extracellular matrix components staining such as glycosaminoglycan, carbohydrate, and collagen fibers. In addition, the germ cell-like characteristics within the organoid structures were investigated via alkaline phosphatase activity immunocytochemistry for DEAD-box polypeptide 4 (DDX4), and the expression of octamer-binding transcription factor 4 (OCT4), DDX4, and synaptonemal complex protein 3 (SYCP3) genes by real-time RT-PCR. The culturing of hEnMSCs in the hanging drop method led to the formation of organoid structures while this structure was not seen in sodium alginate hydrogel culture. The mean diameter of organoid structures was increased during 4 days of culture in both the experimental and control groups in the hanging drop method, reaching 675.50 ± 18.55 µm and 670.25 ± 21.40 µm, respectively (P < 0.05). Morphological staining indicated some large ovoid cells with euchromatin nuclei in the experimental group, whereas, in the control group cells showed dark and dense nuclei. The extracellular matrix components were deposited in organoid structures in both control and experimental groups. The positive alkaline phosphatase activity and immunocytochemistry for DDX4 confirmed the presence of germ cell-like in the experimental group. Real-time RT-PCR showed a significant increase in the expression of DDX4 and SYCP3 genes and a decrease in the level of OCT4 expression in the experimental group compared with its controls. This study successfully generated organoid structures by co-culture of hEnMSCs and oocytes in the hanging drop method and the hEnMSCs could be differentiated into germ cell-like. This organoid structure has potential applications in regenerative medicine and reproductive biology. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00639-w.
Collapse
Affiliation(s)
- Mohammad Jafar Bagheri
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| |
Collapse
|
4
|
Jiang Q, Lan S, Tan F, Liang Y, Guo Z, Hou Y, Zhang H, Wu G, Liu Z. Adenosylhomocysteinase plays multiple roles in maintaining the identity and pluripotency of mouse embryonic stem cells†. Biol Reprod 2024; 110:450-464. [PMID: 38035769 DOI: 10.1093/biolre/ioad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
Adenosylhomocysteinase (AHCY), a key enzyme in the methionine cycle, is essential for the development of embryos and the maintenance of mouse embryonic stem cells (mESCs). However, the precise underlying mechanism of Ahcy in regulating pluripotency remains unclear. As the only enzyme that can hydrolyze S-adenosylhomocysteine in mammals, AHCY plays a critical role in the metabolic homeostasis, epigenetic remodeling, and transcriptional regulation. Here, we identified Ahcy as a direct target of OCT4 and unveiled that AHCY regulates the self-renewal and differentiation potency of mESCs through multiple mechanisms. Our study demonstrated that AHCY is required for the metabolic homeostasis of mESCs. We revealed the dual role of Ahcy in both transcriptional activation and inhibition, which is accomplished via the maintenance of H3K4me3 and H3K27me3, respectively. We found that Ahcy is required for H3K4me3-dependent transcriptional activation in mESCs. We also demonstrated that AHCY interacts with polycomb repressive complex 2 (PRC2), thereby maintaining the pluripotency of mESCs by sustaining the H3K27me3-regulated transcriptional repression of related genes. These results reveal a previously unrecognized OCT4-AHCY-PRC2 axis in the regulation of mESCs' pluripotency and provide insights into the interplay between transcriptional factors, cellular metabolism, chromatin dynamics and pluripotency regulation.
Collapse
Affiliation(s)
- Qi Jiang
- College of Life Science, Northeast Agricultural University, Harbin, China
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shubing Lan
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
| | - Fancheng Tan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yiping Liang
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
| | - Zhencheng Guo
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
| | - Yanlin Hou
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
| | - Hui Zhang
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guangming Wu
- Basic Research Department, Guangzhou National Laboratory, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Xu T, Su P, Wu L, Li D, Qin W, Li Q, Zhou J, Miao YL. OCT4 regulates WNT/β-catenin signaling and prevents mesoendoderm differentiation by repressing EOMES in porcine pluripotent stem cells. J Cell Physiol 2023; 238:2855-2866. [PMID: 37942811 DOI: 10.1002/jcp.31135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
The regulatory network between signaling pathways and transcription factors (TFs) is crucial for the maintenance of pluripotent stem cells. However, little is known about how the key TF OCT4 coordinates signaling pathways to regulate self-renewal and lineage differentiation of porcine pluripotent stem cells (pPSCs). Here, we explored the function of OCT4 in pPSCs by transcriptome and chromatin accessibility analysis. The TFs motif enrichment analysis revealed that, following OCT4 knockdown, the regions of increased chromatin accessibility were enriched with EOMES, GATA6, and FOXA1, indicating that pPSCs differentiated toward the mesoendoderm (ME) lineage. Besides, pPSCs rapidly differentiated into ME when the WNT/β-catenin inhibitor XAV939 was removed. However, the ME differentiation of pPSCs caused by OCT4 knockdown did not rely on the activation of WNT/β-catenin signaling because the target gene of WNT/β-catenin signaling, AXIN2 was not upregulated after OCT4 knockdown, despite significant upregulation of WLS and some WNT ligands. Importantly, OCT4 is directly bound to the promoter and enhancers of EOMES and repressed its transcription. Overexpression of EOMES was sufficient to induce ME differentiation in the presence of XAV939. These results demonstrate that OCT4 can regulate WNT/β-catenin signaling and prevent ME differentiation of pPSCs by repressing EOMES transcription.
Collapse
Affiliation(s)
- Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Delong Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Wei Qin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Qiao Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
6
|
Ouzin M, Kogler G. Mesenchymal Stromal Cells: Heterogeneity and Therapeutical Applications. Cells 2023; 12:2039. [PMID: 37626848 PMCID: PMC10453316 DOI: 10.3390/cells12162039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cells nowadays emerge as a major player in the field of regenerative medicine and translational research. They constitute, with their derived products, the most frequently used cell type in different therapies. However, their heterogeneity, including different subpopulations, the anatomic source of isolation, and high donor-to-donor variability, constitutes a major controversial issue that affects their use in clinical applications. Furthermore, the intrinsic and extrinsic molecular mechanisms underlying their self-renewal and fate specification are still not completely elucidated. This review dissects the different heterogeneity aspects of the tissue source associated with a distinct developmental origin that need to be considered when generating homogenous products before their usage for clinical applications.
Collapse
Affiliation(s)
- Meryem Ouzin
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | | |
Collapse
|
7
|
Omer D, Zontag OC, Gnatek Y, Harari-Steinberg O, Pleniceanu O, Namestnikov M, Cohen AH, Nissim-Rafinia M, Tam G, Kalisky T, Meshorer E, Dekel B. OCT4 induces long-lived dedifferentiated kidney progenitors poised to redifferentiate in 3D kidney spheroids. Mol Ther Methods Clin Dev 2023; 29:329-346. [PMID: 37214315 PMCID: PMC10193171 DOI: 10.1016/j.omtm.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Upscaling of kidney epithelial cells is crucial for renal regenerative medicine. Nonetheless, the adult kidney lacks a distinct stem cell hierarchy, limiting the ability to long-term propagate clonal populations of primary cells that retain renal identity. Toward this goal, we tested the paradigm of shifting the balance between differentiation and stemness in the kidney by introducing a single pluripotency factor, OCT4. Here we show that ectopic expression of OCT4 in human adult kidney epithelial cells (hKEpC) induces the cells to dedifferentiate, stably proliferate, and clonally emerge over many generations. Control hKEpC dedifferentiate, assume fibroblastic morphology, and completely lose clonogenic capacity. Analysis of gene expression and histone methylation patterns revealed that OCT4 represses the HNF1B gene module, which is critical for kidney epithelial differentiation, and concomitantly activates stemness-related pathways. OCT4-hKEpC can be long-term expanded in the dedifferentiated state that is primed for renal differentiation. Thus, when expanded OCT4-hKEpC are grown as kidney spheroids (OCT4-kSPH), they reactivate the HNF1B gene signature, redifferentiate, and efficiently generate renal structures in vivo. Hence, changes occurring in the cellular state of hKEpC following OCT4 induction, long-term propagation, and 3D aggregation afford rapid scale-up technology of primary renal tissue-forming cells.
Collapse
Affiliation(s)
- Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sagol Center for Regenerative Medicine, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Cohen Zontag
- Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sagol Center for Regenerative Medicine, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sagol Center for Regenerative Medicine, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sagol Center for Regenerative Medicine, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sagol Center for Regenerative Medicine, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Namestnikov
- Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sagol Center for Regenerative Medicine, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet-Hashahar Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Gal Tam
- Faculty of Engineering and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
- Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
- Sagol Center for Regenerative Medicine, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Nephrology, Edmond & Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 5262000, Israel
| |
Collapse
|
8
|
Ruan Y, Wang J, Yu M, Wang F, Wang J, Xu Y, Liu L, Cheng Y, Yang R, Zhang C, Yang Y, Wang J, Wu W, Huang Y, Tian Y, Chen G, Zhang J, Jian R. A multi-omics integrative analysis based on CRISPR screens re-defines the pluripotency regulatory network in ESCs. Commun Biol 2023; 6:410. [PMID: 37059858 PMCID: PMC10104827 DOI: 10.1038/s42003-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/13/2023] [Indexed: 04/16/2023] Open
Abstract
A comprehensive and precise definition of the pluripotency gene regulatory network (PGRN) is crucial for clarifying the regulatory mechanisms in embryonic stem cells (ESCs). Here, after a CRISPR/Cas9-based functional genomics screen and integrative analysis with other functional genomes, transcriptomes, proteomes and epigenome data, an expanded pluripotency-associated gene set is obtained, and a new PGRN with nine sub-classes is constructed. By integrating the DNA binding, epigenetic modification, chromatin conformation, and RNA expression profiles, the PGRN is resolved to six functionally independent transcriptional modules (CORE, MYC, PAF, PRC, PCGF and TBX). Spatiotemporal transcriptomics reveal activated CORE/MYC/PAF module activity and repressed PRC/PCGF/TBX module activity in both mouse ESCs (mESCs) and pluripotent cells of early embryos. Moreover, this module activity pattern is found to be shared by human ESCs (hESCs) and cancers. Thus, our results provide novel insights into elucidating the molecular basis of ESC pluripotency.
Collapse
Affiliation(s)
- Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Fengsheng Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yixiao Xu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ran Yang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Chen Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - JiaLi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Guangxing Chen
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1789-1808. [PMID: 35141862 DOI: 10.1007/s12015-022-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles' role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
10
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
11
|
Kashirina A, Gavrina A, Kryukov E, Elagin V, Kolesova Y, Artyuhov A, Momotyuk E, Abdyyev V, Meshcheryakova N, Zagaynova E, Dashinimaev E, Kashina A. Energy Metabolism and Intracellular pH Alteration in Neural Spheroids Carrying Down Syndrome. Biomedicines 2021; 9:1741. [PMID: 34829971 PMCID: PMC8615730 DOI: 10.3390/biomedicines9111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Brain diseases including Down syndrome (DS/TS21) are known to be characterized by changes in cellular metabolism. To adequately assess such metabolic changes during pathological processes and to test drugs, methods are needed that allow monitoring of these changes in real time with minimally invasive effects. Thus, the aim of our work was to study the metabolic status and intracellular pH of spheroids carrying DS using fluorescence microscopy and FLIM. For metabolic analysis we measured the fluorescence intensities, fluorescence lifetimes and the contributions of the free and bound forms of NAD(P)H. For intracellular pH assay we measured the fluorescence intensities of SypHer-2 and BCECF. Data were processed with SPCImage and Fiji-ImageJ. We demonstrated the predominance of glycolysis in TS21 spheroids compared with normal karyotype (NK) spheroids. Assessment of the intracellular pH indicated a more alkaline intracellular pH in the TS21 spheroids compared to NK spheroids. Using fluorescence imaging, we performed a comprehensive comparative analysis of the metabolism and intracellular pH of TS21 spheroids and showed that fluorescence microscopy and FLIM make it possible to study living cells in 3D models in real time with minimally invasive effects.
Collapse
Affiliation(s)
- Alena Kashirina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Emil Kryukov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Yuliya Kolesova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
| | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Ekaterina Momotyuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Vepa Abdyyev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
| | - Natalia Meshcheryakova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603022 Nizhny Novgorod, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Aleksandra Kashina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| |
Collapse
|
12
|
PRMT7: A Pivotal Arginine Methyltransferase in Stem Cells and Development. Stem Cells Int 2021; 2021:6241600. [PMID: 34712331 PMCID: PMC8548130 DOI: 10.1155/2021/6241600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs), which play critical roles in many biological processes. To date, nine PRMT family members, namely, PRMT1, 2, 3, 4, 5, 6, 7, 8, and 9, have been identified in mammals. Among them, PRMT7 is a type III PRMT that can only catalyze the formation of monomethylarginine and plays pivotal roles in several kinds of stem cells. It has been reported that PRMT7 is closely associated with embryonic stem cells, induced pluripotent stem cells, muscle stem cells, and human cancer stem cells. PRMT7 deficiency or mutation led to severe developmental delay in mice and humans, which is possibly due to its crucial functions in stem cells. Here, we surveyed and summarized the studies on PRMT7 in stem cells and development in mice and humans and herein provide a discussion of the underlying molecular mechanisms. Furthermore, we also discuss the roles of PRMT7 in cancer, adipogenesis, male reproduction, cellular stress, and cellular senescence, as well as the future perspectives of PRMT7-related studies. Overall, PRMT7 mediates the proliferation and differentiation of stem cells. Deficiency or mutation of PRMT7 causes developmental delay, including defects in skeletal muscle, bone, adipose tissues, neuron, and male reproduction. A better understanding of the roles of PRMT7 in stem cells and development as well as the underlying mechanisms will provide information for the development of strategies for in-depth research of PRMT7 and stem cells as well as their applications in life sciences and medicine.
Collapse
|
13
|
Schmidt J, Oppermann E, Blaheta RA, Schreckenbach T, Lunger I, Rieger MA, Bechstein WO, Holzer K, Malkomes P. Carbonic-anhydrase IX expression is increased in thyroid cancer tissue and represents a potential therapeutic target to eradicate thyroid tumor-initiating cells. Mol Cell Endocrinol 2021; 535:111382. [PMID: 34216643 DOI: 10.1016/j.mce.2021.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
The expression of Carbonic-anhydrase IX (CAIX) in thyroid cancer (TC) subtypes was determined and its role in cancer cell growth and tumor-initiating cells (TICs) investigated. Immunohistochemistry in 114 TC patients revealed that CAIX expression was increased in tumor specimens of papillary, follicular and anaplastic TCs compared to normal thyroid tissue. Clinicopathological data indicated that lymph node metastases were more frequent in patients with high CAIX expression. The Cancer Genome Atlas database analysis demonstrated that a strong CAIX-mRNA expression was associated with advanced tumor stages and poor survival in TCs. In TC cell lines, CAIX expression was elevated in tumorspheres compared to monolayer cultures and was associated with an increased expression of stemness markers. Genetic knockdown or pharmacological inhibition of CAIX suppressed cell proliferation and the TIC ability to form tumorspheres by an induction of apoptosis and cell-cycle arrest. These findings suggest CAIX as a potential prognostic marker and a therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Jennifer Schmidt
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Roman A Blaheta
- Hospital of the Goethe University Frankfurt, Department of Urology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Teresa Schreckenbach
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ilaria Lunger
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Hospital of the Goethe University Frankfurt, Department of Inner Medicine, Hematology/Oncology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael A Rieger
- Hospital of the Goethe University Frankfurt, Department of Inner Medicine, Hematology/Oncology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; German Cancer Consortium and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany; Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Katharina Holzer
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Philipps University Hospital of Marburg, Section of Endocrine Surgery, Department of Visceral-, Thoracic- and Vascular Surgery, Baldingerstraße, 35043, Marburg, Germany
| | - Patrizia Malkomes
- Hospital of the Goethe University Frankfurt, Department of General, Visceral and Transplant Surgery, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Wadkin LE, Orozco-Fuentes S, Neganova I, Lako M, Parker NG, Shukurov A. A mathematical modelling framework for the regulation of intra-cellular OCT4 in human pluripotent stem cells. PLoS One 2021; 16:e0254991. [PMID: 34347824 PMCID: PMC8336844 DOI: 10.1371/journal.pone.0254991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/07/2021] [Indexed: 12/04/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have the potential to differentiate into all cell types, a property known as pluripotency. A deeper understanding of how pluripotency is regulated is required to assist in controlling pluripotency and differentiation trajectories experimentally. Mathematical modelling provides a non-invasive tool through which to explore, characterise and replicate the regulation of pluripotency and the consequences on cell fate. Here we use experimental data of the expression of the pluripotency transcription factor OCT4 in a growing hPSC colony to develop and evaluate mathematical models for temporal pluripotency regulation. We consider fractional Brownian motion and the stochastic logistic equation and explore the effects of both additive and multiplicative noise. We illustrate the use of time-dependent carrying capacities and the introduction of Allee effects to the stochastic logistic equation to describe cell differentiation. We conclude both methods adequately capture the decline in OCT4 upon differentiation, but the Allee effect model has the advantage of allowing differentiation to occur stochastically in a sub-set of cells. This mathematical framework for describing intra-cellular OCT4 regulation can be extended to other transcription factors and developed into predictive models.
Collapse
Affiliation(s)
- L E Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Orozco-Fuentes
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - I Neganova
- Institute of Cytology, RAS St Petersburg, Novosibirsk, Russia
| | - M Lako
- Bioscience Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - N G Parker
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - A Shukurov
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
15
|
Le Rolle M, Massa F, Siggers P, Turchi L, Loubat A, Koo BK, Clevers H, Greenfield A, Schedl A, Chaboissier MC, Chassot AA. Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries. Proc Natl Acad Sci U S A 2021; 118:e2023376118. [PMID: 34301885 PMCID: PMC8325354 DOI: 10.1073/pnas.2023376118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Germ cells form the basis for sexual reproduction by producing gametes. In ovaries, primordial germ cells exit the cell cycle and the pluripotency-associated state, differentiate into oogonia, and initiate meiosis. Despite the importance of germ cell differentiation for sexual reproduction, signaling pathways regulating their fate remain largely unknown. Here, we show in mouse embryonic ovaries that germ cell-intrinsic β-catenin activity maintains pluripotency and that its repression is essential to allow differentiation and meiosis entry in a timely manner. Accordingly, in β-catenin loss-of-function and gain-of-function mouse models, the germ cells precociously enter meiosis or remain in the pluripotent state, respectively. We further show that interaction of β-catenin and the pluripotent-associated factor POU5F1 in the nucleus is associated with germ cell pluripotency. The exit of this complex from the nucleus correlates with germ cell differentiation, a process promoted by the up-regulation of Znrf3, a negative regulator of WNT/β-catenin signaling. Together, these data identify the molecular basis of the transition from primordial germ cells to oogonia and demonstrate that β-catenin is a central gatekeeper in ovarian differentiation and gametogenesis.
Collapse
Affiliation(s)
- Morgane Le Rolle
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Filippo Massa
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
- Inovarion, 75005 Paris, France
| | - Pam Siggers
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, United Kingdom
| | - Laurent Turchi
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
- Délégation à la Recherche Clinique et à l'Innovation, Centre Hospitalier Universitaire de Nice, 06000 Nice, France
| | - Agnès Loubat
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Bon-Kyoung Koo
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, United Kingdom
| | - Andreas Schedl
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Marie-Christine Chaboissier
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France
| | - Anne-Amandine Chassot
- CNRS, Inserm, Institut de Biologie Valrose, Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France;
| |
Collapse
|
16
|
Baek SK, Jeon SB, Seo BG, Hwangbo C, Shin KC, Choi JW, An CS, Jeong MA, Kim TS, Lee JH. The Presence or Absence of Alkaline Phosphatase Activity to Discriminate Pluripotency Characteristics in Porcine Epiblast Stem Cell-Like Cells. Cell Reprogram 2021; 23:221-238. [PMID: 34227846 DOI: 10.1089/cell.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Porcine embryonic stem cells (pESCs) would provide potentials for agricultural- and biotechnological-related applications. However, authentic pESCs have not been established yet because standards for porcine stem cell-specific markers and culture conditions are not clear. Therefore, the present study reports attempts to derive pluripotent epiblast stem cells either from in vitro or in vivo derived porcine embryos. Nine epiblast cell lines (seven lines from Berkshire and two lines from Duroc) could only be isolated from day 9- to 9.5-old in vivo derived early conceptuses. Pluripotency features were analyzed in relation to the presence or absence of alkaline phosphatase (AP) activity. Interestingly, the mRNA expression of several marker genes for pluripotency or epiblast was different between putative epiblast stem cells of the two groups [AP-positive (+) pEpiSC-like cell 2 line and AP-negative (-) pEpiSC-like cell 8 line]. For example, expressions of OCT-3/4, NANOG, SOX2, c-MYC, FGF2, and NODAL in AP-negative (-) porcine epiblast stem cell (pEpiSC)-like cells were higher than those in AP-positive (+) pEpiSC-like cells. Expression of surface markers differed between the two groups to some extent. SSEA-1 was strongly expressed only in AP-negative (-) pEpiSC-like cells, whereas AP-positive (+) pEpiSC-like cells did not express. In addition, we report to have some differences in the in vitro differentiation capacity between AP-positive (+) and AP-negative (-) epiblast cell lines. Primary embryonic germ layer markers (cardiac actin, nestin, and GATA 6) and primordial germ cell markers (Dazl and Vasa) were strongly expressed in embryoid bodies (EBs) aggregated from AP-negative (-) pEpiSC-like cells, whereas EBs aggregated from AP-positive (+) pEpiSCs did not show expression of primary embryonic germ layers and primordial germ cell markers except GATA 6. These results indicate that pEpiSC-like cells display different pluripotency characteristics in relation to AP activity.
Collapse
Affiliation(s)
- Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo-Gyeong Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Keum-Chul Shin
- Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.,Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Chang-Seop An
- Gyeongsangnamdo Livestock Experiment Station, Sancheong, Republic of Korea
| | - Mi-Ae Jeong
- Gyeongsangnamdo Livestock Experiment Station, Sancheong, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
17
|
Cao F, Shi M, Yu B, Cheng X, Li X, Jia X. Epigenetic Mechanism of Enrichment of A549 Lung Cancer Stem Cells with 5-Fu. Onco Targets Ther 2021; 14:3783-3794. [PMID: 34168463 PMCID: PMC8218937 DOI: 10.2147/ott.s233129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background The influence of 5-fluorouracil (5-Fu) and cisplatin (CDDP) on the A549 and NCI-H226 cells was studied, and the epigenetic mechanism of enrichment of A549 lung cancer stem cells with 5-Fu was explored. Materials and Methods The cell proliferation of both A549 and NCI-H226 was detected by BrdU assay, and apoptosis condition was measured by flow cytometric analysis. The expressions of OCT3/4 and Nanog in cells treated with 5-Fu or CDDP were measured by immunofluorescence, Western blot and qPCR. qPCR was also performed to determine the relative expression of methyltransferase genes and miRNA. Sequencing after bisulfite treatment (BSP) was employed to detect the methylation of OCT3/4 promoter in A549 cells. And ChIP was conducted to detect the expression of H3K9Me3 and H3K9Ace. Results Both 5-Fu and CDDP result in the apoptosis of A549 and NCI-H226 cells and improve the expressions of has-miR-134 and has-miR-296. However, 5-Fu enhances the expression of OCT3/4 in A549 cells, and the change of methyltransferase genes and BSP results suggested some genetic differences between CDDP and 5-Fu treatment in A549 cells. ChIP assay showed that the expression of H3K9Me3 significantly decreased and H3K9Ace significantly increased in A549 cells. Conclusion The enrichment effect of CDDP on A549 and NCI-H226 carcinoma stem cells is inconsistent with the enrichment effect of 5-Fu. The enrichment of A549 lung cancer stem cells with 5-Fu might be related to the methylation of OCT3/4 promoter and the expression of H3K9Me3 and H3K9Ace.
Collapse
Affiliation(s)
- Fangyuan Cao
- Department of Pathology, Science and Education Department of the Fifth People's Hospital of Qinghai, Xining, Qinhai, 810000, People's Republic of China.,Department of Pediatrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Mumu Shi
- Department of Pathology, Science and Education Department of the Fifth People's Hospital of Qinghai, Xining, Qinhai, 810000, People's Republic of China
| | - Bo Yu
- Department of Pathology, Science and Education Department of the Fifth People's Hospital of Qinghai, Xining, Qinhai, 810000, People's Republic of China
| | - Xiangrong Cheng
- Department of Nuclear Medicine, The Fifth People's Hospital of Qinghai, Xining, Qinhai, 810000, People's Republic of China
| | - Xin Li
- Department of Physiology, College of Life Science and Biopharmaceutics of Shenyang Pharmaceutical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Xinshan Jia
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| |
Collapse
|
18
|
Collagen type I promotes osteogenic differentiation of amniotic membrane-derived mesenchymal stromal cells in basal and induction media. Biosci Rep 2021; 40:227060. [PMID: 33245097 PMCID: PMC7736623 DOI: 10.1042/bsr20201325] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
Collapse
|
19
|
Xin C, Zhu C, Jin Y, Li H. Discovering the role of VEGF signaling pathway in mesendodermal induction of human embryonic stem cells. Biochem Biophys Res Commun 2021; 553:58-64. [PMID: 33756346 DOI: 10.1016/j.bbrc.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Human embryonic stem cells (hESCs) have the unique feature of unlimited self-renewal and differentiation into derivatives of all three germ layers in human body, providing a powerful in vitro model for studying cell differentiation. FGF2, BMP4 and TGF-β signaling have been shown to play crucial roles in mesendodermal differentiation of hESCs. However, their underlying molecular mechanisms and other signaling pathways potentially involved in mesendodermal differentiation of hESCs remain to be further investigated. In this study, we uncover that VEGF signaling pathway plays a critical role in the mesendodermal induction of hESCs. Treating hESCs with Lenvatinib, a pan-inhibitor of VEGF receptors (VEGFRs), impedes their mesendodermal induction. Conversely, overexpression of VEGFA165, a major human VEGF isoform, promotes the mesendodermal differentiation. Similar to the VEGFR inhibitor, MEK inhibitor PD0325901 hinders mesendodermal induction of hESCs. In contrast, overexpression of ERK2GOF, an intrinsically active ERK2 mutant, markedly reduces the inhibitory effect of the VEGFR inhibitor. Thus, the MEK-ERK cascade plays an important role for the function of VEGF signaling pathway in the mesendodermal induction of hESCs. All together, this study identifies the critical role of VEGF signaling pathway as well as potential crosstalk of VEGF signaling pathway with other known signaling pathways in mesendodermal differentiation of hESCs.
Collapse
Affiliation(s)
- Chenge Xin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaonan Zhu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Wadkin LE, Orozco-Fuentes S, Neganova I, Lako M, Barrio RA, Baggaley AW, Parker NG, Shukurov A. OCT4 expression in human embryonic stem cells: spatio-temporal dynamics and fate transitions. Phys Biol 2021; 18:026003. [PMID: 33296887 DOI: 10.1088/1478-3975/abd22b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The improved in vitro regulation of human embryonic stem cell (hESC) pluripotency and differentiation trajectories is required for their promising clinical applications. The temporal and spatial quantification of the molecular interactions controlling pluripotency is also necessary for the development of successful mathematical and computational models. Here we use time-lapse experimental data of OCT4-mCherry fluorescence intensity to quantify the temporal and spatial dynamics of the pluripotency transcription factor OCT4 in a growing hESC colony in the presence and absence of BMP4. We characterise the internal self-regulation of OCT4 using the Hurst exponent and autocorrelation analysis, quantify the intra-cellular fluctuations and consider the diffusive nature of OCT4 evolution for individual cells and pairs of their descendants. We find that OCT4 abundance in the daughter cells fluctuates sub-diffusively, showing anti-persistent self-regulation. We obtain the stationary probability distributions governing hESC transitions amongst the different cell states and establish the times at which pro-fate cells (which later give rise to pluripotent or differentiated cells) cluster in the colony. By quantifying the similarities between the OCT4 expression amongst neighbouring cells, we show that hESCs express similar OCT4 to cells within their local neighbourhood within the first two days of the experiment and before BMP4 treatment. Our framework allows us to quantify the relevant properties of proliferating hESC colonies and the procedure is widely applicable to other transcription factors and cell populations.
Collapse
Affiliation(s)
- L E Wadkin
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Swaidan NT, Salloum-Asfar S, Palangi F, Errafii K, Soliman NH, Aboughalia AT, Wali AHS, Abdulla SA, Emara MM. Identification of potential transcription factors that enhance human iPSC generation. Sci Rep 2020; 10:21950. [PMID: 33319795 PMCID: PMC7738555 DOI: 10.1038/s41598-020-78932-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Although many factors have been identified and used to enhance the iPSC reprogramming process, its efficiency remains quite low. In addition, reprogramming efficacy has been evidenced to be affected by disease mutations that are present in patient samples. In this study, using RNA-seq platform we have identified and validated the differential gene expression of five transcription factors (TFs) (GBX2, NANOGP8, SP8, PEG3, and ZIC1) that were associated with a remarkable increase in the number of iPSC colonies generated from a patient with Parkinson's disease. We have applied different bioinformatics tools (Gene ontology, protein-protein interaction, and signaling pathways analyses) to investigate the possible roles of these TFs in pluripotency and developmental process. Interestingly, GBX2, NANOGP8, SP8, PEG3, and ZIC1 were found to play a role in maintaining pluripotency, regulating self-renewal stages, and interacting with other factors that are involved in pluripotency regulation including OCT4, SOX2, NANOG, and KLF4. Therefore, the TFs identified in this study could be used as additional transcription factors that enhance reprogramming efficiency to boost iPSC generation technology.
Collapse
Affiliation(s)
- Nuha T Swaidan
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha, Qatar
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha, Qatar
| | - Freshteh Palangi
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha, Qatar
| | - Khaoula Errafii
- Genomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Nada H Soliman
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T Aboughalia
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdul Haseeb S Wali
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Sara A Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation (QF), Doha, Qatar.
| | - Mohamed M Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar. .,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
22
|
Jiao H, Walczak BE, Lee MS, Lemieux ME, Li WJ. GATA6 regulates aging of human mesenchymal stem/stromal cells. STEM CELLS (DAYTON, OHIO) 2020; 39:62-77. [PMID: 33252174 DOI: 10.1002/stem.3297] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Cellular reprogramming forcing the expression of pluripotency markers can reverse aging of cells, but how molecular mechanisms through which reprogrammed cells alter aging-related cellular activities still remains largely unclear. In this study, we reprogrammed human synovial fluid-derived mesenchymal stem cells (MSCs) into induced pluripotent stem cells (iPSCs) using six reprogramming factors and reverted the iPSCs back to MSCs, as an approach to cell rejuvenation. Using the parental and reprogrammed MSCs as control nonrejuvenated and rejuvenated cells, respectively, for comparative analysis, we found that aging-related activities were greatly reduced in reprogrammed MSCs compared with those in their parental lines, indicating reversal of cell aging. Global transcriptome analysis revealed differences in activities of regulatory networks associated with inflammation and proliferation. Mechanistically, we demonstrated that, compared with control cells, the expression of GATA binding protein 6 (GATA6) in reprogrammed cells was attenuated, resulting in an increase in the activity of sonic hedgehog signaling and the expression level of downstream forkhead box P1 (FOXP1), in turn ameliorating cellular hallmarks of aging. Lower levels of GATA6 expression were also found in cells harvested from younger mice or lower passage cultures. Our findings suggest that GATA6 is a critical regulator increased in aged MSCs that controls the downstream sonic hedgehog signaling and FOXP1 pathway to modulate cellular senescence and aging-related activities.
Collapse
Affiliation(s)
- Hongli Jiao
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian E Walczak
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ming-Song Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Sun XJ, Li MX, Gong CZ, Chen J, Nasb M, Shah SZA, Rehan M, Li YJ, Chen H. Temporal expression profiles of lncRNA and mRNA in human embryonic stem cell-derived motor neurons during differentiation. PeerJ 2020; 8:e10075. [PMID: 33240592 PMCID: PMC7668206 DOI: 10.7717/peerj.10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
Background Human embryonic stem cells (hESC) have been an invaluable research tool to study motor neuron development and disorders. However, transcriptional regulation of multiple temporal stages from ESCs to spinal motor neurons (MNs) has not yet been fully elucidated. Thus, the goals of this study were to profile the time-course expression patterns of lncRNAs during MN differentiation of ESCs and to clarify the potential mechanisms of the lncRNAs that are related to MN differentiation. Methods We utilized our previous protocol which can harvest motor neuron in more than 90% purity from hESCs. Then, differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) during MN differentiation were identified through RNA sequencing. Bioinformatic analyses were performed to assess potential biological functions of genes. We also performed qRT-PCR to validate the DElncRNAs and DEmRNAs. Results A total of 441 lncRNAs and 1,068 mRNAs at day 6, 443 and 1,175 at day 12, and 338 lncRNAs and 68 mRNAs at day 18 were differentially expressed compared with day 0. Bioinformatic analyses identified that several key regulatory genes including POU5F1, TDGF1, SOX17, LEFTY2 and ZSCAN10, which involved in the regulation of embryonic development. We also predicted 283 target genes of DElncRNAs, in which 6 mRNAs were differentially expressed. Significant fold changes in lncRNAs (NCAM1-AS) and mRNAs (HOXA3) were confirmed by qRT-PCR. Then, through predicted overlapped miRNA verification, we constructed a lncRNA NCAM1-AS-miRNA-HOXA3 network.
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Xing Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Zi Gong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mohammad Nasb
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sayed Zulfiqar Ali Shah
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Rehan
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jie Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Taheri M, Saki G, Nikbakht R, Eftekhari AR. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell. Cell Biol Int 2020; 45:127-139. [PMID: 32997425 DOI: 10.1002/cbin.11475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20-30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.
Collapse
Affiliation(s)
- Mahin Taheri
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali R Eftekhari
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Harris LK, Pantham P, Yong HEJ, Pratt A, Borg AJ, Crocker I, Westwood M, Aplin J, Kalionis B, Murthi P. The role of insulin-like growth factor 2 receptor-mediated homeobox gene expression in human placental apoptosis, and its implications in idiopathic fetal growth restriction. Mol Hum Reprod 2020; 25:572-585. [PMID: 31418778 DOI: 10.1093/molehr/gaz047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/21/2019] [Indexed: 12/27/2022] Open
Abstract
Fetal growth restriction (FGR) is caused by poor placental development and function early in gestation. It is well known that placentas from women with FGR exhibit reduced cell growth, elevated levels of apoptosis and perturbed expression of the growth factors, cytokines and the homeobox gene family of transcription factors. Previous studies have reported that insulin-like growth factor-2 (IGF2) interacts with its receptor-2 (IGF2R) to regulate villous trophoblast survival and apoptosis. In this study, we hypothesized that human placental IGF2R-mediated homeobox gene expression is altered in FGR and contributes to abnormal trophoblast function. This study was designed to determine the association between IGF2R, homeobox gene expression and cell survival in pregnancies affected by FGR. Third trimester placentas were collected from FGR-affected pregnancies (n = 29) and gestation matched with control pregnancies (n = 30). Functional analyses were then performed in vitro using term placental explants (n = 4) and BeWo trophoblast cells. mRNA expression was determined by real-time PCR, while protein expression was examined by immunoblotting and immunohistochemistry. siRNA transfection was used to silence IGF2R expression in placental explants and the BeWo cell-line. cDNA arrays were used to screen for downstream targets of IGF2R, specifically homeobox gene transcription factors and apoptosis-related genes. Functional effects of silencing IGF2R were then verified by β-hCG ELISA, caspase activity assays and a real-time electrical cell-impedance assay for differentiation, apoptosis and cell growth potential, respectively. IGF2R expression was significantly decreased in placentas from pregnancies complicated by idiopathic FGR (P < 0.05 versus control). siRNA-mediated IGF2R knockdown in term placental explants and the trophoblast cell line BeWo resulted in altered expression of homeobox gene transcription factors, including increased expression of distal-less homeobox gene 5 (DLX5), and decreased expression of H2.0-Like Homeobox 1 (HLX) (P < 0.05 versus control). Knockdown of IGF2R transcription increased the expression and activity of caspase-6 and caspase-8 in placental explants, decreased BeWo proliferation and increased BeWo differentiation (all P < 0.05 compared to respective controls). This is the first study linking IGF2R placental expression with changes in the expression of homeobox genes that control cellular signalling pathways responsible for increased trophoblast cell apoptosis, which is a characteristic feature of FGR.
Collapse
Affiliation(s)
- Lynda K Harris
- Division of Pharmacy and Optometry, The University of Manchester, Stopford Building, Manchester, UK.,Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK
| | - Priyadarshini Pantham
- Department of Obstetrics & Gynaecology, The University of Auckland, Grafton, Auckland, New Zealand.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah E J Yong
- University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia.,Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Anita Pratt
- University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia.,Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Anthony J Borg
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Ian Crocker
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK
| | - Melissa Westwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK
| | - John Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, UK
| | - Bill Kalionis
- University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia.,Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Padma Murthi
- University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Victoria, Australia.,Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Victoria, Australia.,Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Targeting cancer stem cells by melatonin: Effective therapy for cancer treatment. Pathol Res Pract 2020; 216:152919. [PMID: 32171553 DOI: 10.1016/j.prp.2020.152919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/21/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Melatonin is a physiological hormone produced by the pineal gland. In recent decades, enormous investigations showed that melatonin can prompt apoptosis in cancer cells and inhibit tumor metastasis and angiogenesis in variety of malignancies such as ovarian, melanoma, colon, and breast cancer; therefore, its possible therapeutic usage in cancer treatment was confirmed. CSCs, which has received much attention from researchers in past decades, are major challenges in the treatment of cancer. Because CSCs are resistant to chemotherapeutic drugs and cause recurrence of cancer and also have the ability to be regenerated; they can cause serious problems in the treatment of various cancers. For these reasons, the researchers are trying to find a solution to destroy these cells within the tumor mass. In recent years, the effect of melatonin on CSCs has been investigated in some cancers. Given the importance of CSCs in the process of cancer treatment, this article reviewed the studies conducted on the effect of melatonin on CSCs as a solution to the problems caused by CSCs in the treatment of various cancers.
Collapse
|
28
|
Zhou N, Zhang XB, Chen C, Chen XY, Kang B, He JQ, Gong GZ, Wang YJ, Zhou YW. Cellular context- and protein level-dependent interaction of pluripotency factor OCT4A with multiple octamer motifs of the same target gene. Life Sci 2020; 248:117461. [PMID: 32097665 DOI: 10.1016/j.lfs.2020.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
AIMS To compare how OCT4A proteins interact with and regulate multiple OCT4A-octamer motifs (OMs) in different regions of the FOS gene expressed in somatic cancer cells versus pluripotent stem cells. MATERIALS AND METHODS Two FOS reporter gene systems harboring predicted OMs or their mutational counterparts were introduced into HeLa and NCCIT cells with varying OCT4A protein levels. The transcription of dsGFP reflecting FOS expression was quantitated by RT-qPCR, the OCT4A-OMs binding and the correlation between OCT4A and FOS transcription was determined by ChIP-PCR and RNA-Seq, respectively. KEY FINDINGS In NCCIT cells, abundant OCT4A proteins bound to and inhibited OM1 and OM2 at the promoter of the FOS gene. RA-induced OCT4A down-regulation transiently increased FOS transcription. In contrast, in HeLa cells that contain much lower levels of endogenous OCT4A proteins, OCT4A primarily bound to and activate OM1 thereby promoting FOS transcription. OCT4A KO significantly reduced FOS expression. Ectopically introduced OCT4A, at its leaked or induced expression level, promoted FOS transcription by binding to OM2/OM3 or OM1/OM3, respectively. Thus, the interaction of OCT4A proteins with different OMs is cellular context- and protein level-dependent, and such complicated OCT4A binding mode can only be reflected by a dsGFP-based reporter harboring the full-length FOS gene but not by that merely having the FOS promoter. SIGNIFICANCE Our findings unravel an additional layer of regulatory mechanisms that account for the cellular context- and dose-related versatile functions of OCT4A protein, and further underscore the importance of precise modulation of OCT4A in the regenerative medicine and anticancer therapies.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Infectious Diseases, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Cheng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xin-Yu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jian-Qin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Guo-Zhong Gong
- Department of Infectious Diseases, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yan-Wen Zhou
- Department of Infectious Diseases, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
29
|
de Dieuleveult M, Miotto B. Ubiquitin Dynamics in Stem Cell Biology: Current Challenges and Perspectives. Bioessays 2020; 42:e1900129. [PMID: 31967345 DOI: 10.1002/bies.201900129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/18/2019] [Indexed: 11/09/2022]
Abstract
Ubiquitination plays a central role in the regulation of stem cell self-renewal, propagation, and differentiation. In this review, the functions of ubiquitin dynamics in a myriad of cellular processes, acting along side the pluripotency network, to regulate embryonic stem cell identity are highlighted. The implication of deubiquitinases (DUBs) and E3 Ubiquitin (Ub) ligases in cellular functions beyond protein degradation is reported, including key functions in the regulation of mRNA stability, protein translation, and intra-cellular trafficking; and how it affects cell metabolism, the micro-environment, and chromatin organization is discussed. Finally, unsolved issues in the field are emphasized and will need to be tackled in order to fully understand the contribution of ubiquitin dynamics to stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Maud de Dieuleveult
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, Paris, France
| | - Benoit Miotto
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, Paris, France
| |
Collapse
|
30
|
The FGF, TGFβ and WNT axis Modulate Self-renewal of Human SIX2 + Urine Derived Renal Progenitor Cells. Sci Rep 2020; 10:739. [PMID: 31959818 PMCID: PMC6970988 DOI: 10.1038/s41598-020-57723-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human urine is a non-invasive source of renal stem cells with regeneration potential. Urine-derived renal progenitor cells were isolated from 10 individuals of both genders and distinct ages. These renal progenitors express pluripotency-associated proteins- TRA-1-60, TRA-1-81, SSEA4, C-KIT and CD133, as well as the renal stem cell markers -SIX2, CITED1, WT1, CD24 and CD106. The transcriptomes of all SIX2+ renal progenitors clustered together, and distinct from the human kidney biopsy-derived epithelial proximal cells (hREPCs). Stimulation of the urine-derived renal progenitor cells (UdRPCs) with the GSK3β-inhibitor (CHIR99021) induced differentiation. Transcriptome and KEGG pathway analysis revealed upregulation of WNT-associated genes- AXIN2, JUN and NKD1. Protein interaction network identified JUN- a downstream target of the WNT pathway in association with STAT3, ATF2 and MAPK1 as a putative negative regulator of self-renewal. Furthermore, like pluripotent stem cells, self-renewal is maintained by FGF2-driven TGFβ-SMAD2/3 pathway. The urine-derived renal progenitor cells and the data presented should lay the foundation for studying nephrogenesis in human.
Collapse
|
31
|
Basaran R, Gundogan D, Senol M, Bozdogan C, Gezen F, Sav A. THE EXPRESSION OF STEM CELL MARKERS (CD133, NESTIN, OCT4, SOX2) IN INVASIVE PITUITARY ADENOMAS. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 16:303-310. [PMID: 33363651 DOI: 10.4183/aeb.2020.303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction The pituitary gland serves as the center of the endocrine system. Stem cells are typically found in a specialized microenvironment of the tissue, called the niche, which regulates their maintenance, self-renewal, fate determination, and reaction to external influences. The aim of this study is to elucidate the role of stem cells in the initiation, invasion, and progression of pituitary adenomas. Materials and methods All specimens were collected between January 2007 and April 2015. Radiological classification (invasiveness) for all cases was performed according to the Wilson-Hardy classification system. Immunohistochemical staining was performed to all specimens for CD133, Oct4, Sox2 and nestin. Results The study included 48 patients. Of 48 patients, 17 (35.4%) were male and 31 (64.6%) were female. Mean age is 47.10±14.14 (17-86 yrs.). According to the Wilson-Hardy classification system, 27 (56.3%) were non-invasive adenomas. There was no statistical significance between the expression of pituitary stem cell markers (CD133, OCT4, SOX2, nestin) and invasiveness. Conclusion All stem cell markers are stained extensively in pituitary adenomas, except for SOX2 which was stained weakly. However, there is no effect of stem cells on invasiveness of pituitary adenomas because we cannot find a difference of the staining level between invasive and non-invasive adenomas. Nestin was stained extensively in functional adenomas, especially for GH, PRL, and gonadotropin secreting adenomas. SOX2 was stained extensively for ACTH-secreting adenomas.
Collapse
Affiliation(s)
- R Basaran
- University of Medical Sciences, Sancaktepe Education and Research Hospital - Dept. of Neurosurgery, Istanbul, Turkey
| | - D Gundogan
- Istanbul Surgery Hospital - Dept. of Neurosurgery, Istanbul, Turkey
| | - M Senol
- Erzurum Bolge Education and Research Hospital - Dept. of Neurosurgery, Istanbul, Turkey
| | - C Bozdogan
- Aydin State Hospital - Neurosurgery, Aydin, Turkey
| | - F Gezen
- Medeniyet University Faculty of Medicine - Dept. of Neurosurgery, Istanbul, Turkey
| | - A Sav
- Yeditepe University - Pathology, Istanbul, Turkey
| |
Collapse
|
32
|
Lai SC, Su YT, Chi CC, Kuo YC, Lee KF, Wu YC, Lan PC, Yang MH, Chang TS, Huang YH. DNMT3b/OCT4 expression confers sorafenib resistance and poor prognosis of hepatocellular carcinoma through IL-6/STAT3 regulation. J Exp Clin Cancer Res 2019; 38:474. [PMID: 31771617 PMCID: PMC6878666 DOI: 10.1186/s13046-019-1442-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The inflammatory cytokine interleukin-6 (IL-6) is critical for the expression of octamer-binding transcription factor 4 (OCT4), which is highly associated with early tumor recurrence and poor prognosis of hepatocellular carcinomas (HCC). DNA methyltransferase (DNMT) family is closely linked with OCT4 expression and drug resistance. However, the underlying mechanism regarding the interplay between DNMTs and IL-6-induced OCT4 expression and the sorafenib resistance of HCC remains largely unclear. METHODS HCC tissue samples were used to examine the association between DNMTs/OCT4 expression levels and clinical prognosis. Serum levels of IL-6 were detected using ELISA assays (n = 144). Gain- and loss-of-function experiments were performed in cell lines and mouse xenograft models to determine the underlying mechanism in vitro and in vivo. RESULTS We demonstrate that levels of DNA methyltransferase 3 beta (DNMT3b) are significantly correlated with the OCT4 levels in HCC tissues (n = 144), and the OCT4 expression levels are positively associated with the serum IL-6 levels. Higher levels of IL-6, DNMT3b, or OCT4 predicted early HCC recurrence and poor prognosis. We show that IL-6/STAT3 activation increases DNMT3b/1 and OCT4 in HCC. Activated phospho-STAT3 (STAT-Y640F) significantly increased DNMT3b/OCT4, while dominant negative phospho-STAT3 (STAT-Y705F) was suppressive. Inhibiting DNMT3b with RNA interference or nanaomycin A (a selective DNMT3b inhibitor) effectively suppressed the IL-6 or STAT-Y640F-induced increase of DNMT3b-OCT4 and ALDH activity in vitro and in vivo. The fact that OCT4 regulates the DNMT1 expressions were further demonstrated either by OCT4 forced expression or DNMT1 silence. Additionally, the DNMT3b silencing reduced the OCT4 expression in sorafenib-resistant Hep3B cells with or without IL-6 treatment. Notably, targeting DNMT3b with nanaomycin A significantly increased the cell sensitivity to sorafenib, with a synergistic combination index (CI) in sorafenib-resistant Hep3B cells. CONCLUSIONS The DNMT3b plays a critical role in the IL-6-mediated OCT4 expression and the drug sensitivity of sorafenib-resistant HCC. The p-STAT3 activation increases the DNMT3b/OCT4 which confers the tumor early recurrence and poor prognosis of HCC patients. Findings from this study highlight the significance of IL-6-DNMT3b-mediated OCT4 expressions in future therapeutic target for patients expressing cancer stemness-related properties or sorafenib resistance in HCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/biosynthesis
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Female
- Hep G2 Cells
- Heterografts
- Humans
- Interleukin-6/blood
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Mice, SCID
- Middle Aged
- Octamer Transcription Factor-3/biosynthesis
- Octamer Transcription Factor-3/genetics
- Prognosis
- STAT3 Transcription Factor/metabolism
- Sorafenib/pharmacology
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Ssu-Chuan Lai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Yu-Ting Su
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Ching-Chi Chi
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Taoyuan, 33305 Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33302 Taiwan
| | - Yung-Che Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Yu-Chih Wu
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Pei-Chi Lan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031 Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, College of Medicine, National Yang Ming University, Taipei, 11221 Taiwan
- Division of Medical Oncology, Taipei Veterans General Hospital, Taipei, 11217 Taiwan
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, 33382 Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi, 61363 Taiwan
| | - Yen-Hua Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031 Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031 Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031 Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, 11031 Taiwan
| |
Collapse
|
33
|
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 2019; 76:3479-3496. [PMID: 31049600 PMCID: PMC6697717 DOI: 10.1007/s00018-019-03104-6] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, preeclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing self-renewing human trophoblast stem cells and 3-dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.
Collapse
Affiliation(s)
- Martin Knöfler
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria.
| | - Sandra Haider
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Leila Saleh
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Jürgen Pollheimer
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Teena K J B Gamage
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
34
|
Kang JG, Park JS, Ko JH, Kim YS. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep 2019; 9:11960. [PMID: 31427598 PMCID: PMC6700181 DOI: 10.1038/s41598-019-48130-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Despite the increased interest in epigenetic research, its progress has been hampered by a lack of satisfactory tools to control epigenetic factors in specific genomic regions. Until now, many attempts to manipulate DNA methylation have been made using drugs but these drugs are not target-specific and have global effects on the whole genome. However, due to new genome editing technologies, potential epigenetic factors can now possibly be regulated in a site-specific manner. Here, we demonstrate the utility of CRISPR/Cas9 to modulate methylation at specific CpG sites and to elicit gene expression. We targeted the murine Oct4 gene which is transcriptionally locked due to hypermethylation at the promoter region in NIH3T3 cells. To induce site-specific demethylation at the Oct4 promoter region and its gene expression, we used the CRISPR/Cas9 knock-in and CRISPR/dCas9-Tet1 systems. Using these two approaches, we induced site-specific demethylation at the Oct4 promoter and confirmed the up-regulation of Oct4 expression. Furthermore, we confirmed that the synergistic effect of DNA demethylation and other epigenetic regulations increased the expression of Oct4 significantly. Based on our research, we suggest that our proven epigenetic editing methods can selectively modulate epigenetic factors such as DNA methylation and have promise for various applications in epigenetics.
Collapse
Affiliation(s)
- Jeong Gu Kang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jin Suk Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
| | - Jeong-Heosn Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea.
| | - Yong-Sam Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea.
| |
Collapse
|
35
|
Teshigawara R, Hirano K, Nagata S, Huang D, Tada T. Visualization of sequential conversion of human intermediately reprogrammed stem cells into iPS cells. Genes Cells 2019; 24:667-673. [PMID: 31386786 DOI: 10.1111/gtc.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022]
Abstract
Analysis of gene expression in single cells is required to understand somatic cell reprogramming into human induced pluripotent stem cells (iPSCs). To facilitate this, we established intermediately reprogrammed stem cells (iRSCs), pre-iPSC lines. The iRSC-iPSC conversion system enables the reproducible monitoring of reprogramming events and the analysis of progressive gene expression profiles using single-cell microarray analysis and genome editing. Here, single-cell microarray analysis showed the stage-specific sequential gene activation during the conversion of iRSCs into iPSCs, using OCT4, TDGF1 and E-CADHERIN as marker genes. Out of 75 OCT4-related genes, which were significantly up-regulated after the activation of OCT4, and entry into the mesenchymal-to-epithelial transition (MET), LIN28 (LIN28A) and FOXO1 were selected for applying to gene expression visualization. Multicolored visualization was achieved by the genome editing of LIN28 or FOXO1 with mCherry into OCT4-GFP iRSCs. Fluorescent analysis of gene activity in individual cells showed that OCT4 was dispensable for maintenance, but required for activation, of the LIN28 and FOXO1 expression in reprogramming.
Collapse
Affiliation(s)
- Rika Teshigawara
- Laboratory of Developmental Epigenome, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kunio Hirano
- Laboratory of Developmental Epigenome, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shogo Nagata
- Laboratory of Developmental Epigenome, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Denggao Huang
- Laboratory of Developmental Epigenome, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Tada
- Laboratory of Developmental Epigenome, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Hamaneh MB, Yu YK. Exploring induced pluripotency in human fibroblasts via construction, validation, and application of a gene regulatory network. PLoS One 2019; 14:e0220742. [PMID: 31374103 PMCID: PMC6677386 DOI: 10.1371/journal.pone.0220742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/21/2019] [Indexed: 12/31/2022] Open
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells, by overexpressing certain factors referred to as the reprogramming factors, can revolutionize regenerative medicine. To provide a coherent description of induced pluripotency from the gene regulation perspective, we use 35 microarray datasets to construct a reprogramming gene regulatory network. Comprising 276 nodes and 4471 links, the resulting network is, to the best of our knowledge, the largest gene regulatory network constructed for human fibroblast reprogramming and it is the only one built using a large number of experimental datasets. To build the network, a model that relates the expression profiles of the initial (fibroblast) and final (induced pluripotent stem cell) states is proposed and the model parameters (link strengths) are fitted using the experimental data. Twenty nine additional experimental datasets are collectively used to test the model/network, and good agreement between experimental and predicted gene expression profiles is found. We show that the model in conjunction with the constructed network can make useful predictions. For example, we demonstrate that our approach can incorporate the effect of reprogramming factor stoichiometry and that its predictions are consistent with the experimentally observed trends in reprogramming efficiency when the stoichiometric ratios vary. Using our model/network, we also suggest new (not used in training of the model) candidate sets of reprogramming factors, many of which have already been experimentally verified. These results suggest our model/network can potentially be used in devising new recipes for induced pluripotency with higher efficiencies. Additionally, we classify the links of the network into three classes of different importance, prioritizing them for experimental verification. We show that many of the links in the top ranked class are experimentally known to be important in reprogramming. Finally, comparing with other methods, we show that using our model is advantageous.
Collapse
Affiliation(s)
- Mehdi B. Hamaneh
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yi-Kuo Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
de Souza Lima IM, Schiavinato JLDS, Paulino Leite SB, Sastre D, Bezerra HLDO, Sangiorgi B, Corveloni AC, Thomé CH, Faça VM, Covas DT, Zago MA, Giacca M, Mano M, Panepucci RA. High-content screen in human pluripotent cells identifies miRNA-regulated pathways controlling pluripotency and differentiation. Stem Cell Res Ther 2019; 10:202. [PMID: 31287022 PMCID: PMC6615276 DOI: 10.1186/s13287-019-1318-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 01/13/2023] Open
Abstract
Background By post-transcriptionally regulating multiple target transcripts, microRNAs (miRNAs or miR) play important biological functions. H1 embryonic stem cells (hESCs) and NTera-2 embryonal carcinoma cells (ECCs) are two of the most widely used human pluripotent model cell lines, sharing several characteristics, including the expression of miRNAs associated to the pluripotent state or with differentiation. However, how each of these miRNAs functionally impacts the biological properties of these cells has not been systematically evaluated. Methods We investigated the effects of 31 miRNAs on NTera-2 and H1 hESCs, by transfecting miRNA mimics. Following 3–4 days of culture, cells were stained for the pluripotency marker OCT4 and the G2 cell-cycle marker Cyclin B1, and nuclei and cytoplasm were co-stained with Hoechst and Cell Mask Blue, respectively. By using automated quantitative fluorescence microscopy (i.e., high-content screening (HCS)), we obtained several morphological and marker intensity measurements, in both cell compartments, allowing the generation of a multiparametric miR-induced phenotypic profile describing changes related to proliferation, cell cycle, pluripotency, and differentiation. Results Despite the overall similarities between both cell types, some miRNAs elicited cell-specific effects, while some related miRNAs induced contrasting effects in the same cell. By identifying transcripts predicted to be commonly targeted by miRNAs inducing similar effects (profiles grouped by hierarchical clustering), we were able to uncover potentially modulated signaling pathways and biological processes, likely mediating the effects of the microRNAs on the distinct groups identified. Specifically, we show that miR-363 contributes to pluripotency maintenance, at least in part, by targeting NOTCH1 and PSEN1 and inhibiting Notch-induced differentiation, a mechanism that could be implicated in naïve and primed pluripotent states. Conclusions We present the first multiparametric high-content microRNA functional screening in human pluripotent cells. Integration of this type of data with similar data obtained from siRNA screenings (using the same HCS assay) could provide a large-scale functional approach to identify and validate microRNA-mediated regulatory mechanisms controlling pluripotency and differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1318-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ildercílio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Josiane Lilian Dos Santos Schiavinato
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Sarah Blima Paulino Leite
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Danuta Sastre
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil
| | - Hudson Lenormando de Oliveira Bezerra
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Bruno Sangiorgi
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Carolina Hassibe Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Marco Antônio Zago
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil.,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic and Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Miguel Mano
- Molecular Medicine Laboratory, International Centre for Genetic and Engineering and Biotechnology (ICGEB), Trieste, Italy.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, CEP: 14051-140, Brazil. .,Department of Genetics and Internal Medicine, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
38
|
Dai H, Li L, Zeng T, Chen L. Cell-specific network constructed by single-cell RNA sequencing data. Nucleic Acids Res 2019; 47:e62. [PMID: 30864667 PMCID: PMC6582408 DOI: 10.1093/nar/gkz172] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/14/2019] [Accepted: 03/07/2019] [Indexed: 01/08/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is able to give an insight into the gene-gene associations or transcriptional networks among cell populations based on the sequencing of a large number of cells. However, traditional network methods are limited to the grouped cells instead of each single cell, and thus the heterogeneity of single cells will be erased. We present a new method to construct a cell-specific network (CSN) for each single cell from scRNA-seq data (i.e. one network for one cell), which transforms the data from 'unstable' gene expression form to 'stable' gene association form on a single-cell basis. In particular, it is for the first time that we can identify the gene associations/network at a single-cell resolution level. By CSN method, scRNA-seq data can be analyzed for clustering and pseudo-trajectory from network perspective by any existing method, which opens a new way to scRNA-seq data analyses. In addition, CSN is able to find differential gene associations for each single cell, and even 'dark' genes that play important roles at the network level but are generally ignored by traditional differential gene expression analyses. In addition, CSN can be applied to construct individual network of each sample bulk RNA-seq data. Experiments on various scRNA-seq datasets validated the effectiveness of CSN in terms of accuracy and robustness.
Collapse
Affiliation(s)
- Hao Dai
- Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Li
- Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Zeng
- Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luonan Chen
- Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
39
|
Vlahova F, Hawkins KE, Ranzoni AM, Hau KL, Sagar R, De Coppi P, David AL, Adjaye J, Guillot PV. Human mid-trimester amniotic fluid (stem) cells lack expression of the pluripotency marker OCT4A. Sci Rep 2019; 9:8126. [PMID: 31148575 PMCID: PMC6544653 DOI: 10.1038/s41598-019-44572-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
Expression of OCT4A is one of the hallmarks of pluripotency, defined as a stem cell's ability to differentiate into all the lineages of the three germ layers. Despite being defined as non-tumorigenic cells with high translational potential, human mid-trimester amniotic fluid stem cells (hAFSCs) are often described as sharing features with embryonic stem cells, including the expression of OCT4A, which could hinder their clinical potential. To clarify the OCT4A status of hAFSCs, we first undertook a systematic review of the literature. We then performed extensive gene and protein expression analyses to discover that neither frozen, nor fresh hAFSCs cultivated in multipotent stem cell culture conditions expressed OCT4A, and that the OCT4A positive results from the literature are likely to be attributed to the expression of pseudogenes or other OCT4 variants. To address this issue, we provide a robust protocol for the assessment of OCT4A in other stem cells.
Collapse
Affiliation(s)
- Filipa Vlahova
- University College London, Institute for Women's Health, Maternal and Fetal Medicine Department, London, UK
| | - Kate E Hawkins
- University College London, Institute for Women's Health, Maternal and Fetal Medicine Department, London, UK
| | - Anna Maria Ranzoni
- University College London, Institute for Women's Health, Maternal and Fetal Medicine Department, London, UK
| | - Kwan-Leong Hau
- University College London, Institute for Women's Health, Maternal and Fetal Medicine Department, London, UK
| | - Rachel Sagar
- University College London, Institute for Women's Health, Maternal and Fetal Medicine Department, London, UK
| | - Paolo De Coppi
- University College London, Great Ormond Street Institute for Child Health, London, UK.,Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium.,Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital NHS Trust, London, UK
| | - Anna L David
- University College London, Institute for Women's Health, Maternal and Fetal Medicine Department, London, UK.,Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium.,NIHR University College London Hospitals Biomedical Research Centre, Maple House, 149 Tottenham Court Road, London, W1T 7DN, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Pascale V Guillot
- University College London, Institute for Women's Health, Maternal and Fetal Medicine Department, London, UK.
| |
Collapse
|
40
|
Baek S, Choi H, Park H, Cho B, Kim S, Kim J. Effects of a hypomagnetic field on DNA methylation during the differentiation of embryonic stem cells. Sci Rep 2019; 9:1333. [PMID: 30718529 PMCID: PMC6361932 DOI: 10.1038/s41598-018-37372-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
It has been reported that hypomagnetic fields (HMFs) have a negative influence on mammalian physiological functions. We previously reported that HMFs were detrimental to cell fate changes during reprogramming into pluripotency. These studies led us to investigate whether HMFs affect cell fate determination during direct differentiation. Here, we found that an HMF environment attenuates differentiation capacity and is detrimental to cell fate changes during the in vitro differentiation of embryonic stem cells (ESCs). Moreover, HMF conditions cause abnormal DNA methylation through the dysregulation of DNA methyltransferase3b (Dnmt3b) expression, eventually resulting in incomplete DNA methylation during differentiation. Taken together, these results suggest that an appropriate electromagnetic field (EMF) environment may be essential for favorable epigenetic remodeling during cell fate determination via differentiation.
Collapse
Affiliation(s)
- Soonbong Baek
- Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, South Korea
| | - Hwan Choi
- Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, South Korea
| | - Hanseul Park
- Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, South Korea
| | - Byunguk Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, South Korea
| | - Siyoung Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, South Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, South Korea.
- Department of Chemistry, Dongguk University, Seoul, 100-715, South Korea.
| |
Collapse
|
41
|
Ervin EH, Pook M, Teino I, Kasuk V, Trei A, Pooga M, Maimets T. Targeted gene silencing in human embryonic stem cells using cell-penetrating peptide PepFect 14. Stem Cell Res Ther 2019; 10:43. [PMID: 30678718 PMCID: PMC6345057 DOI: 10.1186/s13287-019-1144-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/29/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Human embryonic stem (hES) cells serve as an invaluable tool for research and future medicine, but their transfection often leads to unwanted side effects as the method itself may induce differentiation. On the other hand, RNA interference (RNAi)-based targeted gene silencing is a quick, cost-effective, and easy-to-perform method to address questions regarding the function of genes, especially when hypomorphic knockdowns are needed. Therefore, effective transfection method with minimal side effects is essential for applying RNAi to hES cells. Here, we report a highly promising approach for targeted gene silencing in hES cells with siRNA complexed with cell-penetrating peptide PepFect 14 (PF14). This strategy provides researchers with efficient tool for unraveling the functions of genes or addressing the differentiation of pluripotent stem cells. Methods We present a method for delivery of siRNA into hES cells with cell-penetrating peptide PF14. Accordingly, hES cells were transfected in ROCK inhibitor containing medium for 24 h right after EDTA passaging as small cell clumps. Fluorescently labeled siRNA and siRNAs targeting OCT4 or beta-2-microglobulin (B2M) mRNA sequences were used to evaluate the efficiency of transfection and silencing. Analyses were performed at various time points by flow cytometry, RT-qPCR, and immunofluorescence microscopy. Results Effective downregulation of OCT4 in 70% of treated hES cells at protein level was achieved, along with 90% reduction at mRNA level in bulk population of cells. The applicability of this low-cost and easy-to-perform method was confirmed by inducing silencing of another target not associated with hES cell pluripotency (B2M). Furthermore, we discovered that downregulation of OCT4 induces neuroectodermal differentiation accompanied by reduced expression of B2M during early stage of this lineage. Conclusions The results demonstrate PF14 as a promising tool for studying gene function and regulatory networks in hES cells by using RNAi. Electronic supplementary material The online version of this article (10.1186/s13287-019-1144-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Martin Pook
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Valmar Kasuk
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Annika Trei
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Margus Pooga
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia.,Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia.
| |
Collapse
|
42
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
43
|
Li X, Wu Y, Xie F, Zhang F, Zhang S, Zhou J, Chen D, Liu A. miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5. Mol Med Rep 2018; 18:1279-1286. [PMID: 29901112 PMCID: PMC6072140 DOI: 10.3892/mmr.2018.9110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Our previous study indicated that loureirin A induces hair follicle stem cell (HFSC) differentiation through Wnt/β-catenin signaling pathway activation. However, if and how microRNAs (miRNAs/miRs) modulate loureirin A-induced differentiation remains to be elucidated. In the present study, HFSCs were separated from the vibrissae of rats and identified by CD34 and keratin, type 1 cytoskeletal (K)15 expression. Microarray-based miRNA profiling analysis revealed that miR-339-5p was downregulated in loureirin A-induced HFSC differentiation. miR-339-5p overexpression by transfection with miR-339-5p mimics markedly inhibited the expression of K10 and involucrin, which are markers of epidermal differentiation, whereas inhibition of miR-339-5p by miR-339-5p inhibitor transfection promoted the expression of K10 and involucrin. These results suggest that miR-339-5p is a negative regulator of HFSC differentiation following induction by loureirin A. These findings were confirmed by a luciferase assay. Homeobox protein DLX-5 (DLX5) was identified as a direct target of miR-339-5p. Furthermore, it was demonstrated that miR-339-5p inhibited DLX5. Overexpression of miR-339-5p by mimic transfection significantly inhibited protein Wnt-3a (Wnt3a) expression, while inhibition of miR-339-5p by inhibitor transfection significantly increased the expression of Wnt3a. Furthermore, small interfering RNA targeting DLX5 was transfected into HFSCs, and western blot analysis revealed that Wnt3a, involucrin and K10 expression was significantly downregulated. Taken together, these results suggest that miR-339-5p negatively regulated loureirin A-induced HFSC differentiation by targeting DLX5, resulting in Wnt/β-catenin signaling pathway inhibition. This may provide a possible therapeutic target for skin repair and regeneration.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yuqiong Wu
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Fangfang Xie
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Fengxue Zhang
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Saixia Zhang
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Aijun Liu
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
44
|
Bagno L, Hatzistergos KE, Balkan W, Hare JM. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol Ther 2018; 26:1610-1623. [PMID: 29807782 DOI: 10.1016/j.ymthe.2018.05.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Administration of mesenchymal stem cells (MSCs) to diseased hearts improves cardiac function and reduces scar size. These effects occur via the stimulation of endogenous repair mechanisms, including regulation of immune responses, tissue perfusion, inhibition of fibrosis, and proliferation of resident cardiac cells, although rare events of transdifferentiation into cardiomyocytes and vascular components are also described in animal models. While these improvements demonstrate the potential of stem cell therapy, the goal of full cardiac recovery has yet to be realized in either preclinical or clinical studies. To reach this goal, novel cell-based therapeutic approaches are needed. Ongoing studies include cell combinations, incorporation of MSCs into biomaterials, or pre-conditioning or genetic manipulation of MSCs to boost their release of paracrine factors, such as exosomes, growth factors, microRNAs, etc. All of these approaches can augment therapeutic efficacy. Further study of the optimal route of administration, the correct dose, the best cell population(s), and timing for treatment are parameters that still need to be addressed in order to achieve the goal of complete cardiac regeneration. Despite significant progress, many challenges remain.
Collapse
Affiliation(s)
- Luiza Bagno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Cell Biology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
45
|
Zhou Y, Chen X, Kang B, She S, Zhang X, Chen C, Li W, Chen W, Dan S, Pan X, Liu X, He J, Zhao Q, Zhu C, Peng L, Wang H, Yao H, Cao H, Li L, Herlyn M, Wang YJ. Endogenous authentic OCT4A proteins directly regulate FOS/AP-1 transcription in somatic cancer cells. Cell Death Dis 2018; 9:585. [PMID: 29789579 PMCID: PMC5964179 DOI: 10.1038/s41419-018-0606-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
OCT4A is well established as a master transcription factor for pluripotent stem cell (PSC) self-renewal and a pioneer factor for initiating somatic cell reprogramming, yet its presence and functionality in somatic cancer cells remain controversial and obscure. By combining the CRISPR-Cas9-based gene editing with highly specific PCR assays, highly sensitive immunoassays, and mass spectrometry, we provide unequivocal evidence here that full-length authentic OCT4A transcripts and proteins were both present in somatic cancer cells, and OCT4A proteins were heterogeneously expressed in the whole cell population and when expressed, they are predominantly localized in cell nucleus. Despite their extremely low abundance (approximately three orders of magnitude lower than in PSCs), OCT4A proteins bound to the promoter/enhancer regions of the AP-1 transcription factor subunit c-FOS gene and critically regulated its transcription. Knocking out OCT4A in somatic cancer cells led to dramatic reduction of the c-FOS protein level, aberrant AP-1 signaling, dampened self-renewal capacity, deficient cell migration that were associated with cell growth retardation in vitro and in vivo, and their enhanced sensitivity to anticancer drugs. Taken together, we resolve the long-standing controversy and uncertainty in the field, and reveal a fundamental role of OCT4A protein in regulating FOS/AP-1 signaling-centered genes that mediate the adhesion, migration, and propagation of somatic cancer cells.
Collapse
Affiliation(s)
- Yanwen Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Department of Infectious Diseases, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xiaobing Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Cheng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenxin Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenjie Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xiaoyun Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xiaoli Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianqin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Qingwei Zhao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Chenggang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ling Peng
- Department of Radiotherapy, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China. .,Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Papatsenko D, Waghray A, Lemischka IR. Feedback control of pluripotency in embryonic stem cells: Signaling, transcription and epigenetics. Stem Cell Res 2018; 29:180-188. [DOI: 10.1016/j.scr.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
|
47
|
Wiraja C, Yeo DC, Tham KC, Chew SWT, Lim X, Xu C. Real-Time Imaging of Dynamic Cell Reprogramming with Nanosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703440. [PMID: 29611333 DOI: 10.1002/smll.201703440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Cellular reprogramming, the process by which somatic cells regain pluripotency, is relevant in many disease modeling, therapeutic, and drug discovery applications. Molecular evaluation of reprogramming (e.g., polymerase chain reaction, immunostaining) is typically disruptive, and only provides snapshots of phenotypic traits. Gene reporter constructs facilitate live-cell evaluation but is labor intensive and may risk insertional mutagenesis during viral transfection. Herein, the utilization of a non-integrative nanosensor is demonstrated to visualize key reprogramming events in situ within live cells. Principally based on sustained intracellular release of encapsulated molecular probes, nanosensors successfully monitored mesenchymal-epithelial transition, pluripotency acquisition, and transdifferentiation events. Tracking the dynamic expression of four pivotal biomarkers (i.e., THY1, E-CADHERIN, OCT4, and GATA4 mRNA), nanosensor signal showed great agreement with polymerase chain reaction and gene reporter imaging (R2 > 0.9). Overall, such facile, versatile nanosensor enables real-time monitoring of low-frequency reprogramming events, thereby useful for high-throughput assessment, optimization, and biomarker-specific cell enrichment.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - David C Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Khek-Chian Tham
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Immunos, Singapore, 138648, Singapore
| | - Sharon W T Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xinhong Lim
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Immunos, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
48
|
POU5F1B promotes hepatocellular carcinoma proliferation by activating AKT. Biomed Pharmacother 2018; 100:374-380. [PMID: 29454285 DOI: 10.1016/j.biopha.2018.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022] Open
|
49
|
Zhao FQ, Misra Y, Li DB, Wadsworth MP, Krag D, Weaver D, Tessitore J, Li DW, Zhang G, Tian Q, Buss K. Differential expression of Oct3/4 in human breast cancer and normal tissues. Int J Oncol 2018; 52:2069-2078. [PMID: 29620155 DOI: 10.3892/ijo.2018.4341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/22/2018] [Indexed: 11/05/2022] Open
Abstract
Oct3/4, a transcription factor specifically expressed in mammalian totipotent embryonic stem and germ cells, has a critical role in the regulation and maintenance of pluripotency and self-renewal. However, reactivation of Oct3/4 expression is observed in several human breast cancer cell lines, but not in non‑malignant cells. To examine Oct3/4 expression in human primary breast carcinomas and normal breast tissues, we obtained breast tumor tissues from 28 patients and normal breast tissues from 9 women. According to quantitative polymerase chain reaction, all of the tumor tissues, irrespective of tumor type or clinicopathological status, expressed Oct3/4 mRNA at 10- to 100- fold higher levels than that in the normal breast tissues. Expression of the Oct3/4 protein in tumors was confirmed by western blot analysis and immunofluorescent staining. Additionally, rapid amplification of cDNA ends and DNA sequencing revealed expression of multiple Oct4 gene transcripts from chromosome 6 (POU5F1) in normal breast tissues and the non‑malignant breast epithelial cell line MCF‑10A; by contrast, the breast tumors and malignant breast cancer cell line MCF‑7 predominantly expressed transcripts of an Oct4-like gene (POU5F1B) from chromosome 8, which was termed Oct3 in the current study. The deduced amino acid sequences of full-length Oct3 and Oct4 are 96% identical. The findings of the current study indicated that Oct3, rather than Oct4, may serve as a novel clinical marker and a potential target for gene-specific therapy of breast cancer.
Collapse
Affiliation(s)
- Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Yogi Misra
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Da-Biao Li
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA
| | | | - David Krag
- Department of Surgery, University of Vermont, Burlington, VT 05405, USA
| | - Donald Weaver
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | - Joseph Tessitore
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | - Da-Wei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Guo Zhang
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Qing Tian
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Katie Buss
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
50
|
Zhou Y, Song N, Li X, Han Y, Ren Z, Xu JX, Han YC, Li F, Jia X. Changes in the methylation status of the Oct3/4, Nanog, and Sox2 promoters in stem cells during regeneration of rat tracheal epithelium after injury. Oncotarget 2018; 8:2984-2994. [PMID: 27935870 PMCID: PMC5356857 DOI: 10.18632/oncotarget.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022] Open
Abstract
We investigated the relationship between promoter methylation and tracheal stem cell activation. We developed a model of rat tracheal epithelium regeneration after 5-fluorouracil (5-FU)-induced injury. Using immunohistochemistry and Western blotting, the expression levels of the stem cell pluripotency regulator Oct3/4 and differentiation marker CK14 were measured after 5-FU treatment. The methylation status of the Oct3/4, Nanog, and Sox2 promoters was investigated using methylation-specific PCR. Additionally, the effects of 5-azacytidine (5-azaC), a demethylating agent, on Oct3/4, Nanog, and Sox2 mRNA and protein expression were evaluated. Finally, we measured the activity of the maintenance and de novo DNA methyltransferases DNMT1, DNMT3a, and DNMT3b. Our data indicate that Oct3/4, Sox2, and Nanog are transiently expressed in response to 5-FU-induced injury, and then they are gradually silenced as the cells differentiate. DNA methylation can result in silencing of gene expression, and it can determine whether tracheal stem cells are in an active or dormant state. Treatment with 5-FU reversed the methylation of the Oct3/4, Nanog, and Sox2 promoters, which corresponded to increases in Oct3/4, Nanog, and Sox2 mRNA and protein. Thus, both maintenance and de novo methyltransferases are involved in regulating tracheal stem cell dormancy and activation.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Emergency, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Song
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Physiology, College of Life Science and Biopharmaceutics of Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Han
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Pathology, Shenyang Medical College, Shenyang, 110001, China
| | - Zihan Ren
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jing-Xian Xu
- Department of Ophthalmology, The 4th Affiliated Hospital, Eye Institute, China Medical University, The Key Laboratory of Lens Research, Shenyang 110005, China
| | - Yu-Chen Han
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Fang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,IVF Michigan, Bloomfield Hills, MI, 48304, USA
| | - Xinshan Jia
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China.,Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|