1
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
2
|
Zhou H, Tan L, Liu B, Guan XY. Cancer stem cells: Recent insights and therapies. Biochem Pharmacol 2023; 209:115441. [PMID: 36720355 DOI: 10.1016/j.bcp.2023.115441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Tumors are intricate ecosystems containing malignant components that generate adaptive and evolutionarily driven abnormal tissues. Through self-renewal and differentiation, cancers are reconstructed by a dynamic subset of stem-like cells that enforce tumor heterogeneity and remodel the tumor microenvironment (TME). Through recent technology advances, we are now better equipped to investigate the fundamental role of cancer stem cells (CSCs) in cancer biology. In this review, we discuss the latest insights into characteristics, markers and mechanism of CSCs and describe the crosstalk between CSCs and other cells in TME. Additionally, we explore the performance of single-cell sequencing and spatial transcriptome analysis in CSCs studies and summarize the therapeutic strategies to eliminate CSCs, which could broaden the understanding of CSCs and exploit for therapeutic benefit.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Advanced Nuclear Energy and Nuclear Technology Research Center, Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China.
| |
Collapse
|
3
|
Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investig 2022; 9:4. [PMID: 36238449 PMCID: PMC9552054 DOI: 10.21037/sci-2022-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023]
Abstract
Background and Objective Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Collapse
Affiliation(s)
- Brianna
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
5
|
Prognostic significance of octamer-4 expression in primary lung adenocarcinoma. Asian J Surg 2020; 44:425-426. [PMID: 33280979 DOI: 10.1016/j.asjsur.2020.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022] Open
|
6
|
Mechanisms of cancer stem cell therapy. Clin Chim Acta 2020; 510:581-592. [PMID: 32791136 DOI: 10.1016/j.cca.2020.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are responsible for carcinogenesis and tumorigenesis and are involved in drug and radiation resistance, metastasis, tumor relapse and initiation. Remarkably, they have other abilities such as inheritance of self-renewal and de-differentiation. Hence, targeting CSCs is considered a potential anti-cancer therapeutic strategy. Recent advances in the identification of biomarkers to recognize CSCs and the development of new techniques to evaluate tumorigenic and carcinogenic roles of CSCs are instrumental to this approach. Elucidation of signaling pathways that regulate CSCs colony progression and drug resistance are critical in establishing effective targeted therapies. CSCs play a central key role in immunomodulation, immune evasion and effector immunity, which alters immune system balancing. These include mTOR, SHH, NOTCH and Wnt/β-catering in cancer progression. In this review article, we discuss the importance of these CSCs pathways in cancer therapy.
Collapse
|
7
|
Caglar HO, Biray Avci C. Alterations of cell cycle genes in cancer: unmasking the role of cancer stem cells. Mol Biol Rep 2020; 47:3065-3076. [DOI: 10.1007/s11033-020-05341-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/22/2020] [Indexed: 02/07/2023]
|
8
|
Darázs B, Ruskó L, Végváry Z, Ferenczi L, Dobi Á, Paczona V, Varga Z, Fodor E, Hideghéty K. Subventricular zone volumetric and dosimetric changes during postoperative brain tumor irradiation and its impact on overall survival. Phys Med 2019; 68:35-40. [PMID: 31733404 DOI: 10.1016/j.ejmp.2019.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this retrospective study was to investigate the relationship between the dose to the subventricular zone (SVZ) and overall survival (OS) of 41 patients with glioblastoma multiforme (GBM), who were treated with an adaptive approach involving repeated topometric CT and replanning at two-thirds (40 Gy) of their course of postoperative radiotherapy for planning of a 20 Gy boost. METHODS We examined changes in the ipsilateral lateral ventricle (LV) and SVZ (iLV and iSVZ), as well as in the contralateral LV and SVZ (cLV and cSVZ). We evaluated the volumetric changes on both planning CT scans (primary CT1 and secondary CT2). The survival of the GBM patients was analyzed using the Kaplan-Meier method; the multivariate Cox regression was also performed. RESULTS Median follow-up and OS were 34.5 months and 17.6 months, respectively. LV and SVZ structures exhibited significant volumetric changes on CT2, resulting in an increase of dose coverage. At a cut-off point of 58 Gy, a significant correlation was detected between the iSVZ2 mean dose and OS (27.8 vs 15.6 months, p = 0.048). In a multivariate analysis, GBM patients with a shorter time to postoperative chemoradiotherapy (<3.8 weeks), with good performance status (≥70%) and higher mean dose (≥58 Gy) to the iSVZ2 had significantly better OS. CONCLUSIONS Significant anatomical and dose distribution changes to the brain structures were observed, which have a relevant impact on the dose-effect relationship for GBM; therefore, involving the iSVZ in the target volume should be considered and adapted to the changes.
Collapse
Affiliation(s)
- Barbara Darázs
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - László Ruskó
- General Electric Healthcare Company, Budapest, Bence u. 3, Zip Code: 1131, Hungary.
| | - Zoltán Végváry
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Lehel Ferenczi
- General Electric Healthcare Company, Budapest, Bence u. 3, Zip Code: 1131, Hungary.
| | - Ágnes Dobi
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Viktor Paczona
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Zoltán Varga
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Emese Fodor
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| | - Katalin Hideghéty
- Department of Oncotherapy, University of Szeged, Szeged, Korányi fasor 12, Zip Code: 6720, Hungary.
| |
Collapse
|
9
|
Stepanova OV, Voronova AD, Chadin AV, Valikhov MP, Semkina AS, Karsuntseva EK, Chekhonin IV, Shishkina VS, Reshetov IV, Chekhonin VP. Efficiency of Human Olfactory Ensheathing Cell Transplantation into Spinal Cysts to Improve Mobility of the Hind Limbs. Stem Cells Dev 2019; 28:1253-1263. [PMID: 31310179 DOI: 10.1089/scd.2019.0092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathological processes developing after spinal cord injuries often lead to formation of cysts. Existing surgical and medical methods are insufficient for treatment of post-traumatic spinal cord cysts. One of the emerging tools is cell therapy. Olfactory ensheathing cells (OECs) are perspective cells for cell therapy. In this study, we demonstrated that human OEC transplantation is effective in experimental spinal cysts. For our experiments, we selected animals only at the intermediate stage of recovery with scores from 8 to 13 according to the Basso, Beattie, and Bresnahan (BBB) scale. Cells were transplanted in different quantities (0.75 and 1.5 million) into the fully formed cysts and in the areas of injury without cysts. Improvement of limb mobility after human OEC transplantation into post-traumatic cysts was shown. In the group of rats with cysts, time-dependent increase in the BBB score was observed in subgroups treated with 0.75 and 1.5 million OECs with no statistically significant time-dependent dynamics of BBB values in the control group. When all three subgroups (control and two OEC doses) were compared, the Kruskal-Wallis test showed the presence of differences between subgroups after 1, 3, and 4 weeks of treatment with evidence of divergence increase. There was no statistically significant difference between the two doses of OEC treatment. The human OECs in the experiments without cysts were not effective. It was also shown that PKH26-labeled human OECs survive throughout the experiment and migrate to nearby areas of the cyst. Therefore, it was found that it is effective to transplant human OECs into fully formed cysts. In the future, autologous OECs can be used to personalize the treatment of patients with spinal cysts.
Collapse
Affiliation(s)
- Olga V Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Anastasia D Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey V Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Marat P Valikhov
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow, Russia
| | - Alevtina S Semkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Ivan V Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Igor V Reshetov
- Department of Plastic Surgery, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnologies, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
10
|
Dobersch S, Rubio K, Barreto G. Pioneer Factors and Architectural Proteins Mediating Embryonic Expression Signatures in Cancer. Trends Mol Med 2019; 25:287-302. [PMID: 30795971 DOI: 10.1016/j.molmed.2019.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of mutations causing aberrant changes in the genome promotes cancer. However, mutations do not occur in every cancer subtype, suggesting additional events that trigger cancer. Chromatin rearrangements initiated by pioneer factors and architectural proteins are key events occurring before cancer-related genes are expressed. Both protein groups are also master regulators of important processes during embryogenesis. Several publications demonstrated that embryonic gene expression signatures are reactivated during cancer. This review article highlights current knowledge on pioneer factors and architectural proteins mediating chromatin rearrangements, which are the backbone of embryonic expression signatures promoting malignant transformation. Understanding chromatin rearrangements inducing embryonic expression signatures in adult cells might be the key to novel therapeutic approaches against cancers subtypes that arise without genomic mutations.
Collapse
Affiliation(s)
- Stephanie Dobersch
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Karla Rubio
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; Laboratoire Croissance, Réparation et Régénération Tissulaires (CRRET), CNRS ERL 9215, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian Federation; Member of the Excellence Cluster Cardio Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), 35932 Giessen, Germany; Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL).
| |
Collapse
|
11
|
Afenya EK, Ouifki R, Mundle SD. Mathematical modeling of bone marrow - peripheral blood dynamics in the disease state based on current emerging paradigms, part II. J Theor Biol 2019; 460:37-55. [PMID: 30296448 DOI: 10.1016/j.jtbi.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
The cancer stem cell hypothesis has gained currency in recent times but concerns remain about its scientific foundations because of significant gaps that exist between research findings and comprehensive knowledge about cancer stem cells (CSCs). In this light, a mathematical model that considers hematopoietic dynamics in the diseased state of the bone marrow and peripheral blood is proposed and used to address findings about CSCs. The ensuing model, resulting from a modification and refinement of a recent model, develops out of the position that mathematical models of CSC development, that are few at this time, are needed to provide insightful underpinnings for biomedical findings about CSCs as the CSC idea gains traction. Accordingly, the mathematical challenges brought on by the model that mirror general challenges in dealing with nonlinear phenomena are discussed and placed in context. The proposed model describes the logical occurrence of discrete time delays, that by themselves present mathematical challenges, in the evolving cell populations under consideration. Under the challenging circumstances, the steady state properties of the model system of delay differential equations are obtained, analyzed, and the resulting mathematical predictions arising therefrom are interpreted and placed within the framework of findings regarding CSCs. Simulations of the model are carried out by considering various parameter scenarios that reflect different experimental situations involving disease evolution in human hosts. Model analyses and simulations suggest that the emergence of the cancer stem cell population alongside other malignant cells engenders higher dimensions of complexity in the evolution of malignancy in the bone marrow and peripheral blood at the expense of healthy hematopoietic development. The model predicts the evolution of an aberrant environment in which the malignant population particularly in the bone marrow shows tendencies of reaching an uncontrollable equilibrium state. Essentially, the model shows that a structural relationship exists between CSCs and non-stem malignant cells that confers on CSCs the role of temporally enhancing and stimulating the expansion of non-stem malignant cells while also benefitting from increases in their own population and these CSCs may be the main protagonists that drive the ultimate evolution of the uncontrollable equilibrium state of such malignant cells and these may have implications for treatment.
Collapse
Affiliation(s)
- Evans K Afenya
- Department of Mathematics, Elmhurst College, 190 Prospect Avenue, Elmhurst, IL 60126, USA.
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, University of Pretoria, South Africa.
| | - Suneel D Mundle
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Khan M, Muzumdar D, Shiras A. Attenuation of Tumor Suppressive Function of FBXO16 Ubiquitin Ligase Activates Wnt Signaling In Glioblastoma. Neoplasia 2018; 21:106-116. [PMID: 30530053 PMCID: PMC6288984 DOI: 10.1016/j.neo.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal types of brain tumor. Despite the advancements in conventional or targeted therapies, median survival of GBM patients is less than 12 months. Amongst various signaling pathways aberrantly activated in glioma, active Wnt/β-catenin signaling pathway is one of the crucial oncogenic players. β-catenin, an important mediator of Wnt signaling pathway, gets phosphorylated by GSK3β complex. Phosphorylated β-catenin is specifically recognized by β-Trcp1, a F-box/WD40-repeat protein and with the help of Skp1 it plays a central role in recruiting phosphorylated β-catenin for degradation. In GBM, expression of β-TrCP1 and its affinity for β catenin is reported to be very low. Hence, we investigated whether any other members of the E3 ubiquitin ligase family could be involved in degradation of nuclear β-catenin. We here report that FBXO16, a component of SCF E3 ubiquitin ligase complex, is an interacting protein partner for β-catenin and mediates its degradation. Next, we show that FBXO16 functions as a tumor suppressor in GBM. Under normal growth conditions, FBXO16 proteasomally degrades β-catenin in a GSK-3β independent manner. Specifically, the C-terminal region of FBXO16 targets the nuclear β-catenin for degradation and inhibits TCF4/LEF1 dependent Wnt signaling pathway. The nuclear fraction of β-catenin undergoes K-48 linked poly-ubiquitination in presence of FBXO16. In summary, we show that due to low expression of FBXO16, the β-catenin is not targeted in glioma cells leading to its nuclear accumulation resulting in active Wnt signaling. Activated Wnt signaling potentiates the glioma cells toward a highly proliferative and malignant state.
Collapse
Affiliation(s)
- Mohsina Khan
- National Centre for Cell Science (NCCS), SP Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Dattatraya Muzumdar
- Department of Neurosurgery, King Edward Memorial Hospital, Parel, Mumbai 400 012. India
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), SP Pune University Campus, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
13
|
Forouzesh F, Agharezaee N. Review on the molecular signaling pathways involved in controlling cancer stem cells and treatment. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Haase S, Garcia-Fabiani MB, Carney S, Altshuler D, Núñez FJ, Méndez FM, Núñez F, Lowenstein PR, Castro MG. Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 2018; 22:599-613. [PMID: 29889582 PMCID: PMC6044414 DOI: 10.1080/14728222.2018.1487953] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION ATRX is a chromatin remodeling protein whose main function is the deposition of the histone variant H3.3. ATRX mutations are widely distributed in glioma, and correlate with alternative lengthening of telomeres (ALT) development, but they also affect other cellular functions related to epigenetic regulation. Areas covered: We discuss the main molecular characteristics of ATRX, from its various functions in normal development to the effects of its loss in ATRX syndrome patients and animal models. We focus on the salient consequences of ATRX mutations in cancer, from a clinical to a molecular point of view, focusing on both adult and pediatric glioma. Finally, we will discuss the therapeutic opportunities future research perspectives. Expert opinion: ATRX is a major component of various essential cellular pathways, exceeding its functions as a histone chaperone (e.g. DNA replication and repair, chromatin higher-order structure regulation, gene transcriptional regulation, etc.). However, it is unclear how the loss of these functions in ATRX-null cancer cells affects cancer development and progression. We anticipate new treatments and clinical approaches will emerge for glioma and other cancer types as mechanistic and molecular studies on ATRX are only just beginning to reveal the many critical functions of this protein in cancer.
Collapse
Affiliation(s)
- Santiago Haase
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - María Belén Garcia-Fabiani
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Stephen Carney
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - David Altshuler
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Felipe J Núñez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Flor M Méndez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Fernando Núñez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
15
|
Rajan TS, Scionti D, Diomede F, Piattelli A, Bramanti P, Mazzon E, Trubiani O. Prolonged Expansion Induces Spontaneous Neural Progenitor Differentiation from Human Gingiva-Derived Mesenchymal Stem Cells. Cell Reprogram 2017; 19:389-401. [PMID: 29058474 DOI: 10.1089/cell.2017.0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neural crest-derived mesenchymal stem cells (MSCs) obtained from dental tissues received considerable interest in regenerative medicine, particularly in nerve regeneration owing to their embryonic origin and ease of harvest. Proliferation efficacy and differentiation capacity into diverse cell lineages propose dental MSCs as an in vitro tool for disease modeling. In this study, we investigated the spontaneous differentiation efficiency of dental MSCs obtained from human gingiva tissue (hGMSCs) into neural progenitor cells after extended passaging. At passage 41, the morphology of hGMSCs changed from typical fibroblast-like shape into sphere-shaped cells with extending processes. Next-generation transcriptomics sequencing showed increased expression of neural progenitor markers such as NES, MEIS2, and MEST. In addition, de novo expression of neural precursor genes, such as NRN1, PHOX2B, VANGL2, and NTRK3, was noticed in passage 41. Immunocytochemistry results showed suppression of neurogenesis repressors TP53 and p21, whereas Western blot results revealed the expression of neurotrophic factors BDNF and NT3 at passage 41. Our results showed the spontaneous efficacy of hGMSCs to differentiate into neural precursor cells over prolonged passages and that these cells may assist in producing novel in vitro disease models that are associated with neural development.
Collapse
Affiliation(s)
| | - Domenico Scionti
- 1 Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo," Messina , Italy
| | - Francesca Diomede
- 2 Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Chieti, Italy
| | - Adriano Piattelli
- 2 Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Chieti, Italy
| | - Placido Bramanti
- 1 Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo," Messina , Italy
| | - Emanuela Mazzon
- 1 Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo," Messina , Italy
| | - Oriana Trubiani
- 2 Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Sharma A, Bendre A, Mondal A, Muzumdar D, Goel N, Shiras A. Angiogenic Gene Signature Derived from Subtype Specific Cell Models Segregate Proneural and Mesenchymal Glioblastoma. Front Oncol 2017; 7:146. [PMID: 28744448 PMCID: PMC5504164 DOI: 10.3389/fonc.2017.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022] Open
Abstract
Intertumoral molecular heterogeneity in glioblastoma identifies four major subtypes based on expression of molecular markers. Among them, the two clinically interrelated subtypes, proneural and mesenchymal, are the most aggressive with proneural liable for conversion to mesenchymal upon therapy. Using two patient-derived novel primary cell culture models (MTA10 and KW10), we developed a minimal but unique four-gene signature comprising genes vascular endothelial growth factor A (VEGF-A), vascular endothelial growth factor B (VEGF-B) and angiopoietin 1 (ANG1), angiopoietin 2 (ANG2) that effectively segregated the proneural (MTA10) and mesenchymal (KW10) glioblastoma subtypes. The cell culture preclassified as mesenchymal showed elevated expression of genes VEGF-A, VEGF-B and ANG1, ANG2 as compared to the other cell culture model that mimicked the proneural subtype. The differentially expressed genes in these two cell culture models were confirmed by us using TCGA and Verhaak databases and we refer to it as a minimal multigene signature (MMS). We validated this MMS on human glioblastoma tissue sections with the use of immunohistochemistry on preclassified (YKL-40 high or mesenchymal glioblastoma and OLIG2 high or proneural glioblastoma) tumor samples (n = 30). MMS segregated mesenchymal and proneural subtypes with 83% efficiency using a simple histopathology scoring approach (p = 0.008 for ANG2 and p = 0.01 for ANG1). Furthermore, MMS expression negatively correlated with patient survival. Importantly, MMS staining demonstrated spatiotemporal heterogeneity within each subclass, adding further complexity to subtype identification in glioblastoma. In conclusion, we report a novel and simple sequencing-independent histopathology-based biomarker signature comprising genes VEGF-A, VEGF-B and ANG1, ANG2 for subtyping of proneural and mesenchymal glioblastoma.
Collapse
Affiliation(s)
- Aman Sharma
- National Centre for Cell Science (NCCS), SP Pune University Campus, Pune, India.,ExoCan Healthcare Technologies Pvt Ltd, Venture Centre, NCL Innovation Park, Pune, India
| | - Ajinkya Bendre
- National Centre for Cell Science (NCCS), SP Pune University Campus, Pune, India
| | - Abir Mondal
- National Centre for Cell Science (NCCS), SP Pune University Campus, Pune, India
| | | | - Naina Goel
- Seth G.S. Medical College, KEM Hospital, Mumbai, India
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), SP Pune University Campus, Pune, India
| |
Collapse
|
17
|
Mondal A, Kumari Singh D, Panda S, Shiras A. Extracellular Vesicles As Modulators of Tumor Microenvironment and Disease Progression in Glioma. Front Oncol 2017; 7:144. [PMID: 28730141 PMCID: PMC5498789 DOI: 10.3389/fonc.2017.00144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 12/21/2022] Open
Abstract
Diffuse gliomas are lethal tumors of the central nervous system (CNS) characterized by infiltrative growth, aggressive nature, and therapeutic resistance. The recent 2016 WHO classification for CNS tumors categorizes diffuse glioma into two major types that include IDH wild-type glioblastoma, which is the predominant type and IDH-mutant glioblastoma, which is less common and displays better prognosis. Recent studies suggest presence of a distinct cell population with stem cell features termed as glioma stem cells (GSCs) to be causal in driving tumor growth in glioblastoma. The presence of a stem and progenitor population possibly makes glioblastoma highly heterogeneous. Significantly, tumor growth is driven by interaction of cells residing within the tumor with the surrounding milieu termed as the tumor microenvironment. It comprises of various cell types such as endothelial cells, secreted factors, and the surrounding extracellular matrix, which altogether help perpetuate the proliferation of GSCs. One of the important mediators critical to the cross talk is extracellular vesicles (EVs). These nano-sized vesicles play important roles in intercellular communication by transporting bioactive molecules into the surrounding milieu, thereby altering cellular functions and/or reprogramming recipient cells. With the growing information on the contribution of EVs in modulation of the tumor microenvironment, it is important to determine their role in both supporting as well as promoting tumor growth in glioma. In this review, we provide a comprehensive overview of the role of EVs in tumor progression and glioma pathogenesis.
Collapse
Affiliation(s)
- Abir Mondal
- Lab-3, RNA Biology and Cancer Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Divya Kumari Singh
- Lab-3, RNA Biology and Cancer Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Suchismita Panda
- Lab-3, RNA Biology and Cancer Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Anjali Shiras
- Lab-3, RNA Biology and Cancer Laboratory, National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| |
Collapse
|
18
|
Irradiating the Subventricular Zone in Glioblastoma Patients: Is there a Case for a Clinical Trial? Clin Oncol (R Coll Radiol) 2016; 29:26-33. [PMID: 27729188 DOI: 10.1016/j.clon.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
Abstract
Glioblastoma is the most common and aggressive adult brain tumour. Over the last 10 years it has emerged that the subventricular zone (SVZ), the largest adult neural stem cell niche, has an important role in the disease. Converging evidence has implicated transformation of adult neural stems in gliomagenesis and the permissive stem cell niche in disease recurrence. Concurrently, clinical studies have suggested that SVZ involvement is a negative prognostic marker. It would follow that irradiating the SVZ may improve outcomes in glioblastoma by directly targeting this putative sanctuary site. To investigate this potential strategy, 11 retrospective studies and 1 prospective study examined the relationship between dose to the SVZ and survival outcomes in glioblastoma patients. This review summarises the theoretical underpinning of this strategy, provides a critical evaluation of the existing evidence and discusses the rationale for a clinical trial.
Collapse
|
19
|
Abstract
The main aim of oncologists worldwide is to understand and then intervene in the primary tumor initiation and propagation mechanisms. This is essential to allow targeted elimination of cancer cells without altering normal mitotic cells. Currently, there are two main rival theories describing the process of tumorigenesis. According to the Stochastic Model, potentially any cell, once defunct, is capable of initiating carcinogenesis. Alternatively the Cancer Stem Cell (CSC) Model posits that only a small fraction of undifferentiated tumor cells are capable of triggering carcinogenesis. Like healthy stem cells, CSCs are also characterized by a capacity for self-renewal and the ability to generate differentiated progeny, possibly mediating treatment resistance, thus leading to tumor recurrence and metastasis. Moreover, molecular signaling profiles are similar between CSCs and normal stem cells, including Wnt, Notch and Hedgehog pathways. Therefore, development of novel chemotherapeutic agents and proteins (e.g., enzymes and antibodies) specifically targeting CSCs are attractive pharmaceutical candidates. This article describes small molecule inhibitors of stem cell pathways Wnt, Notch and Hedgehog, and their recent chemotherapy clinical trials.
Collapse
|
20
|
Pal D, Mukhopadhyay D, Ramaiah MJ, Sarma P, Bhadra U, Bhadra MP. Regulation of Cell Proliferation and Migration by miR-203 via GAS41/miR-10b Axis in Human Glioblastoma Cells. PLoS One 2016; 11:e0159092. [PMID: 27467502 PMCID: PMC4965126 DOI: 10.1371/journal.pone.0159092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Glioma amplified sequence 41(GAS41) is a potent transcription factor that play a crucial role in cell proliferation and survival. In glioblastoma, the expression of GAS41 at both transcriptional and post transcriptional level needs to be tightly maintained in response to cellular signals. Micro RNAs (miRNA) are small non coding RNA that act as important regulators for modulating the expression of various target genes. Studies have shown that several miRNAs play role in the post-transcriptional regulation of GAS41. Here we identified GAS41 as a novel target for endogenous miR-203 and demonstrate an inverse correlation of miR-203 expression with GAS41 in glioma cell lines (HNGC2 and U87). Over expression of miR-203 negatively regulates GAS41 expression in U87 and HNGC2 cell lines. Moreover, miR-203 restrained miR-10b action by suppressing GAS41. GAS41 is essential for repressing p53 in tumor suppressor pathway during cell proliferation. Enforced expression of GAS41 produced contradictory effect on miR-203 but was able to enhance p53 tumor suppressor pathway associated protein. It was also found that miR-203 maintains the stability of p53 as knock down of p53 expression using siRNA resulted in down regulation of pri-miR and mature miR-203 expression. Conversely reconstitution of miR-203 expression induced apoptosis and inhibited migratory property of glioma cells. Taken together, we show that miR-203 is a key negative regulator of GAS41 and acts as tumor suppressor microRNA in glioma.
Collapse
Affiliation(s)
- Dhananjaya Pal
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Arunasafali Marg, New Delhi, 110025, India
| | - Debasmita Mukhopadhyay
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
| | - M. Janaki Ramaiah
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, 613401, India
| | - Pranjal Sarma
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Functional Genomics and Gene silencing group, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Utpal Bhadra
- Functional Genomics and Gene silencing group, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Arunasafali Marg, New Delhi, 110025, India
- * E-mail: ;
| |
Collapse
|
21
|
Afenya EK, Ouifki R, Camara BI, Mundle SD. Mathematical modeling of bone marrow--peripheral blood dynamics in the disease state based on current emerging paradigms, part I. Math Biosci 2016; 274:83-93. [PMID: 26877072 DOI: 10.1016/j.mbs.2016.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/08/2023]
Abstract
Stemming from current emerging paradigms related to the cancer stem cell hypothesis, an existing mathematical model is expanded and used to study cell interaction dynamics in the bone marrow and peripheral blood. The proposed mathematical model is described by a system of nonlinear differential equations with delay, to quantify the dynamics in abnormal hematopoiesis. The steady states of the model are analytically and numerically obtained. Some conditions for the local asymptotic stability of such states are investigated. Model analyses suggest that malignancy may be irreversible once it evolves from a nonmalignant state into a malignant one and no intervention takes place. This leads to the proposition that a great deal of emphasis be placed on cancer prevention. Nevertheless, should malignancy arise, treatment programs for its containment or curtailment may have to include a maximum and extensive level of effort to protect normal cells from eventual destruction. Further model analyses and simulations predict that in the untreated disease state, there is an evolution towards a situation in which malignant cells dominate the entire bone marrow - peripheral blood system. Arguments are then advanced regarding requirements for quantitatively understanding cancer stem cell behavior. Among the suggested requirements are, mathematical frameworks for describing the dynamics of cancer initiation and progression, the response to treatment, the evolution of resistance, and malignancy prevention dynamics within the bone marrow - peripheral blood architecture.
Collapse
Affiliation(s)
- Evans K Afenya
- Department of Mathematics, Elmhurst College, 190 Prospect Avenue, Elmhurst, IL 60126, USA.
| | - Rachid Ouifki
- DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, 19 Jonkershoek Rd, Stellenbosch, 7600, South Africa.
| | - Baba I Camara
- Laboratoire Interdisciplinaire des Environnements Continentaux, Universit de Lorraine, CNRS UMR 7360, 8 rue du General Delestraint, Metz 57070, France.
| | - Suneel D Mundle
- Department of Biochemistry, Rush University Medical Center, 1735 W. Harrison St, Chicago, IL 60612, USA.
| |
Collapse
|
22
|
Colombo M, Mirandola L, Reidy A, Suvorava N, Konala V, Chiaramonte R, Grizzi F, Rahman RL, Jenkins MR, Nugyen DD, Dalhbeck S, Cobos E, Figueroa JA, Chiriva-Internati M. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis. Int Rev Immunol 2016; 34:188-99. [PMID: 25901861 DOI: 10.3109/08830185.2015.1027629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano , Milano , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abetov D, Mustapova Z, Saliev T, Bulanin D, Batyrbekov K, Gilman CP. Novel Small Molecule Inhibitors of Cancer Stem Cell Signaling Pathways. Stem Cell Rev Rep 2015; 11:909-918. [DOI: doi.org/10.1007/s12015-015-9612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Qiu H, Fang X, Luo Q, Ouyang G. Cancer stem cells: a potential target for cancer therapy. Cell Mol Life Sci 2015; 72:3411-24. [PMID: 25967289 PMCID: PMC11113644 DOI: 10.1007/s00018-015-1920-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/08/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023]
Abstract
Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.
Collapse
Affiliation(s)
- Hong Qiu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| | - Xiaoguang Fang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
25
|
Garza-Treviño EN, Said-Fernández SL, Martínez-Rodríguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int 2015; 15:2. [PMID: 25685060 PMCID: PMC4328053 DOI: 10.1186/s12935-015-0163-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 01/14/2015] [Indexed: 02/07/2023] Open
Abstract
An area of research that has been recently gaining attention is the relationship between cancer stem cell (CSC) biology and chemo-resistance in colon cancer patients. It is well recognized that tumor initiation, growth, invasion and metastasis are promoted by CSCs. An important reason for the widespread interest in the CSC model is that it can comprehensibly explain essential and poorly understood clinical events, such as therapy resistance, minimal residual disease, and tumor recurrence. This review discusses the recent advances in colon cancer stem cell research, the genes responsible for CSC chemoresistance, and new therapies against CSCs.
Collapse
Affiliation(s)
- Elsa N Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| | - Salvador L Said-Fernández
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| | - Herminia G Martínez-Rodríguez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| |
Collapse
|
26
|
Marei HES, Farag A, Althani A, Afifi N, Abd-Elmaksoud A, Lashen S, Rezk S, Pallini R, Casalbore P, Cenciarelli C. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer's disease rat model. J Cell Physiol 2015; 230:116-30. [PMID: 24911171 DOI: 10.1002/jcp.24688] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/22/2014] [Indexed: 12/14/2022]
Abstract
In this study, we aim to demonstrate the fate of allogenic adult human olfactory bulb neural stem/progenitor cells (OBNSC/NPCs) transplanted into the rat hippocampus treated with ibotenic acid (IBO), a neurotoxicant specific to hippocampal cholinergic neurons that are lost in Alzheimer's disease. We assessed their possible ability to survive, integrate, proliferate, and differentiate into different neuronal and glial elements: we also evaluate their possible therapeutic potential, and the mechanism(s) relevant to neuroprotection following their engraftment into the CNS milieu. OBNSC/NPCs were isolated from adult human olfactory bulb patients, genetically engineered to express GFP and human nerve growth factor (hNGF) by lentivirus-mediated infection, and stereotaxically transplanted into the hippocampus of IBO-treated animals and controls. Stereological analysis of engrafted OBNSCs eight weeks post transplantation revealed a 1.89 fold increase with respect to the initial cell population, indicating a marked ability for survival and proliferation. In addition, 54.71 ± 11.38%, 30.18 ± 6.00%, and 15.09 ± 5.38% of engrafted OBNSCs were identified by morphological criteria suggestive of mature neurons, oligodendrocytes and astrocytes respectively. Taken together, this work demonstrated that human OBNSCs expressing NGF ameliorate the cognitive deficiencies associated with IBO-induced lesions in AD model rats, and the improvement can probably be attributed primarily to neuronal and glial cell replacement as well as the trophic influence exerted by the secreted NGF.
Collapse
Affiliation(s)
- Hany E S Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mimeault M, Batra SK. Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Mol Aspects Med 2014; 39:3-32. [PMID: 23994756 PMCID: PMC3938987 DOI: 10.1016/j.mam.2013.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022]
Abstract
Recent studies in the field of cancer stem cells have revealed that the alterations in key gene products involved in the epithelial-mesenchymal transition (EMT) program, altered metabolic pathways such as enhanced glycolysis, lipogenesis and/or autophagy and treatment resistance may occur in cancer stem/progenitor cells and their progenies during cancer progression. Particularly, the sustained activation of diverse developmental cascades such as hedgehog, epidermal growth factor receptor (EGFR), Wnt/β-catenin, Notch, transforming growth factor-β (TGF-β)/TGF-βR receptors and/or stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) can play critical functions for high self-renewal potential, survival, invasion and metastases of cancer stem/progenitor cells and their progenies. It has also been observed that cancer cells may be reprogrammed to re-express different pluripotency-associated stem cell-like markers such as Myc, Oct-3/4, Nanog and Sox-2 along the EMT process and under stressful and hypoxic conditions. Moreover, the enhanced expression and/or activities of some drug resistance-associated molecules such as Bcl-2, Akt/molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), hypoxia-inducible factors (HIFs), macrophage inhibitory cytokine-1 (MIC-1) and ATP-binding cassette (ABC) multidrug transporters frequently occur in cancer cells during cancer progression and metastases. These molecular events may cooperate for the survival and acquisition of a more aggressive and migratory behavior by cancer stem/progenitor cells and their progenies during cancer transition to metastatic and recurrent disease states. Of therapeutic interest, these altered gene products may also be exploited as molecular biomarkers and therapeutic targets to develop novel multitargeted strategies for improving current cancer therapies and preventing disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Fred & Pamela Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, Fred & Pamela Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
28
|
Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open Bio 2014; 4:485-95. [PMID: 24944883 PMCID: PMC4060015 DOI: 10.1016/j.fob.2014.05.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/07/2014] [Accepted: 05/10/2014] [Indexed: 12/03/2022] Open
Abstract
miR-34a was decreased in both glioma and glioma stem cell-lines as compared to normal brain tissues. Glioma stem cell-lines HNGC-2 and NSG-K16 possess the mesenchymal glioblastoma phenotype. miR-34a over-expression in these cell lines decreased their proliferative and migratory potential, and induced apoptosis. Rictor, a part of the mTORC2 complex, is a novel target for miR-34a in glioma stem cells. The tumor suppressive function of miR-34a is mediated via Rictor and affects the AKT/mTOR pathway and Wnt signaling.
MiRNA-34a is considered as a potential prognostic marker for glioma, as studies suggest that its expression negatively correlates with patient survival in grade III and IV glial tumors. Here, we show that expression of miR-34a was decreased in a graded manner in glioma and glioma stem cell-lines as compared to normal brain tissues. Ectopic expression of miR-34a in glioma stem cell-lines HNGC-2 and NSG-K16 decreased the proliferative and migratory potential of these cells, induced cell cycle arrest and caused apoptosis. Notably, the miR-34a glioma cells formed significantly smaller xenografts in immuno-deficient mice as compared with control glioma stem cell-lines. Here, using a bioinformatics approach and various biological assays, we identify Rictor, as a novel target for miR-34a in glioma stem cells. Rictor, a defining component of mTORC2 complex, is involved in cell survival signaling. mTORC2 lays downstream of Akt, and thus is a direct activator of Akt. Our earlier studies have elaborated on role of Rictor in glioma invasion (Das et al., 2011). Here, we demonstrate that miR34a over-expression in glioma stem cells profoundly decreased levels of p-AKT (Ser473), increased GSK-3β levels and targeted for degradation β-catenin, an important mediator of Wnt signaling pathway. This led to diminished levels of the Wnt effectors cyclin D1 and c-myc. Collectively, we show that the tumor suppressive function of miR-34a in glioblastoma is mediated via Rictor, which through its effects on AKT/mTOR pathway and Wnt signaling causes pronounced effects on glioma malignancy.
Collapse
Key Words
- Beta-catenin
- CNS, central nervous system
- EGF, epidermal growth factor
- EMT, epithelial–mesenchymal transition
- EV, empty vector
- GBM, glioblastoma multiforme
- GIC, glioma initiating cell
- GSC, glioma stem cell
- GSK-3β, glycogen synthase kinase 3β
- Glioblastoma
- Heterogeneity
- Mesenchymal
- NOD/SCID, nonobese diabetic/severe combined immunodeficiency
- PARP, poly ADP-ribose polymerases
- PDGFRA, platelet-derived growth factor receptor-α
- Rictor
- TCGA, the cancer genome atlas database
- bFGF, basic fibroblast growth factor
- qRT-PCR, quantitative real time PCR
Collapse
|
29
|
Vishwakarma SK, Bardia A, Tiwari SK, Paspala SA, Khan AA. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. J Adv Res 2014; 5:277-94. [PMID: 25685495 PMCID: PMC4294738 DOI: 10.1016/j.jare.2013.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/10/2013] [Accepted: 04/28/2013] [Indexed: 12/14/2022] Open
Abstract
Since last few years, an impressive amount of data has been generated regarding the basic in vitro and in vivo biology of neural stem cells (NSCs) and there is much far hope for the success in cell replacement therapies for several human neurodegenerative diseases and stroke. The discovery of adult neurogenesis (the endogenous production of new neurons) in the mammalian brain more than 40 years ago has resulted in a wealth of knowledge about stem cells biology in neuroscience research. Various studies have done in search of a suitable source for NSCs which could be used in animal models to understand the basic and transplantation biology before treating to human. The difficulties in isolating pure population of NSCs limit the study of neural stem behavior and factors that regulate them. Several studies on human fetal brain and spinal cord derived NSCs in animal models have shown some interesting results for cell replacement therapies in many neurodegenerative diseases and stroke models. Also the methods and conditions used for in vitro culture of these cells provide an important base for their applicability and specificity in a definite target of the disease. Various important developments and modifications have been made in stem cells research which is needed to be more specified and enrolment in clinical studies using advanced approaches. This review explains about the current perspectives and suitable sources for NSCs isolation, characterization, in vitro proliferation and their use in cell replacement therapies for the treatment of various neurodegenerative diseases and strokes.
Collapse
Affiliation(s)
- Sandeep K. Vishwakarma
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
- Paspala Advanced Neural (PAN) Research Foundation, Narayanguda, Hyderabad, 500 029 Andhra Pradesh, India
| | - Avinash Bardia
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
| | - Santosh K. Tiwari
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
| | - Syed A.B. Paspala
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
- Paspala Advanced Neural (PAN) Research Foundation, Narayanguda, Hyderabad, 500 029 Andhra Pradesh, India
| | - Aleem A. Khan
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
- Paspala Advanced Neural (PAN) Research Foundation, Narayanguda, Hyderabad, 500 029 Andhra Pradesh, India
| |
Collapse
|
30
|
Pointer KB, Clark PA, Zorniak M, Alrfaei BM, Kuo JS. Glioblastoma cancer stem cells: Biomarker and therapeutic advances. Neurochem Int 2014; 71:1-7. [PMID: 24657832 DOI: 10.1016/j.neuint.2014.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/28/2014] [Accepted: 03/08/2014] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in humans. It accounts for fifty-two percent of primary brain malignancies in the United States and twenty percent of all primary intracranial tumors. Despite the current standard therapies of maximal safe surgical resection followed by temozolomide and radiotherapy, the median patient survival is still less than 2 years due to inevitable tumor recurrence. Glioblastoma cancer stem cells (GSCs) are a subgroup of tumor cells that are radiation and chemotherapy resistant and likely contribute to rapid tumor recurrence. In order to gain a better understanding of the many GBM-associated mutations, analysis of the GBM cancer genome is on-going; however, innovative strategies to target GSCs and overcome tumor resistance are needed to improve patient survival. Cancer stem cell biology studies reveal basic understandings of GSC resistance patterns and therapeutic responses. Membrane proteomics using phage and yeast display libraries provides a method to identify novel antibodies and surface antigens to better recognize, isolate, and target GSCs. Altogether, basic GBM and GSC genetics and proteomics studies combined with strategies to discover GSC-targeting agents could lead to novel treatments that significantly improve patient survival and quality of life.
Collapse
Affiliation(s)
- Kelli B Pointer
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States; Cellular and Molecular Biology, Madison, WI, United States
| | - Paul A Clark
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States
| | - Michael Zorniak
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States; Neuroscience Training Program, Madison, WI, United States
| | - Bahauddeen M Alrfaei
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States; Cellular and Molecular Pathology Training Program, Madison, WI, United States; Human Oncology, Madison, WI, United States
| | - John S Kuo
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States; Cellular and Molecular Biology, Madison, WI, United States; Neuroscience Training Program, Madison, WI, United States; Cellular and Molecular Pathology Training Program, Madison, WI, United States; Human Oncology, Madison, WI, United States; Carbone Cancer Center, Madison, WI, United States.
| |
Collapse
|
31
|
Yilmaz G, Akyol G, Cakir A, Ilhan M. Investigation of diagnostic utility and expression profiles of stem cell markers (CD133 and CD90) in hepatocellular carcinoma, small cell dysplasia, and cirrhosis. Pathol Res Pract 2014; 210:419-25. [PMID: 24702884 DOI: 10.1016/j.prp.2014.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/13/2013] [Accepted: 02/19/2014] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the expression rates of CD133 and CD90 in cirrhosis-dysplastic nodule-HCC (Crh-DN-HCC) sequence related to the etiologic background. Thirty-five HCC, 8 small cell dysplasia (SCD), and 63 cases of cirrhosis having different etiologies were collected. Immunohistochemical expressions of CD133 and CD90 were evaluated. CD133 positivity was higher in HCC cases with chronic hepatitis B and CD90 with chronic hepatitis C. The highest staining rate was seen in poorly differentiated HCC cases. Only one SCD case and almost half of the cirrhotic cases which were stained for CD133 were associated with hepatitis B; none was stained for CD90. Increased CD133 expression indicated a significantly shorter overall survival rate. No significant relationship was detected between the expression rates of CD133 or CD90 and other parameters. In this study, which investigates the immunohistochemical expression profiles of CD133 and CD90 through Crh-DN-HCC sequence, the highest staining rate was detected in HCC. It is rational to try to elucidate the earliest events in hepatocarcinogenesis by studying SCD. It is important to be aware of this issue in daily practice, which will provide a deeper insight into the understanding of the effects of CSCs in the progression and management of HCC.
Collapse
Affiliation(s)
- Guldal Yilmaz
- Gazi University, Faculty of Medicine, Department of Medical Pathology, Ankara, Turkey.
| | - Gulen Akyol
- Gazi University, Faculty of Medicine, Department of Medical Pathology, Ankara, Turkey
| | - Asli Cakir
- Gazi University, Faculty of Medicine, Department of Medical Pathology, Ankara, Turkey
| | - Mustafa Ilhan
- Gazi University, Faculty of Medicine, Department of Public Health, Ankara, Turkey
| |
Collapse
|
32
|
Jagtap JC, Dawood P, Shah RD, Chandrika G, Natesh K, Shiras A, Hegde AS, Ranade D, Shastry P. Expression and regulation of prostate apoptosis response-4 (Par-4) in human glioma stem cells in drug-induced apoptosis. PLoS One 2014; 9:e88505. [PMID: 24523904 PMCID: PMC3921173 DOI: 10.1371/journal.pone.0088505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/13/2014] [Indexed: 12/25/2022] Open
Abstract
Gliomas are the most common and aggressive of brain tumors in adults. Cancer stem cells (CSC) contribute to chemoresistance in many solid tumors including gliomas. The function of prostate apoptosis response-4 (Par-4) as a pro-apoptotic protein is well documented in many cancers; however, its role in CSC remains obscure. In this study, we aimed to explore the role of Par-4 in drug-induced cytotoxicity using human glioma stem cell line--HNGC-2 and primary culture (G1) derived from high grade glioma. We show that among the panel of drugs- lomustine, carmustine, UCN-01, oxaliplatin, temozolomide and tamoxifen (TAM) screened, only TAM induced cell death and up-regulated Par-4 levels significantly. TAM-induced apoptosis was confirmed by PARP cleavage, Annexin V and propidium iodide staining and caspase-3 activity. Knock down of Par-4 by siRNA inhibited cell death by TAM, suggesting the role of Par-4 in induction of apoptosis. We also demonstrate that the mechanism involves break down of mitochondrial membrane potential, down regulation of Bcl-2 and reduced activation of Akt and ERK 42/44. Secretory Par-4 and GRP-78 were significantly expressed in HNGC-2 cells on exposure to TAM and specific antibodies to these molecules inhibited cell death suggesting that extrinsic Par-4 is important in TAM-induced apoptosis. Interestingly, TAM decreased the expression of neural stem cell markers--Nestin, Bmi1, Vimentin, Sox2, and Musashi in HNGC-2 cell line and G1 cells implicating its potential as a stemness inhibiting drug. Based on these data and our findings that enhanced levels of Par-4 sensitize the resistant glioma stem cells to drug-induced apoptosis, we propose that Par-4 may be explored for evaluating anti-tumor agents in CSC.
Collapse
Affiliation(s)
| | | | | | | | - Kumar Natesh
- National Centre for Cell Science (NCCS), Pune, India
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), Pune, India
| | - Amba S. Hegde
- National Centre for Cell Science (NCCS), Pune, India
| | - Deepak Ranade
- Department of Neurosurgery, D. Y. Patil Medical College, Pune, India
| | - Padma Shastry
- National Centre for Cell Science (NCCS), Pune, India
- * E-mail:
| |
Collapse
|
33
|
Affiliation(s)
- Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Abstract
Thyroid cancer cells were believed to be generated by multi-step carcinogenesis, in which cancer cells are derived from thyrocytes, via multiple incidences of damage to their genome, especially in oncogenes or anti-oncogenes that accelerate proliferation or foster malignant phenotypes, such as the ability to invade the surrounding tissue or metastasize to distant organs, until a new hypothesis, fetal cell carcinogenesis, was presented. In fetal cell carcinogenesis, thyroid tumor cells are assumed to be derived from three types of fetal thyroid cell which only exist in fetuses or young children, namely, thyroid stem cells (TSCs), thyroblasts and prothyrocytes, by proliferation without differentiation. Genomic alternations, such as RET/PTC and PAX8-PPARγ1 rearrangements and a mutation in the BRAF gene, play an oncogenic role by preventing thyroid fetal cells from differentiating. Fetal cell carcinogenesis effectively explains recent molecular and clinical evidence regarding thyroid cancer, including thyroid cancer initiating cells (TCICs), and it underscores the importance of identifying a stem cells and clarifying the molecular mechanism of organ development in cancer research. It introduces three important concepts, the reverse approach, stem cell crisis and mature and immature cancers. Further, it implies that analysis of a small population of cells in a cancer tissue will be a key technique in establishing future laboratory tests. In the contrary, mass analysis such as gene expression profiling, whole genomic scan, and proteomics analysis may have definite limitations since they can only provide information based on many cells.
Collapse
Affiliation(s)
- Toru Takano
- Department of Laboratory Medicine, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
35
|
Sugimachi K, Yokobori T, Iinuma H, Ueda M, Ueo H, Shinden Y, Eguchi H, Sudo T, Suzuki A, Maehara Y, Mori M, Mimori K. Aberrant expression of plastin-3 via copy number gain induces the epithelial-mesenchymal transition in circulating colorectal cancer cells. Ann Surg Oncol 2013; 21:3680-90. [PMID: 24217791 DOI: 10.1245/s10434-013-3366-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 11/18/2022]
Abstract
PURPOSE Plastin-3 (PLS3) is a novel marker for circulating tumor cells (CTCs) in colorectal cancer (CRC). We sought to investigate the mechanisms mediating the aberrant expression of PLS3, the role of PLS3 in the epithelial-mesenchymal transition (EMT), and its association with the acquisition of invasive and metastatic abilities in human CRC. METHODS The expression levels of PLS3 messenger RNA in the tumor drainage venous blood (TDB) were examined in 177 CRC cases, and the associations between PLS3 expression and Xq23 copy numbers were analyzed in 132 CRC samples. We then established a stable PLS3-expressing CRC cell line and assessed the role of PLS3 in the EMT. RESULTS In clinical CRC cases, high expression of PLS3 in CTCs of TDB as well as peripheral blood was established as an independent prognostic factor of overall survival (p < 0.001), and the copy number gain of Xq23, which is the locus of the PLS3 gene, was significantly related to PLS3 overexpression. PLS3 induced the EMT via transforming growth factor (TGF)-β signaling and resulted in the acquisition of invasive ability in CRC cells. CONCLUSIONS The aberrant expression of PLS3 was associated with copy number gain in CTCs from primary tumors and was involved in the regulation of the EMT, contributing to a poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li M, Li J, Liu L, Li W, Yang Y, Yuan J. MicroRNA in Human Glioma. Cancers (Basel) 2013; 5:1306-31. [PMID: 24202447 PMCID: PMC3875941 DOI: 10.3390/cancers5041306] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023] Open
Abstract
Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.
Collapse
Affiliation(s)
- Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-20-87332748; Fax: +86-20-87331209
| | - Jun Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Liu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Yang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080, China
| |
Collapse
|
37
|
Scheers I, Lombard C, Paganelli M, Campard D, Najimi M, Gala JL, Decottignies A, Sokal E. Human umbilical cord matrix stem cells maintain multilineage differentiation abilities and do not transform during long-term culture. PLoS One 2013; 8:e71374. [PMID: 23951150 PMCID: PMC3739759 DOI: 10.1371/journal.pone.0071374] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 07/04/2013] [Indexed: 12/15/2022] Open
Abstract
Umbilical cord matrix stem cells (UCMSC) have generated great interest in various therapeutic approaches, including liver regeneration. This article aims to analyze the specific characteristics and the potential occurrence of premalignant alterations of UCMSC during long-term expansion, which are important issues for clinical applications. UCMSC were isolated from the umbilical cord of 14 full-term newborns and expanded in vitro until senescence. We examined the long-term growth potential, senescence characteristics, immunophenotype and multilineage differentiation capacity of these cells. In addition, their genetic stability was assessed through karyotyping, telomerase maintenance mechanisms and analysis of expression and functionality of cell cycle regulation genes. The tumorigenic potential was also studied in immunocompromised mice. In vitro, UCMSC reached up to 33.7±2.1 cumulative population doublings before entering replicative senescence. Their immunophenotype and differentiation potential, notably into hepatocyte-like cells, remained stable over time. Cytogenetic analyses did not reveal any chromosomal abnormality and the expression of oncogenes was not induced. Telomere maintenance mechanisms were not activated. Just as UCMSC lacked transformed features in vitro, they could not give rise to tumors in vivo. UCMSC could be expanded in long-term cultures while maintaining stable genetic features and endodermal differentiation potential. UCMSC therefore represent safe candidates for liver regenerative medicine.
Collapse
Affiliation(s)
- Isabelle Scheers
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol Aspects Med 2013; 39:82-101. [PMID: 23831316 DOI: 10.1016/j.mam.2013.06.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/14/2013] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM) is the most prevalent primary brain tumor and ranks among the most lethal of human cancers with conventional therapy offering only palliation. Great strides have been made in understanding brain cancer genetics and modeling these tumors with new targeted therapies being tested, but these advances have not translated into substantially improved patient outcomes. Multiple chemotherapeutic agents, including temozolomide, the first-line treatment for glioblastoma, have been developed to kill cancer cells. However, the response to temozolomide in GBM is modest. Radiation is also moderately effective but this approach is plagued by limitations due to collateral radiation damage to healthy brain tissue and development of radioresistance. Therapeutic resistance is attributed at least in part to a cell population within the tumor that possesses stem-like characteristics and tumor propagating capabilities, referred to as cancer stem cells. Within GBM, the intratumoral heterogeneity is derived from a combination of regional genetic variance and a cellular hierarchy often regulated by distinct cancer stem cell niches, most notably perivascular and hypoxic regions. With the recent emergence as a key player in tumor biology, cancer stem cells have symbiotic relationships with the tumor microenvironment, oncogenic signaling pathways, and epigenetic modifications. The origins of cancer stem cells and their contributions to brain tumor growth and therapeutic resistance are under active investigation with novel anti-cancer stem cell therapies offering potential new hope for this lethal disease.
Collapse
|
39
|
Rani SB, Rathod SS, Karthik S, Kaur N, Muzumdar D, Shiras AS. MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro Oncol 2013; 15:1302-16. [PMID: 23814265 DOI: 10.1093/neuonc/not090] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are increasingly being recognized as being involved in cancer development and progression in gliomas. METHODS Using a model cell system developed in our lab to study glioma progression comprising human neuroglial culture (HNGC)-1 and HNGC-2 cells, we report here that miR-145 is one of the miRNAs significantly downregulated during malignant transformation in glioblastoma multiforme (GBM). In a study using tumor samples derived from various glioma grades, we show that expression of miR-145 is decreased in a graded manner, with GBM patients showing lowest expression relative to lower-grade gliomas (P < .05) and normal brain tissues (P < .0001). Functional studies involving ectopic expression of miR-145 in glioma cells had a negative impact on cell proliferation and tumor development, as well as invasion and induced apoptosis, providing further support to the concept that inactivation of miR-145 is important for glioma disease pathogenesis. More notably, these growth-suppressive effects of miR-145 are mediated through its target proteins Sox9 and the cell adhesion-associated molecule adducin 3 (ADD3). RESULTS Inhibiting Sox9 and ADD3 rescued effects of miR-145 loss. Interestingly, miR-145 loss in glioma cells led to overexpression of molecules involved in cell proliferation, like cyclin D1, c-myc, and N-myc, as well as enhanced expression of cell adhesion- and invasion-related molecules N-cadherin and E-cadherin, an effect which was again restored upon miR-145 overexpression in glioma cells. The miR-145 promoter was methylated at its cytosine-phosphate-guanine (CpG) islands in the glioma cell lines studied. CONCLUSION Our study demonstrates that miR-145 has a tumor-suppressive function in glioblastoma in that it reduces proliferation, adhesion, and invasion of glioblastoma cells, apparently by suppressing the activity of oncogenic proteins Sox9 and ADD3. Reduced levels of miR-145 may lead to neoplastic transformation and malignant progression in glioma due to unregulated activity of these proteins.
Collapse
Affiliation(s)
- Sandhya B Rani
- Corresponding Author: Anjali Shiras, MSc, PhD, Scientist-F, National Centre for Cell Science (NCCS), NCCS Complex, University of Pune Campus, Ganeshkhind, Pune 411007, Maharashtra, India. ;
| | | | | | | | | | | |
Collapse
|
40
|
Martens-de Kemp SR, Brink A, Stigter-van Walsum M, Damen JMA, Rustenburg F, Wu T, van Wieringen WN, Schuurhuis GJ, Braakhuis BJ, Slijper M, Brakenhoff RH. CD98 marks a subpopulation of head and neck squamous cell carcinoma cells with stem cell properties. Stem Cell Res 2013; 10:477-88. [DOI: 10.1016/j.scr.2013.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/04/2013] [Accepted: 02/07/2013] [Indexed: 11/16/2022] Open
|
41
|
β -Elemene-Attenuated Tumor Angiogenesis by Targeting Notch-1 in Gastric Cancer Stem-Like Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:268468. [PMID: 23710217 PMCID: PMC3655606 DOI: 10.1155/2013/268468] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/15/2013] [Accepted: 03/23/2013] [Indexed: 12/22/2022]
Abstract
Emerging evidence suggests that cancer stem cells are involved in tumor angiogenesis. The Notch signaling pathway is one of the most important regulators of these processes. β-Elemene, a naturally occurring compound extracted from Curcumae Radix, has been used as an antitumor drug for various cancers in China. However, its underlying mechanism in the treatment of gastric cancer remains largely unknown. Here, we report that CD44+ gastric cancer stem-like cells (GCSCs) showed enhanced proliferation capacity compared to their CD44− counterparts, and this proliferation was accompanied by the high expression of Notch-1 (in vitro). These cells were also more superior in spheroid colony formation (in vitro) and tumorigenicity (in vivo) and positively associated with microvessel density (in vivo). β-Elemene was demonstrated to effectively inhibit the viability of GCSCs in a dose-dependent manner, most likely by suppressing Notch-1 (in vitro). β-Elemene also contributed to growth suppression and attenuated the angiogenesis capacity of these cells (in vivo) most likely by interfering with the expression of Notch-1 but not with Dll4. Our findings indicated that GCSCs play an important role in tumor angiogenesis, and Notch-1 is one of the most likely mediators involved in these processes. β-Elemene was effective at attenuating angiogenesis by targeting the GCSCs, which could be regarded as a potential mechanism for its efficacy in gastric cancer management in the future.
Collapse
|
42
|
Gupta MK, Polisetty RV, Ramamoorthy K, Tiwary S, Kaur N, Uppin MS, Shiras A, Sirdeshmukh R. Secretome analysis of Glioblastoma cell line--HNGC-2. MOLECULAR BIOSYSTEMS 2013; 9:1390-400. [PMID: 23483059 DOI: 10.1039/c3mb25383j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary malignant tumor of the central nervous system. We have carried out a deep analysis of the secretome of a rapidly proliferating and tumorigenic cell line HNGC-2, representing GBM, in an effort to identify proteins, which may be targeted in the plasma of GBM patients as markers for diagnosis and disease surveillance. Prefractionation of the proteins from the conditioned medium of HNGC-2 cells in SDS gels followed by LC-MS/MS analysis using an ESI-IT mass spectrometer (LTQ) led to a total of 996 protein identifications with ≥2 peptides each. Of them, 664 proteins were observed in the transcriptome of HNGC-2 cells. The dataset of 996 proteins was mapped to important functional groups, such as cellular assembly and organisation, DNA recombination and repair, and other classes. Actin cytoskeleton signalling, phosphatidyl inositol 3 kinase (PI3K/AKT) and integrin linked kinase (ILK) signalling pathways were seen as enriched pathways. Comparisons with the published secretome of cell lines from 12 different cancers, including GBM, revealed that 348 proteins shared a commonality with a secretome of at least one other cell line, 321 of which were found to contain signal sequences or transmembrane domains and 335 could be linked to a plasma membrane or extracellular localization. Through intergration of this data we arrived at a non-redundant list of 597 protein identifications with the potential for secretion either by classical secretory pathways or by non-secretory processes; 233 of them have been detected in cerebrospinal fluid or plasma as per the published literature, and 172 have been implicated in GBM or other cancers. The HNGC-2 secretome dataset could serve as a useful resource for designing a targeted investigation of GBM biomarkers in plasma.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, 500007, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Maintenance of genomic stability in mouse embryonic stem cells: relevance in aging and disease. Int J Mol Sci 2013; 14:2617-36. [PMID: 23358251 PMCID: PMC3588006 DOI: 10.3390/ijms14022617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 01/15/2023] Open
Abstract
Recent studies have shown that mouse embryonic stem cells (mESCs) rely on a distinctive genome caretaking network. In this review, we will discuss how mESCs functionally respond to DNA damage and describe several modifications in mESC DNA damage response, which accommodate dynamic cycling and preservation of genetic information. Subsequently, we will discuss how the transition from mESCs to adult stem/progenitor cells can be involved in the decline of tissue integrity and function in the elderly.
Collapse
|
44
|
Kumar SM, Dai J, Li S, Yang R, Yu H, Nathanson KL, Liu S, Zhou H, Guo J, Xu X. Human skin neural crest progenitor cells are susceptible to BRAF(V600E)-induced transformation. Oncogene 2013; 33:832-41. [PMID: 23334329 DOI: 10.1038/onc.2012.642] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/26/2012] [Accepted: 12/08/2012] [Indexed: 12/14/2022]
Abstract
Adult stem cells are multipotent and persist in small numbers in adult tissues throughout the lifespan of an organism. Unlike differentiated cells, adult stem cells are intrinsically resistant to senescence. It is unclear how adult stem cells in solid organs respond to oncogenic stimulation and whether these cells have a role in tumor initiation. We report here that expression of BRAF(V600E) in human neural crest progenitor cells (hNCPCs) did not induce growth arrest as seen in human melanocytes, but instead, increased their cell proliferation capacity. These cells (hNCPCs(V600E)) acquired anchorage-independent growth ability and were weakly tumorigenic in vivo. Unlike in human melanocytes, BRAF(V600E) expression in hNCPCs did not induce p16(INK4a) expression. BRAF(V600E) induced elevated expression of CDK2, CDK4, MITF and EST1/2 protein in hNCPCs, and also induced melanocytic differentiation of these cells. Furthermore, overexpression of MITF in hNCPCs(V600E) dramatically increased their tumorigenicity and resulted in fully transformed tumor cells. These findings indicate that hNCPCs are susceptible to BRAF(V600E)-induced transformation, and MITF potentiates the oncogenic effect of BRAF(V600E) in these progenitor cells. These results suggest that the hNCPCs are potential targets for BRAF(V600E)-induced melanocytic tumor formation.
Collapse
Affiliation(s)
- S M Kumar
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Dai
- 1] Departments of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA [2] Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - S Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - R Yang
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - H Yu
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - K L Nathanson
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - S Liu
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - H Zhou
- Department of Emergency Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - J Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - X Xu
- Departments of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
45
|
Kaur N, Chettiar S, Rathod S, Rath P, Muzumdar D, Shaikh ML, Shiras A. Wnt3a mediated activation of Wnt/β-catenin signaling promotes tumor progression in glioblastoma. Mol Cell Neurosci 2013; 54:44-57. [PMID: 23337036 DOI: 10.1016/j.mcn.2013.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/21/2012] [Accepted: 01/11/2013] [Indexed: 12/28/2022] Open
Abstract
Presence of a distinct population of cells that drives tumor progression supports the hierarchical model of tumor development in Glioblastoma (GBM) and substantiates the cancer stem cell hypothesis. Amongst the various developmental signaling pathways that are aberrantly activated, we here show that activated Wnt/β-catenin signaling pathway plays a critical role in malignant transformation and tumor progression in gliomas. We demonstrate that Wnt ligands - Wnt1 and Wnt3a are expressed in a graded manner in these tumors as well as over-expressed in glioma stem cell-lines. A selective inhibition of Wnt signaling pathway by selective knock-down of its ligands Wnt1 and Wnt3a in glioma-derived stem-like cells led to decreased cell proliferation, cell migration and chemo-resistance. Furthermore, Wnt silencing in glioma cells reduced the capacity to form intra-cranial tumors in vivo. Taken together, our study indicates Wnt/β-catenin signaling pathway as an essential driver of glioma tumorigenesis, recognizing role of Wnt3a as an oncogene and thereby offering novel therapeutic strategies for management of these tumors.
Collapse
Affiliation(s)
- Navjot Kaur
- National Centre for Cell Science (NCCS), NCCS Complex, University of Pune Campus, Ganeshkhind, Pune 411007, Maharashtra, India.
| | | | | | | | | | | | | |
Collapse
|
46
|
The implications of cancer stem cells for cancer therapy. Int J Mol Sci 2012; 13:16636-57. [PMID: 23443123 PMCID: PMC3546712 DOI: 10.3390/ijms131216636] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022] Open
Abstract
Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Recent studies have showed that cancer stem cells (CSCs), a small subpopulation of tumor cells, can generate bulk populations of nontumorigenic cancer cell progeny through the self-renewal and differentiation processes. As CSCs are proposed to persist in tumors as a distinct population and cause relapse and metastasis by giving rise to new tumors, development of CSC-targeted therapeutic strategies holds new hope for improving survival and quality of life in patients with cancer. Therapeutic innovations will emerge from a better understanding of the biology and environment of CSCs, which, however, are largely unexplored. This review summarizes the characteristics, evidences and development of CSCs, as well as implications and challenges for cancer treatment.
Collapse
|
47
|
Mikheev AM, Ramakrishna R, Stoll EA, Mikheeva SA, Beyer RP, Plotnik DA, Schwartz JL, Rockhill JK, Silber JR, Born DE, Kosai Y, Horner PJ, Rostomily RC. Increased age of transformed mouse neural progenitor/stem cells recapitulates age-dependent clinical features of human glioma malignancy. Aging Cell 2012; 11:1027-35. [PMID: 22958206 PMCID: PMC3504614 DOI: 10.1111/acel.12004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/11/2022] Open
Abstract
Increasing age is the most robust predictor of greater malignancy and treatment resistance in human gliomas. However, the adverse association of clinical course with aging is rarely considered in animal glioma models, impeding delineation of the relative importance of organismal versus progenitor cell aging in the genesis of glioma malignancy. To address this limitation, we implanted transformed neural stem/progenitor cells (NSPCs), the presumed cells of glioma origin, from 3- and 18-month-old mice into 3- and 20-month host animals. Transplantation with progenitors from older animals resulted in significantly shorter (P ≤ 0.0001) median survival in both 3-month (37.5 vs. 83 days) and 20-month (38 vs. 67 days) hosts, indicating that age-dependent changes intrinsic to NSPCs rather than host animal age accounted for greater malignancy. Subsequent analyses revealed that increased invasiveness, genomic instability, resistance to therapeutic agents, and tolerance to hypoxic stress accompanied aging in transformed NSPCs. Greater tolerance to hypoxia in older progenitor cells, as evidenced by elevated HIF-1 promoter reporter activity and hypoxia response gene (HRG) expression, mirrors the upregulation of HRGs in cohorts of older vs. younger glioma patients revealed by analysis of gene expression databases, suggesting that differential response to hypoxic stress may underlie age-dependent differences in invasion, genomic instability, and treatment resistance. Our study provides strong evidence that progenitor cell aging is responsible for promoting the hallmarks of age-dependent glioma malignancy and that consideration of progenitor aging will facilitate development of physiologically and clinically relevant animal models of human gliomas.
Collapse
Affiliation(s)
- Andrei M. Mikheev
- University of Washington School of Medicine, Department of Neurological Surgery
- University of Washington School of Medicine, Institute for Stem Cell and Regenerative Medicine
| | - Rohan Ramakrishna
- University of Washington School of Medicine, Department of Neurological Surgery
| | - Elizabeth A. Stoll
- University of Washington School of Medicine, Department of Neurological Surgery
- University of Washington School of Medicine, Institute for Stem Cell and Regenerative Medicine
| | - Svetlana A. Mikheeva
- University of Washington School of Medicine, Department of Neurological Surgery
- University of Washington School of Medicine, Institute for Stem Cell and Regenerative Medicine
| | - Richard P. Beyer
- University of Washington School of Medicine, Center for Ecogenetics and Environmental Health
| | - David A. Plotnik
- University of Washington School of Medicine, Department of Radiation Oncology
| | - Jeffrey L. Schwartz
- University of Washington School of Medicine, Department of Radiation Oncology
| | - Jason K. Rockhill
- University of Washington School of Medicine, Department of Radiation Oncology
| | - John R. Silber
- University of Washington School of Medicine, Department of Neurological Surgery
| | - Donald E. Born
- University of Washington School of Medicine, Department of Pathology, Division of Neuropathology
| | - Yoshito Kosai
- Case Western Reserve School of Medicine, Cleveland, Ohio
| | - Philip J. Horner
- University of Washington School of Medicine, Department of Neurological Surgery
- University of Washington School of Medicine, Institute for Stem Cell and Regenerative Medicine
| | - Robert C. Rostomily
- University of Washington School of Medicine, Department of Neurological Surgery
- University of Washington School of Medicine, Institute for Stem Cell and Regenerative Medicine
| |
Collapse
|
48
|
Chou CH, Yang NK, Liu TY, Tai SK, Hsu DSS, Chen YW, Chen YJ, Chang CC, Tzeng CH, Yang MH. Chromosome instability modulated by BMI1-AURKA signaling drives progression in head and neck cancer. Cancer Res 2012. [PMID: 23204235 DOI: 10.1158/0008-5472.can-12-2397] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) is widely considered a hallmark of cancer, but its precise roles in cancer stem cells (CSC) and malignant progression remain uncertain. BMI1 is a member of the Polycomb group of chromatin-modifier proteins that is essential for stem cell self-renewal. In human cancers, BMI1 overexpression drives stem-like properties associated with induction of epithelial-mesenchymal transition (EMT) that promotes invasion, metastasis, and poor prognosis. Here, we report that BMI1 mediates its diverse effects through upregulation of the mitotic kinase Aurora A, which is encoded by the AURKA gene. Two mechanisms were found to be responsible for BMI1-induced AURKA expression. First, BMI1 activated the Akt pathway, thereby upregulating AURKA expression through activation of the β-catenin/TCF4 transcription factor complex. Second, BMI1 repressed miRNA let-7i through a Polycomb complex-dependent mechanism, thereby relieving AURKA expression from let-7i suppression. AURKA upregulation by BMI1 exerts several effects, including centrosomal amplification and aneuploidy, antiapoptosis, and cell-cycle progression through p53 degradation and EMT through stabilization of Snail. Inhibiting Aurora A kinase activity attenuated BMI1-induced tumor growth in vivo. In clinical specimens of head and neck cancer, we found that coamplification of BMI1 and AURKA correlated with poorer prognosis. Together, our results link CSCs, EMT, and CIN through the BMI1-AURKA axis and suggest therapeutic use from inhibiting Aurora A in head and neck cancers, which overexpress BMI1.
Collapse
Affiliation(s)
- Chun-Hung Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zheng Y, He L, Wan Y, Song J. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev 2012; 22:256-67. [PMID: 22873822 DOI: 10.1089/scd.2012.0172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To explore the mechanisms underlying spontaneous transformation of mesenchymal stem cells (MSCs), changes in senescence-associated molecules, particularly the epigenetic modification of the p16(INK4a) gene, including histone H3 lysine 27/9 methylation (H3K27/9me) and DNA methylation, were investigated in cultured adult rat bone marrow MSCs at different stages during the transformation process. It was shown that the MSCs underwent replicative senescence after 24 to 25 population doublings, characterized by positive staining for senescence-associated β-galactosidase, increased expression of p16(INK4a) and p21, and downregulated phosphorylation of Rb. The upregulation of p16(INK4a) was associated with decreased expression of enhancer of the zeste homolog 2 (Ezh2), and reduced levels of H3K27me and DNA methylation in the p16(INK4a) gene. At week 4 of senescence, reproliferating cells emerged among the senescent MSCs. These senescence-escaped MSCs lost their senescence-related markers (including p16(INK4a)) and became highly proliferative. In addition to H3K27me, another H3 modification pattern, H3K9me, appeared in the p16(INK4a) gene, accompanied by an enhanced DNA methylation. With continued culture, the senescence-escaped MSCs did not show any sign of growth arrest and gained the capacity for anchorage-independent growth. These immortalized (transformed) MSCs showed further enhanced DNA methylation of the p16(INK4a) gene by increased H3K9me. Ezh2 knockdown with shRNA eliminated H3K27me-mediated DNA methylation of the p16(INK4a) gene in presenescent MSCs, but had no effect on H3K9me-enhanced DNA hypermethylation in the cells after senescence escape. These findings identify an Ezh2- and H3K27me-independent, but H3K9me-enhanced, DNA hypermethylation of the p16(INK4a) gene, which might be an epigenetic signature for MSC spontaneous transformation.
Collapse
Affiliation(s)
- Yong Zheng
- Department of Anatomy and Embryology, Center for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
50
|
Abstract
Acute ischemic stroke causes a disturbance of neuronal circuitry and disruption of the blood-brain barrier that can lead to functional disabilities. At present, thrombolytic therapy inducing recanalization of the occluded vessels in the cerebral infarcted area is a commonly used therapeutic strategy. However, only a minority of patients have timely access to this kind of therapy. Recently, neural stem cells (NSCs) as therapy for stroke have been developed in preclinical studies. NSCs are harbored in the subventricular zone (SVZ) as well as the subgranular zone of the brain. The microenvironment in the SVZ, including intercellular interactions, extracellular matrix proteins, and soluble factors, can promote NSC proliferation, self-renewal, and multipotency. Endogenous neurogenesis responds to insults of ischemic stroke supporting the existence of remarkable plasticity in the mammalian brain. Homing and integration of NSCs to the sites of damaged brain tissue are complex morphological and physiological processes. This review provides an update on current preclinical cell therapies for stroke, focusing on neurogenesis in the SVZ and dentate gyrus and on recruitment cues that promote NSC homing and integration to the site of the damaged brain.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| | | | | | | |
Collapse
|