1
|
Wu L, Wei D, Chen W, Wu C, Lu Z, Li S, Liu W. Comprehensive Potential of Artificial Intelligence for Predicting PD-L1 Expression and EGFR Mutations in Lung Cancer: A Systematic Review and Meta-Analysis. J Comput Assist Tomogr 2024:00004728-990000000-00348. [PMID: 39143665 DOI: 10.1097/rct.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
OBJECTIVE To evaluate the methodological quality and the predictive performance of artificial intelligence (AI) for predicting programmed death ligand 1 (PD-L1) expression and epidermal growth factor receptors (EGFR) mutations in lung cancer (LC) based on systematic review and meta-analysis. METHODS AI studies based on PET/CT, CT, PET, and immunohistochemistry (IHC)-whole-slide image (WSI) were included to predict PD-L1 expression or EGFR mutations in LC. The modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to evaluate the methodological quality. A comprehensive meta-analysis was conducted to analyze the overall area under the curve (AUC). The Cochrane diagnostic test and I2 statistics were used to assess the heterogeneity of the meta-analysis. RESULTS A total of 45 AI studies were included, of which 10 were used to predict PD-L1 expression and 35 were used to predict EGFR mutations. Based on the analysis using the QUADAS-2 tool, 37 studies achieved a high-quality score of 7. In the meta-analysis of PD-L1 expression levels, the overall AUCs for PET/CT, CT, and IHC-WSI were 0.80 (95% confidence interval [CI], 0.77-0.84), 0.74 (95% CI, 0.69-0.77), and 0.95 (95% CI, 0.93-0.97), respectively. For EGFR mutation status, the overall AUCs for PET/CT, CT, and PET were 0.85 (95% CI, 0.81-0.88), 0.83 (95% CI, 0.80-0.86), and 0.75 (95% CI, 0.71-0.79), respectively. The Cochrane Diagnostic Test revealed an I2 value exceeding 50%, indicating substantial heterogeneity in the PD-L1 and EGFR meta-analyses. When AI was combined with clinicopathological features, the enhancement in predicting PD-L1 expression was not substantial, whereas the prediction of EGFR mutations showed improvement compared to the CT and PET models, albeit not significantly so compared to the PET/CT models. CONCLUSIONS The overall performance of AI in predicting PD-L1 expression and EGFR mutations in LC has promising clinical implications.
Collapse
Affiliation(s)
- Linyong Wu
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Dayou Wei
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Wubiao Chen
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| | - Chaojun Wu
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Zhendong Lu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| | - Songhua Li
- From the Department of Medical Ultrasound, Maoming People's Hospital, Maoming
| | - Wenci Liu
- Radiology Imaging Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, PR China
| |
Collapse
|
2
|
Zhang G, Shang L, Cao Y, Zhang J, Li S, Qian R, Liu H, Zhang Z, Pu H, Man Q, Kong W. Prediction of epidermal growth factor receptor ( EGFR) mutation status in lung adenocarcinoma patients on computed tomography (CT) images using 3-dimensional (3D) convolutional neural network. Quant Imaging Med Surg 2024; 14:6048-6059. [PMID: 39144003 PMCID: PMC11320524 DOI: 10.21037/qims-24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Background Noninvasively detecting epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients before targeted therapy remains a challenge. This study aimed to develop a 3-dimensional (3D) convolutional neural network (CNN)-based deep learning model to predict EGFR mutation status using computed tomography (CT) images. Methods We retrospectively collected 660 patients from 2 large medical centers. The patients were divided into training (n=528) and external test (n=132) sets according to hospital source. The CNN model was trained in a supervised end-to-end manner, and its performance was evaluated using an external test set. To compare the performance of the CNN model, we constructed 1 clinical and 3 radiomics models. Furthermore, we constructed a comprehensive model combining the highest-performing radiomics and CNN models. The receiver operating characteristic (ROC) curves were used as primary measures of performance for each model. Delong test was used to compare performance differences between different models. Results Compared with the clinical [training set, area under the curve (AUC) =69.6%, 95% confidence interval (CI), 0.661-0.732; test set, AUC =68.4%, 95% CI, 0.609-0.752] and the highest-performing radiomics models (training set, AUC =84.3%, 95% CI, 0.812-0.873; test set, AUC =72.4%, 95% CI, 0.653-0.794) models, the CNN model (training set, AUC =94.3%, 95% CI, 0.920-0.961; test set, AUC =94.7%, 95% CI, 0.894-0.978) had significantly better predictive performance for predicting EGFR mutation status. In addition, compared with the comprehensive model (training set, AUC =95.7%, 95% CI, 0.942-0.971; test set, AUC =87.4%, 95% CI, 0.820-0.924), the CNN model had better stability. Conclusions The CNN model has excellent performance in non-invasively predicting EGFR mutation status in patients with lung adenocarcinoma and is expected to become an auxiliary tool for clinicians.
Collapse
Affiliation(s)
- Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Shang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuntai Cao
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Jing Zhang
- Department of Radiology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Shenglin Li
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Rong Qian
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Liu
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Zhuoli Zhang
- Department of Radiology, University of California Irvine, Irvine, CA, USA
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Man
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Weifang Kong
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Wang B, Bao C, Wang X, Wang Z, Zhang Y, Liu Y, Wang R, Han X. Inter-equipment validation of PET-based radiomics for predicting EGFR mutation statuses in patients with non-small cell lung cancer. Clin Radiol 2024; 79:571-578. [PMID: 38821756 DOI: 10.1016/j.crad.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/03/2023] [Accepted: 12/31/2023] [Indexed: 06/02/2024]
Abstract
AIM To validate the inter-equipment generality of the radiomics based on PET images to predict the EGFR mutation status of patients with non-small cell lung cancer. MATERIALS AND METHODS Patients were retrospectively collected in the departments of nuclear medicine of Heyi branch (Siemens equipment) and East branch (General Electric (GE) equipment) of the first affiliated hospital of Zhengzhou university. 5 predicting logistic regression models were established. The 1st one was trained and tested by the GE dataset; The 2nd one was trained and tested by the Siemens dataset; The 3rd one was trained and tested by the mixed dataset consisting of GE and Siemens. The 4th one was trained by GE and tested by Siemens; The 5th one was trained by Siemens and tested by GE. RESULTS For the 1st ∼ 5th models, the mean values of AUCs for training/testing datasets were 0.78/0.73, 0.74/0.72, 0.75/0.70, 0.74/0.65 and 0.68/0.63, respectively. CONCLUSION The AUCs of the models trained and tested on the datasets from the same equipment were higher than those for different equipment. The inter-equipment generality of the radiomics was not good enough in clinical practice.
Collapse
Affiliation(s)
- B Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - C Bao
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - X Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Z Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Y Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - Y Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - R Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China
| | - X Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China; Henan Medical Key Laboratory of Molecular Imaging, No.1 Jianshe East Road, Zhengzhou 450000, Henan, China.
| |
Collapse
|
4
|
Kohan A, Hinzpeter R, Kulanthaivelu R, Mirshahvalad SA, Avery L, Tsao M, Li Q, Ortega C, Metser U, Hope A, Veit-Haibach P. Contrast Enhanced CT Radiogenomics in a Retrospective NSCLC Cohort: Models, Attempted Validation of a Published Model and the Relevance of the Clinical Context. Acad Radiol 2024; 31:2953-2961. [PMID: 38383258 DOI: 10.1016/j.acra.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
RATIONALE AND OBJECTIVE To develop a radiogenomic predictive model for non-small cell lung cancer (NSCLC) patients studied through contrast enhanced chest computed tomography (CE-CT) targeting the most frequent gene alterations. M&M: A retrospective study of patients with NSCLC imaged with CE-CT before treatment and had their tumor genomics sequenced at our institution was performed. Data was gathered from their imaging studies, their electronic medical records and a web-based database search (cBioPortal.ca). All of the patient data was tabulated for analysis. Two predictive models (M1 & M2) were created using different approaches and a third model was extracted from the literature to also be tested in our population. RESULTS Out of 157 patients, eighty were male (51%) and 124 (79%) had a history of smoking. The three most prevalent genes were KRAS, TP53 and EGFR. The M1 radiomics-only model median AUC were 0.61 (TP53), 0.53 (KRAS) and 0.64 (EGFR) and for M1 radiomics + clinical were 0.61 (TP53), 0.61 (KRAS) and 0.80 (EGFR). The M2 radiomics-only model median AUC were 0.63 (TP53), 0.60 (KRAS) and 0.65 (EGFR) and for M2 radiomics + clinical were 0.64 (TP53), 0.62 (KRAS) and 0.81 (EGFR). The external EGFR radiomic model showed an AUC of 0.69 and 0.86 for the radiomics-only and combined radiomics + clinical respectively. CONCLUSION Our study was able to provide robust predictive radiomics model evaluation for the detection of TP53, KRAS and EGFR. We also compared our performance with an already published model and observed how impactful clinical variables can be on models' performance. CLINICAL RELEVANCE STATEMENT Identifying tumor mutations in patients that can't undergo biopsy is critical for their outcomes. KEYPOINTS • Tumor genomic profiling is critical for treatment selection • CE-CT radiomics produce robust predictive models comparable to those already published • Clinical variables should be considered/included in predictive models.
Collapse
Affiliation(s)
- A Kohan
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada.
| | - R Hinzpeter
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada; Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - R Kulanthaivelu
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - S A Mirshahvalad
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - L Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - M Tsao
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Q Li
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - C Ortega
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - U Metser
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - A Hope
- Department of Radiation Oncology, University Health Network, University of Toronto, ON, Canada
| | - P Veit-Haibach
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
5
|
Li C, Chen H, Zhang B, Fang Y, Sun W, Wu D, Su Z, Shen L, Wei Q. Radiomics Signature Based on Support Vector Machines for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Cancers (Basel) 2023; 15:5134. [PMID: 37958309 PMCID: PMC10648149 DOI: 10.3390/cancers15215134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The objective of this study was to evaluate the discriminative capabilities of radiomics signatures derived from three distinct machine learning algorithms and to identify a robust radiomics signature capable of predicting pathological complete response (pCR) after neoadjuvant chemoradiotherapy in patients diagnosed with locally advanced rectal cancer (LARC). In a retrospective study, 211 LARC patients were consecutively enrolled and divided into a training cohort (n = 148) and a validation cohort (n = 63). From pretreatment contrast-enhanced planning CT images, a total of 851 radiomics features were extracted. Feature selection and radiomics score (Radscore) construction were performed using three different machine learning methods: least absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine (SVM). The SVM-derived Radscore demonstrated a strong correlation with the pCR status, yielding area under the receiver operating characteristic curves (AUCs) of 0.880 and 0.830 in the training and validation cohorts, respectively, outperforming the RF and LASSO methods. Based on this, a nomogram was developed by combining the SVM-based Radscore with clinical indicators to predict pCR after neoadjuvant chemoradiotherapy. The nomogram exhibited superior predictive power, achieving AUCs of 0.910 and 0.866 in the training and validation cohorts, respectively. Calibration curves and decision curve analyses confirmed its appropriateness. The SVM-based Radscore demonstrated promising performance in predicting pCR for LARC patients. The machine learning-driven nomogram, which integrates the Radscore and clinical indicators, represents a valuable tool for predicting pCR in LARC patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Haiyan Chen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Bicheng Zhang
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Wenzheng Sun
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Dang Wu
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Zhuo Su
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Li Shen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| | - Qichun Wei
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (C.L.); (H.C.); (B.Z.); (W.S.); (D.W.); (Z.S.)
| |
Collapse
|
6
|
Rinaldi L, Guerini Rocco E, Spitaleri G, Raimondi S, Attili I, Ranghiero A, Cammarata G, Minotti M, Lo Presti G, De Piano F, Bellerba F, Funicelli G, Volpe S, Mora S, Fodor C, Rampinelli C, Barberis M, De Marinis F, Jereczek-Fossa BA, Orecchia R, Rizzo S, Botta F. Association between Contrast-Enhanced Computed Tomography Radiomic Features, Genomic Alterations and Prognosis in Advanced Lung Adenocarcinoma Patients. Cancers (Basel) 2023; 15:4553. [PMID: 37760521 PMCID: PMC10527057 DOI: 10.3390/cancers15184553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Non-invasive methods to assess mutational status, as well as novel prognostic biomarkers, are warranted to foster therapy personalization of patients with advanced non-small cell lung cancer (NSCLC). This study investigated the association of contrast-enhanced Computed Tomography (CT) radiomic features of lung adenocarcinoma lesions, alone or integrated with clinical parameters, with tumor mutational status (EGFR, KRAS, ALK alterations) and Overall Survival (OS). In total, 261 retrospective and 48 prospective patients were enrolled. A Radiomic Score (RS) was created with LASSO-Logistic regression models to predict mutational status. Radiomic, clinical and clinical-radiomic models were trained on retrospective data and tested (Area Under the Curve, AUC) on prospective data. OS prediction models were trained and tested on retrospective data with internal cross-validation (C-index). RS significantly predicted each alteration at training (radiomic and clinical-radiomic AUC 0.95-0.98); validation performance was good for EGFR (AUC 0.86), moderate for KRAS and ALK (AUC 0.61-0.65). RS was also associated with OS at univariate and multivariable analysis, in the latter with stage and type of treatment. The validation C-index was 0.63, 0.79, and 0.80 for clinical, radiomic, and clinical-radiomic models. The study supports the potential role of CT radiomics for non-invasive identification of gene alterations and prognosis prediction in patients with advanced lung adenocarcinoma, to be confirmed with independent studies.
Collapse
Affiliation(s)
- Lisa Rinaldi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Elena Guerini Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Alberto Ranghiero
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Giulio Cammarata
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Marta Minotti
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Giuliana Lo Presti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Francesca De Piano
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Federica Bellerba
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Gianluigi Funicelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Stefania Volpe
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Serena Mora
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiana Fodor
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiano Rampinelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Massimo Barberis
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Roberto Orecchia
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
- Scientific Direction, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefania Rizzo
- Clinica di Radiologia EOC, Istituto Imaging della Svizzera Italiana (IIMSI), Via Tesserete 46, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Via G. Buffi 13, 6900 Lugano, Switzerland
| | - Francesca Botta
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| |
Collapse
|
7
|
Ninomiya K, Arimura H, Tanaka K, Chan WY, Kabata Y, Mizuno S, Gowdh NFM, Yaakup NA, Liam CK, Chai CS, Ng KH. Three-dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 236:107544. [PMID: 37148668 DOI: 10.1016/j.cmpb.2023.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes. METHODS In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling. RESULTS The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively. CONCLUSION 3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.
Collapse
Affiliation(s)
- Kenta Ninomiya
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Hidetaka Arimura
- Division of Medical Quantum Science, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Kyushu University Hospital, Fukuoka, Japan; Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Radiology Department, Gleneagles Hospital Kuala Lumpur, Jalan Ampang, 50450 Kuala Lumpur, Malaysia
| | - Yutaro Kabata
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichi Mizuno
- Division of Medical Sciences and Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Nur Adura Yaakup
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chong-Kin Liam
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chee-Shee Chai
- Department of Medicine, Faculty of Medicine and Health Science, University Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Faculty of Medicine and Health Sciences, UCSI University, Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
8
|
Gao J, Niu R, Shi Y, Shao X, Jiang Z, Ge X, Wang Y, Shao X. The predictive value of [ 18F]FDG PET/CT radiomics combined with clinical features for EGFR mutation status in different clinical staging of lung adenocarcinoma. EJNMMI Res 2023; 13:26. [PMID: 37014500 PMCID: PMC10073367 DOI: 10.1186/s13550-023-00977-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND This study aims to construct radiomics models based on [18F]FDG PET/CT using multiple machine learning methods to predict the EGFR mutation status of lung adenocarcinoma and evaluate whether incorporating clinical parameters can improve the performance of radiomics models. METHODS A total of 515 patients were retrospectively collected and divided into a training set (n = 404) and an independent testing set (n = 111) according to their examination time. After semi-automatic segmentation of PET/CT images, the radiomics features were extracted, and the best feature sets of CT, PET, and PET/CT modalities were screened out. Nine radiomics models were constructed using logistic regression (LR), random forest (RF), and support vector machine (SVM) methods. According to the performance in the testing set, the best model of the three modalities was kept, and its radiomics score (Rad-score) was calculated. Furthermore, combined with the valuable clinical parameters (gender, smoking history, nodule type, CEA, SCC-Ag), a joint radiomics model was built. RESULTS Compared with LR and SVM, the RF Rad-score showed the best performance among the three radiomics models of CT, PET, and PET/CT (training and testing sets AUC: 0.688, 0.666, and 0.698 vs. 0.726, 0.678, and 0.704). Among the three joint models, the PET/CT joint model performed the best (training and testing sets AUC: 0.760 vs. 0.730). The further stratified analysis found that CT_RF had the best prediction effect for stage I-II lesions (training set and testing set AUC: 0.791 vs. 0.797), while PET/CT joint model had the best prediction effect for stage III-IV lesions (training and testing sets AUC: 0.722 vs. 0.723). CONCLUSIONS Combining with clinical parameters can improve the predictive performance of PET/CT radiomics model, especially for patients with advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Jianxiong Gao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Rong Niu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Yunmei Shi
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Zhenxing Jiang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xinyu Ge
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China
| | - Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, 213003, China.
- Changzhou Key Laboratory of Molecular Imaging, Changzhou, 213003, China.
| |
Collapse
|
9
|
Ge G, Zhang J. Feature selection methods and predictive models in CT lung cancer radiomics. J Appl Clin Med Phys 2023; 24:e13869. [PMID: 36527376 PMCID: PMC9860004 DOI: 10.1002/acm2.13869] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Radiomics is a technique that extracts quantitative features from medical images using data-characterization algorithms. Radiomic features can be used to identify tissue characteristics and radiologic phenotyping that is not observable by clinicians. A typical workflow for a radiomics study includes cohort selection, radiomic feature extraction, feature and predictive model selection, and model training and validation. While there has been increasing attention given to radiomic feature extraction, standardization, and reproducibility, currently, there is a lack of rigorous evaluation of feature selection methods and predictive models. Herein, we review the published radiomics investigations in CT lung cancer and provide an overview of the commonly used radiomic feature selection methods and predictive models. We also compare limitations of various methods in clinical applications and present sources of uncertainty associated with those methods. This review is expected to help raise awareness of the impact of radiomic feature and model selection methods on the integrity of radiomics studies.
Collapse
Affiliation(s)
- Gary Ge
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Jie Zhang
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Zhang G, Li S, Yang K, Shang L, Zhang F, Huang Z, Ren J, Zhang Z, Zhou J, Pu H, Man Q, Kong W. The value of dual-energy spectral CT in differentiating solitary pulmonary tuberculosis and solitary lung adenocarcinoma. Front Oncol 2022; 12:1000028. [PMID: 36531032 PMCID: PMC9748684 DOI: 10.3389/fonc.2022.1000028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND To explore the value of dual-energy spectral CT in distinguishing solitary pulmonary tuberculosis (SP-TB) from solitary lung adenocarcinoma (S-LUAD). METHODS A total of 246 patients confirmed SP-TB (n = 86) or S-LUAD (n = 160) were retrospectively included. Spectral CT parameters include CT40keV value, CT70keV value, iodine concentration (IC), water concentration (WC), effective atomic number (Zeff), and spectral curve slope (λ70keV). Data were measured during the arterial phase (AP) and venous phase (VP). Chi-square test was used to compare categorical variables, Wilcoxon rank-sum test was used to compare continuous variables, and a two-sample t-test was used to compare spectral CT parameters. ROC curves were used to calculate diagnostic efficiency. RESULTS There were significant differences in spectral CT quantitative parameters (including CT40keV value [all P< 0.001] , CT70keV value [all P< 0.001], λ70keV [P< 0.001, and P = 0.027], Zeff [P =0.015, and P = 0.001], and IC [P =0.002, and P = 0.028]) between the two groups during the AP and VP. However, WC (P = 0.930, and P = 0.823) was not statistically different between the two groups. The ROC curve analysis showed that the AUC in the AP and VP was 90.9% (95% CI, 0.873-0.945) and 83.4% (95% CI, 0.780-0.887), respectively. The highest diagnostic performance (AUC, 97.6%; 95% CI, 0.961-0.991) was achieved when all spectral CT parameters were combined with clinical variables. CONCLUSION Dual-energy spectral CT has a significant value in distinguishing SP-TB from S-LUAD.
Collapse
Affiliation(s)
- Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ke Yang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lan Shang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Feng Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zixin Huang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Zhuoli Zhang
- Department of Radiology and BME, University of California Irvine, Irvine, CA, United States
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qiong Man
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Weifang Kong
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
11
|
Herrera Ortiz AF, Garland ME, Almarie B. Clinical and Radiological Characteristics to Differentiate Between EGFR Exon 21 and Exon 19 Mutations in Patients With Lung Adenocarcinoma: A Systematic Literature Review and Meta-Analysis. Cureus 2022; 14:e25446. [PMID: 35774697 PMCID: PMC9238903 DOI: 10.7759/cureus.25446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 12/02/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) mutations in lung adenocarcinoma have been previously associated with specific clinical characteristics and Computed Tomography (CT) patterns. However, associations among individual EGFR mutations have not been evaluated. We aim to differentiate if the most common EGFR mutations (exon 21 and 19) are related to specific clinical characteristics or CT patterns. A systematic review and meta-analysis of 5 databases were conducted with literature from January 2002 to July 2021. Eligible studies were of an experimental or observational design that included lung adenocarcinoma patients with confirmed EGFR exon mutations (21 and 19) and associated clinical characteristics and CT imaging patterns. Quality was assessed using the QUADAS-2 tool. The association between clinical and CT patterns and EGFR exon mutations 21 and 19 was evaluated using odds ratios (OR) and then pooled and analyzed with a fixed or random-effects model. This study follows the preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines. A total of 12 retrospective diagnostic accuracy studies were included. Pooled analysis showed that characteristics such as absence of smoking status (OR 1.29 [95% CI 0.97 - 1.70]), and female sex (OR 1.23 [95% CI 0.83 - 1.82]); and CT patterns such as Ground Glass Opacities (GGO) (OR 1.03 [95% CI 0.78 -1.34]), air bronchogram (OR 0.78 [95% CI 0.44 -1.39]), pleural retraction (OR 0.83 [95% CI 0.53 - 1.28]), and spiculation (OR 0.80 [95% CI 0.48 - 1.31]) were not significantly associated to a specific mutation. Specific EGFR exon 21 and 19 mutations cannot be differentiated through characteristics (absence of smoking status and female sex) or radiological patterns (GGO, air bronchogram, pleural retraction, and speculation). There is limited data to assess if early disease stage or vascular convergence aids in differentiating exon 21 from 19 mutations in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Mateo E Garland
- Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Bassel Almarie
- PPCR, Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
12
|
Zhang G, Deng L, Zhang J, Cao Y, Li S, Ren J, Qian R, Peng S, Zhang X, Zhou J, Zhang Z, Kong W, Pu H. Development of a Nomogram Based on 3D CT Radiomics Signature to Predict the Mutation Status of EGFR Molecular Subtypes in Lung Adenocarcinoma: A Multicenter Study. Front Oncol 2022; 12:889293. [PMID: 35574401 PMCID: PMC9098955 DOI: 10.3389/fonc.2022.889293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThis study aimed to noninvasively predict the mutation status of epidermal growth factor receptor (EGFR) molecular subtype in lung adenocarcinoma based on CT radiomics features.MethodsIn total, 728 patients with lung adenocarcinoma were included, and divided into three groups according to EGFR mutation subtypes. 1727 radiomics features were extracted from the three-dimensional images of each patient. Wilcoxon test, least absolute shrinkage and selection operator regression, and multiple logistic regression were used for feature selection. ROC curve was used to evaluate the predictive performance of the model. Nomogram was constructed by combining radiomics features and clinical risk factors. Calibration curve was used to evaluate the goodness of fit of the model. Decision curve analysis was used to evaluate the clinical applicability of the model.ResultsThere were three, two, and one clinical factor and fourteen, thirteen, and four radiomics features, respectively, which were significantly related to each EGFR molecular subtype. Compared with the clinical and radiomics models, the combined model had the highest predictive performance in predicting EGFR molecular subtypes [Del-19 mutation vs. wild-type, AUC=0.838 (95% CI, 0.799-0.877); L858R mutation vs. wild-type, AUC=0.855 (95% CI, 0.817-0.894); and Del-19 mutation vs. L858R mutation, AUC=0.906 (95% CI, 0.869-0.943), respectively], and it has a stable performance in the validation set [AUC was 0.813 (95% CI, 0.740-0.886), 0.852 (95% CI, 0.790-0.913), and 0.875 (95% CI, 0.781-0.929), respectively].ConclusionOur combined model showed good performance in predicting EGFR molecular subtypes in patients with lung adenocarcinoma. This model can be applied to patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guojin Zhang, ; Hong Pu, ; Weifang Kong,
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Zhang
- Department of Radiology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Yuntai Cao
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Rong Qian
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shengkun Peng
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaodi Zhang
- Clinical Science Department, Philips (China) Investment Co., Ltd., Chengdu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhuoli Zhang
- Department of Radiology and BME, University of California Irvine, Irvine, CA, United States
| | - Weifang Kong
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guojin Zhang, ; Hong Pu, ; Weifang Kong,
| | - Hong Pu
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guojin Zhang, ; Hong Pu, ; Weifang Kong,
| |
Collapse
|
13
|
Jiang Y, Wang Y, Fu S, Chen T, Zhou Y, Zhang X, Chen C, He LN, Du W, Li H, Lin Z, Zhao Y, Yang Y, Zhao H, Fang W, Huang Y, Hong S, Zhang L. A CT-based radiomics model to predict subsequent brain metastasis in patients with ALK-rearranged non-small cell lung cancer undergoing crizotinib treatment. Thorac Cancer 2022; 13:1558-1569. [PMID: 35437945 PMCID: PMC9161316 DOI: 10.1111/1759-7714.14386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, therefore, allowing for selection of enriched patient populations for prevention therapies. Methods A total of 75 eligible patients were enrolled from Sun Yat‐sen University Cancer Center between June 2014 and September 2019. The primary endpoint was brain metastasis‐free survival (BMFS), estimated from the initiation of crizotinib to the date of the occurrence of BM. Patients were randomly divided into two cohorts for model training (n = 51) and validation (n = 24), respectively. A radiomics signature was constructed based on features extracted from chest CT before crizotinib treatment. Clinical model was developed using the Cox proportional hazards model. Log‐rank test was performed to describe the difference of BMFS risk. Results Patients with low radiomics score had significantly longer BMFS than those with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048). The nomogram combining smoking history and the radiomics signature showed good performance for the estimation of BMFS, both in the training (concordance index [C‐index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort (C‐index, 0.724; 95% CI, 0.601–0.847). Conclusion We have developed a CT‐based radiomics model to predict subsequent BM in patients with non‐brain metastatic NSCLC undergoing crizotinib treatment. Selection of an enriched patient population at high BM risk will facilitate the design of clinical trials or strategies to prevent BM.
Collapse
Affiliation(s)
- Yongluo Jiang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixing Wang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha Fu
- Cellular & Molecular Diagnostics Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixin Zhou
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuanye Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chen Chen
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Na He
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Du
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haifeng Li
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zuan Lin
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaodong Hong
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
14
|
Zhu JM, Sun L, Wang L, Zhou TC, Yuan Y, Zhen X, Liao ZW. Radiomics combined with clinical characteristics predicted the progression-free survival time in first-line targeted therapy for advanced non-small cell lung cancer with EGFR mutation. BMC Res Notes 2022; 15:140. [PMID: 35422007 PMCID: PMC9008953 DOI: 10.1186/s13104-022-06019-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/27/2022] [Indexed: 11/11/2022] Open
Abstract
Objective This study was to explore the most appropriate radiomics modeling method to predict the progression-free survival of EGFR-TKI treatment in advanced non-small cell lung cancer with EGFR mutations. Different machine learning methods may vary considerably and the selection of a proper model is essential for accurate treatment outcome prediction. Our study were established 176 discrimination models constructed with 22 feature selection methods and 8 classifiers. The predictive performance of each model were evaluated using the AUC, ACC, sensitivity and specificity, where the optimal model was identified. Results There were totally 107 radiomics features and 7 clinical features obtained from each patient. After feature selection, the top-ten most relevant features were fed to train 176 models. Significant performance variations were observed in the established models, with the best performance achieved by the logistic regression model using gini-index feature selection (AUC = 0.797, ACC = 0.722, sensitivity = 0.758, specificity = 0.693). The median R-score was 0.518 (IQR, 0.023–0.987), and the patients were divided into high-risk and low-risk groups based on this cut-off value. The KM survival curves of the two groups demonstrated evident stratification results (p = 0.000). Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06019-x.
Collapse
Affiliation(s)
- Jian-Man Zhu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Lei Sun
- Department of Radiation Oncology, Affiliated Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Linjing Wang
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Tong-Chong Zhou
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Xin Zhen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Zhi-Wei Liao
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
15
|
Anagnostopoulos AK, Gaitanis A, Gkiozos I, Athanasiadis EI, Chatziioannou SN, Syrigos KN, Thanos D, Chatziioannou AN, Papanikolaou N. Radiomics/Radiogenomics in Lung Cancer: Basic Principles and Initial Clinical Results. Cancers (Basel) 2022; 14:cancers14071657. [PMID: 35406429 PMCID: PMC8997041 DOI: 10.3390/cancers14071657] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Radiogenomics is a promising new approach in cancer assessment, providing an evaluation of the molecular basis of imaging phenotypes after establishing associations between radiological features and molecular features at the genomic–transcriptomic–proteomic level. This review focuses on describing key aspects of radiogenomics while discussing limitations of translatability to the clinic and possible solutions to these challenges, providing the clinician with an up-to-date handbook on how to use this new tool. Abstract Lung cancer is the leading cause of cancer-related deaths worldwide, and elucidation of its complicated pathobiology has been traditionally targeted by studies incorporating genomic as well other high-throughput approaches. Recently, a collection of methods used for cancer imaging, supplemented by quantitative aspects leading towards imaging biomarker assessment termed “radiomics”, has introduced a novel dimension in cancer research. Integration of genomics and radiomics approaches, where identifying the biological basis of imaging phenotypes is feasible due to the establishment of associations between molecular features at the genomic–transcriptomic–proteomic level and radiological features, has recently emerged termed radiogenomics. This review article aims to briefly describe the main aspects of radiogenomics, while discussing its basic limitations related to lung cancer clinical applications for clinicians, researchers and patients.
Collapse
Affiliation(s)
- Athanasios K. Anagnostopoulos
- Division of Biotechnology, Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11525 Athens, Greece
- Correspondence:
| | - Anastasios Gaitanis
- Clinical and Translational Research, Center of Experimental Surgery, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Ioannis Gkiozos
- Third Department of Internal Medicine, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.G.); (K.N.S.)
| | - Emmanouil I. Athanasiadis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.I.A.); (D.T.)
| | - Sofia N. Chatziioannou
- Nuclear Medicine Division, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Konstantinos N. Syrigos
- Third Department of Internal Medicine, “Sotiria” Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.G.); (K.N.S.)
| | - Dimitris Thanos
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.I.A.); (D.T.)
| | - Achilles N. Chatziioannou
- First Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papanikolaou
- Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
- Machine Learning Group, The Royal Marsden, London SM2 5MG, UK
- The Institute of Cancer Research, London SM2 5MG, UK
- Karolinska Institutet, 14186 Stockholm, Sweden
- Institute of Computer Science, FORTH, 70013 Heraklion, Greece
| |
Collapse
|
16
|
Huang X, Sun Y, Tan M, Ma W, Gao P, Qi L, Lu J, Yang Y, Wang K, Chen W, Jin L, Kuang K, Duan S, Li M. Three-Dimensional Convolutional Neural Network-Based Prediction of Epidermal Growth Factor Receptor Expression Status in Patients With Non-Small Cell Lung Cancer. Front Oncol 2022; 12:772770. [PMID: 35186727 PMCID: PMC8848731 DOI: 10.3389/fonc.2022.772770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives EGFR testing is a mandatory step before targeted therapy for non-small cell lung cancer patients. Combining some quantifiable features to establish a predictive model of EGFR expression status, break the limitations of tissue biopsy. Materials and Methods We retrospectively analyzed 1074 patients of non-small cell lung cancer with complete reports of EGFR gene testing. Then manually segmented VOI, captured the clinicopathological features, analyzed traditional radiology features, and extracted radiomic, and deep learning features. The cases were randomly divided into training and test set. We carried out feature screening; then applied the light GBM algorithm, Resnet-101 algorithm, logistic regression to develop sole models, and fused models to predict EGFR mutation conditions. The efficiency of models was evaluated by ROC and PRC curves. Results We successfully established Modelclinical, Modelradiomic, ModelCNN (based on clinical-radiology, radiomic and deep learning features respectively), Modelradiomic+clinical (combining clinical-radiology and radiomic features), and ModelCNN+radiomic+clinical (combining clinical-radiology, radiomic, and deep learning features). Among the prediction models, ModelCNN+radiomic+clinical showed the highest performance, followed by ModelCNN, and then Modelradiomic+clinical. All three models were able to accurately predict EGFR mutation with AUC values of 0.751, 0.738, and 0.684, respectively. There was no significant difference in the AUC values between ModelCNN+radiomic+clinical and ModelCNN. Further analysis showed that ModelCNN+radiomic+clinical effectively improved the efficacy of Modelradiomic+clinical and showed better efficacy than ModelCNN. The inclusion of clinical-radiology features did not effectively improve the efficacy of Modelradiomic. Conclusions Either deep learning or radiomic signature-based models can provide a fairly accurate non-invasive prediction of EGFR expression status. The model combined both features effectively enhanced the performance of radiomic models and provided marginal enhancement to deep learning models. Collectively, fusion models offer a novel and more reliable way of providing the efficacy of currently developed prediction models, and have far-reaching potential for the optimization of noninvasive EGFR mutation status prediction methods.
Collapse
Affiliation(s)
- Xuemei Huang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Yingli Sun
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Mingyu Tan
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Weiling Ma
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Pan Gao
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Jinjuan Lu
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Yuling Yang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Kun Wang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Wufei Chen
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| | | | - Shaofeng Duan
- Precision Health Institution, GE Healthcare, Shanghai, China
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, Shanghai, China
| |
Collapse
|
17
|
Ma JW, Li M. Molecular typing of lung adenocarcinoma with computed tomography and CT image-based radiomics: a narrative review of research progress and prospects. Transl Cancer Res 2022; 10:4217-4231. [PMID: 35116717 PMCID: PMC8797562 DOI: 10.21037/tcr-21-1037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Objective The purpose of this paper was to perform a narrative review of current research evidence on conventional computed tomography (CT) imaging features and CT image-based radiomic features for predicting gene mutations in lung adenocarcinoma and discuss how to translate the research findings to guide future practice. Background Lung cancer, especially lung adenocarcinoma, is the leading cause of cancer-related deaths. With advances in the diagnosis and treatment of lung adenocarcinoma with the emergence of molecular testing, the prediction of oncogenes and even drug resistance gene mutations have become key to individualized and precise clinical treatment in order to prolong survival and improve quality of life. The progress of imageological examination includes the development of CT and radiomics are promising quantitative methods for predicting different gene mutations in lung adenocarcinoma, especially common mutations, such as epidermal growth factor receptor (EGFR) mutation, anaplastic lymphoma kinase (ALK) mutation and Kirsten rat sarcoma viral oncogene (KRAS) mutation. Methods The PubMed electronic database was searched along with a set of terms specific to lung adenocarcinoma, radiomics (including texture analysis), CT, computed tomography, EGFR, ALK, KRAS, rearranging transfection (RET) rearrangement and c-ros oncogene 1 (ROS-1), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), and human epidermal growth factor receptor 2 (HER2) mutations et al. This review has been reported in compliance with the Narrative Review checklist guidelines. From each full-text article, information was extracted regarding a set of terms above. Conclusions Research on the application of conventional CT features and CT image-based radiomic features for predicting the gene mutation status of lung adenocarcinoma is still in a preliminary stage. Noninvasively determination of mutation status in lung adenocarcinoma before targeted therapy with conventional CT features and CT image-based radiomic features remains both hopes and challenges. Before radiomics could be applied in clinical practice, more work needs to be done.
Collapse
Affiliation(s)
- Jing-Wen Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Araujo-Filho JAB, Mayoral M, Horvat N, Santini F, Gibbs P, Ginsberg MS. Radiogenomics in personalized management of lung cancer patients: Where are we? Clin Imaging 2022; 84:54-60. [DOI: 10.1016/j.clinimag.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
|
19
|
The application of radiomics in predicting gene mutations in cancer. Eur Radiol 2022; 32:4014-4024. [DOI: 10.1007/s00330-021-08520-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
|
20
|
Liu Y, Zhou J, Wu J, Wang W, Wang X, Guo J, Wang Q, Zhang X, Li D, Xie J, Ding X, Xing Y, Hu D. Development and Validation of Machine Learning Models to Predict Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer: A Multi-Center Retrospective Radiomics Study. Cancer Control 2022; 29:10732748221092926. [PMID: 35417660 PMCID: PMC9016531 DOI: 10.1177/10732748221092926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective To develop and validate a generalized prediction model that can classify
epidermal growth factor receptor (EGFR) mutation status in
non–small cell lung cancer patients. Methods A total of 346 patients (296 in the training cohort and 50 in the validation
cohort) from four centers were included in this retrospective study. First,
1085 features were extracted using IBEX from the computed tomography images.
The features were screened using the intraclass correlation coefficient,
hypothesis tests and least absolute shrinkage and selection operator.
Logistic regression (LR), decision tree (DT), random forest (RF), and
support vector machine (SVM) were used to build a radiomics model for
classification. The models were evaluated using the following metrics: area
under the curve (AUC), calibration curve (CAL), decision curve analysis
(DCA), concordance index (C-index), and Brier score. Results Sixteen features were selected, and models were built using LR, DT, RF, and
SVM. In the training cohort, the AUCs was .723, .842, .995, and .883; In the
validation cohort, the AUCs were .658, 0567, .88, and .765. RF model with
the best AUC, its CAL, C-index (training cohort=.998; validation
cohort=.883), and Brier score (training cohort=.007; validation
cohort=0.137) showed a satisfactory predictive accuracy; DCA indicated that
the RF model has better clinical application value. Conclusion Machine learning models based on computed tomography images can be used to
evaluate EGFR status in patients with non–small cell lung
cancer, and the RF model outperformed LR, DT, and SVM.
Collapse
Affiliation(s)
- Yafeng Liu
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Jiawei Zhou
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Jing Wu
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Wenyang Wang
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Xueqin Wang
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Jianqiang Guo
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Qingsen Wang
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Xin Zhang
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Danting Li
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Jun Xie
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, 91594Anhui University of Science and Technology, Huainan, P.R. China
| | - Xuansheng Ding
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China.,Cancer Hospital of Anhui University of Science and Technology, Huainan, P.R. China.,School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingru Xing
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China.,Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, P.R. China
| | - Dong Hu
- School of Medicine, 91594Anhui University of Science and Technology, Huainan, P.R. China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, 91594Anhui University of Science and Technology, Huainan, P.R. China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, 91594Anhui University of Science and Technology, Huainan, P.R. China
| |
Collapse
|
21
|
Ortiz AFH, Camacho TC, Vásquez AF, del Castillo Herazo V, Neira JGA, Yepes MM, Camacho EC. Clinical and CT patterns to predict EGFR mutation in patients with non-small cell lung cancer: A systematic literature review and meta-analysis. Eur J Radiol Open 2022; 9:100400. [PMID: 35198656 PMCID: PMC8844749 DOI: 10.1016/j.ejro.2022.100400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose This study aims to determine if the presence of specific clinical and computed tomography (CT) patterns are associated with epidermal growth factor receptor (EGFR) mutation in patients with non-small cell lung cancer. Methods A systematic literature review and meta-analysis was carried out in 6 databases between January 2002 and July 2021. The relationship between clinical and CT patterns to detect EGFR mutation was measured and pooled using odds ratios (OR). These results were used to build several mathematical models to predict EGFR mutation. Results 34 retrospective diagnostic accuracy studies met the inclusion and exclusion criteria. The results showed that ground-glass opacities (GGO) have an OR of 1.86 (95%CI 1.34 −2.57), air bronchogram OR 1.60 (95%CI 1.38 – 1.85), vascular convergence OR 1.39 (95%CI 1.12 – 1.74), pleural retraction OR 1.99 (95%CI 1.72 – 2.31), spiculation OR 1.42 (95%CI 1.19 – 1.70), cavitation OR 0.70 (95%CI 0.57 – 0.86), early disease stage OR 1.58 (95%CI 1.14 – 2.18), non-smoker status OR 2.79 (95%CI 2.34 – 3.31), female gender OR 2.33 (95%CI 1.97 – 2.75). A mathematical model was built, including all clinical and CT patterns assessed, showing an area under the curve (AUC) of 0.81. Conclusions GGO, air bronchogram, vascular convergence, pleural retraction, spiculated margins, early disease stage, female gender, and non-smoking status are significant risk factors for EGFR mutation. At the same time, cavitation is a protective factor for EGFR mutation. The mathematical model built acts as a good predictor for EGFR mutation in patients with lung adenocarcinoma. GGO, air bronchogram, vascular convergence, pleural retraction, and spiculated margins, are risk factors for EGFR mutation. Early disease stage, female gender and non-smoking status are risk factors for EGFR mutation. Cavitation is a protective factor for EGFR mutation.
Collapse
Affiliation(s)
- Andrés Felipe Herrera Ortiz
- Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Universidad El Bosque, Bogotá, Colombia
- Corresponding author at: Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| | | | - Andrés Francisco Vásquez
- Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Universidad El Bosque, Bogotá, Colombia
| | | | | | - María Mónica Yepes
- Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
22
|
Zhang C, Gu J, Zhu Y, Meng Z, Tong T, Li D, Liu Z, Du Y, Wang K, Tian J. AI in spotting high-risk characteristics of medical imaging and molecular pathology. PRECISION CLINICAL MEDICINE 2021; 4:271-286. [PMID: 35692858 PMCID: PMC8982528 DOI: 10.1093/pcmedi/pbab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Medical imaging provides a comprehensive perspective and rich information for disease diagnosis. Combined with artificial intelligence technology, medical imaging can be further mined for detailed pathological information. Many studies have shown that the macroscopic imaging characteristics of tumors are closely related to microscopic gene, protein and molecular changes. In order to explore the function of artificial intelligence algorithms in in-depth analysis of medical imaging information, this paper reviews the articles published in recent years from three perspectives: medical imaging analysis method, clinical applications and the development of medical imaging in the direction of pathological molecular prediction. We believe that AI-aided medical imaging analysis will be extensively contributing to precise and efficient clinical decision.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Big Data Management and Application, School of International Economics and Management, Beijing Technology and Business University, Beijing 100048, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jionghui Gu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Zhu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheling Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Tong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyang Li
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
23
|
Yang B, Zhou L, Zhong J, Lv T, Li A, Ma L, Zhong J, Yin S, Huang L, Zhou C, Li X, Ge YQ, Tao X, Zhang L, Son Y, Lu G. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer. Respir Res 2021; 22:189. [PMID: 34183009 PMCID: PMC8240400 DOI: 10.1186/s12931-021-01780-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In this study, we tested whether a combination of radiomic features extracted from baseline pre-immunotherapy computed tomography (CT) images and clinicopathological characteristics could be used as novel noninvasive biomarkers for predicting the clinical benefits of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). METHODS The data from 92 consecutive patients with lung cancer who had been treated with ICIs were retrospectively analyzed. In total, 88 radiomic features were selected from the pretreatment CT images for the construction of a random forest model. Radiomics model 1 was constructed based on the Rad-score. Using multivariate logistic regression analysis, the Rad-score and significant predictors were integrated into a single predictive model (radiomics nomogram model 1) to predict the durable clinical benefit (DCB) of ICIs. Radiomics model 2 was developed based on the same Rad-score as radiomics model 1.Using multivariate Cox proportional hazards regression analysis, the Rad-score, and independent risk factors, radiomics nomogram model 2 was constructed to predict the progression-free survival (PFS). RESULTS The models successfully predicted the patients who would benefit from ICIs. For radiomics model 1, the area under the receiver operating characteristic curve values for the training and validation cohorts were 0.848 and 0.795, respectively, whereas for radiomics nomogram model 1, the values were 0.902 and 0.877, respectively. For the PFS prediction, the Harrell's concordance indexes for the training and validation cohorts were 0.717 and 0.760, respectively, using radiomics model 2, whereas they were 0.749 and 0.791, respectively, using radiomics nomogram model 2. CONCLUSIONS CT-based radiomic features and clinicopathological factors can be used prior to the initiation of immunotherapy for identifying NSCLC patients who are the most likely to benefit from the therapy. This could guide the individualized treatment strategy for advanced NSCLC.
Collapse
Affiliation(s)
- Bin Yang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Li Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China
| | - Jing Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China
| | - Ang Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Lu Ma
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jian Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Saisai Yin
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Litang Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Southeast University, Sch Med, Nanjing, 210002, Nanjing, China
| | - Changsheng Zhou
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xinyu Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Ying Qian Ge
- Siemens Healthineers Ltd., Shanghai, 200000, China
| | - Xinwei Tao
- Siemens Healthineers Ltd., Shanghai, 200000, China
| | - Longjiang Zhang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Yong Son
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Sch Med, Nanjing, 210002, Jiangsu, China.
| | - Guangming Lu
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
24
|
La Greca Saint-Esteven A, Vuong D, Tschanz F, van Timmeren JE, Dal Bello R, Waller V, Pruschy M, Guckenberger M, Tanadini-Lang S. Systematic Review on the Association of Radiomics with Tumor Biological Endpoints. Cancers (Basel) 2021; 13:cancers13123015. [PMID: 34208595 PMCID: PMC8234501 DOI: 10.3390/cancers13123015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.
Collapse
Affiliation(s)
- Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
- Correspondence:
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Fabienne Tschanz
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Verena Waller
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Martin Pruschy
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| |
Collapse
|
25
|
Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become a paradigm for precision medicine in oncology, and liquid biopsy (LB) together with radiomics may have a great potential in this scenario. They are both minimally invasive, easy to perform, and can be repeated during patient's follow-up. Also, increasing evidence suggest that LB and radiomics may provide an efficient way to screen and diagnose tumors at an early stage, including the monitoring of any change in the tumor molecular profile. This could allow treatment optimization, improvement of patients' quality of life, and healthcare-related costs reduction. Latest reports on lung cancer patients suggest a combination of these two strategies, along with cutting-edge data analysis, to decode valuable information regarding tumor type, aggressiveness, progression, and response to treatment. The approach seems more compatible with clinical practice than the current standard, and provides new diagnostic companions being able to suggest the best treatment strategy compared to conventional methods. To implement radiomics and liquid biopsy directly into clinical practice, an artificial intelligence (AI)-based system could help to link patients' clinical data together with tumor molecular profiles and imaging characteristics. AI could also solve problems and limitations related to LB and radiomics methodologies. Further work is needed, including new health policies and the access to large amounts of high-quality and well-organized data, allowing a complementary and synergistic combination of LB and imaging, to provide an attractive choice e in the personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Chiara Romei
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Simona Valleggi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa De Liperi
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Zhu Y, Guo YB, Xu D, Zhang J, Liu ZG, Wu X, Yang XY, Chang DD, Xu M, Yan J, Ke ZF, Feng ST, Liu YL. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor ( EGFR) in patients with advanced lung adenocarcinomas (LUAD). ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:545. [PMID: 33987243 DOI: 10.21037/atm-20-6473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Epidermal growth factor receptor (EGFR) co-mutated with TP53 could reduce responsiveness to tyrosine kinase inhibitors (TKIs) and worsen patients' prognosis compared to TP53 wild type patients in. EGFR mutated lung adenocarcinomas (LUAD). To identify this genetically unique subset prior to treatment through computed tomography (CT) images had not been reported yet. Methods Stage III and IV LUAD with known mutation status of EGFR and TP53 from The First Affiliated Hospital of Sun Yat-sen University (May 1, 2017 to June 1, 2020) were collected. Characteristics of pretreatment enhanced-CT images were analyzed. One-versus-one was used as the multiclass classification strategy to distinguish the three subtypes of co-mutations: EGFR + & TP53 +, EGFR + & TP53 -, EGFR -. The clinical model, semantic model, radiomics model and integrated model were built. Area under the receiver-operating characteristic curves (AUCs) were used to evaluate the prediction efficacy. Results A total of 199 patients were enrolled, including 83 (42%) cases of EGFR -, 55 (28%) cases of EGFR + & TP53 +, 61 (31%) cases of EGFR + & TP53 -. Among the four different models, the integrated model displayed the best performance for all the three subtypes of co-mutations: EGFR - (AUC, 0.857; accuracy, 0.817; sensitivity, 0.998; specificity, 0.663), EGFR + & TP53 + (AUC, 0.791; accuracy, 0.758; sensitivity, 0.762; specificity, 0.783), EGFR + & TP53 - (AUC, 0.761; accuracy, 0.813; sensitivity, 0.594; specificity, 0.977). The radiomics model was slightly inferior to the integrated model. The results for the clinical and the semantic models were dissatisfactory, with AUCs less than 0.700 for all the three subtypes. Conclusions CT imaging based artificial intelligence (AI) is expected to distinguish co-mutation status involving TP53 and EGFR. The proposed integrated model may serve as an important alternative marker for preselecting patients who will be adaptable to and sensitive to TKIs.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Biao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Di Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen-Guo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Wu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan-Dan Chang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Xu
- Scientific Collaboration, CT-MR Division, Canon Medical System (China), Beijing, China
| | - Jing Yan
- Scientific Collaboration, CT-MR Division, Canon Medical System (China), Beijing, China
| | - Zun-Fu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang-Li Liu
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Yang Y, Yang J, Shen L, Chen J, Xia L, Ni B, Ge L, Wang Y, Lu S. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am J Transl Res 2021; 13:743-756. [PMID: 33594323 PMCID: PMC7868825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Only 20% NSCLC patients benefit from immunotherapy with a durable response. Current biomarkers are limited by the availability of samples and do not accurately predict who will benefit from immunotherapy. To develop a unified deep learning model to integrate multimodal serial information from CT with laboratory and baseline clinical information. We retrospectively analyzed 1633 CT scans and 3414 blood samples from 200 advanced stage NSCLC patients who received single anti-PD-1/PD-L1 agent between April 2016 and December 2019. Multidimensional information, including serial radiomics, laboratory data and baseline clinical data, was used to develop and validate deep learning models to identify immunotherapy responders and nonresponders. A Simple Temporal Attention (SimTA) module was developed to process asynchronous time-series imaging and laboratory data. Using cross-validation, the 90-day deep learning-based predicting model showed a good performance in distinguishing responders from nonresponders, with an area under the curve (AUC) of 0.80 (95% CI: 0.74-0.86). Before immunotherapy, we stratified the patients into high- and low-risk nonresponders using the model. The low-risk group had significantly longer progression-free survival (PFS) (8.4 months, 95% CI: 5.49-11.31 vs. 1.5 months, 95% CI: 1.29-1.71; HR 3.14, 95% CI: 2.27-4.33; log-rank test, P<0.01) and overall survival (OS) (26.7 months, 95% CI: 18.76-34.64 vs. 8.6 months, 95% CI: 4.55-12.65; HR 2.46, 95% CI: 1.73-3.51; log-rank test, P<0.01) than the high-risk group. An exploratory analysis of 93 patients with stable disease (SD) [after first efficacy assessment according to the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1] also showed that the 90-day model had a good prediction of survival and low-risk patients had significantly longer PFS (11.1 months, 95% CI: 10.24-11.96 vs. 3.3 months, 95% CI: 0.34-6.26; HR 2.93, 95% CI: 1.69-5.10; log-rank test, P<0.01) and OS (31.7 months, 95% CI: 23.64-39.76 vs. 17.2 months, 95% CI: 7.22-27.18; HR 2.22, 95% CI: 1.17-4.20; log-rank test, P=0.01) than high-risk patients. In conclusion, the SimTA-based multi-omics serial deep learning provides a promising methodology for predicting response of advanced NSCLC patients to anti-PD-1/PD-L1 monotherapy. Moreover, our model could better differentiate survival benefit among SD patients than the traditional RECIST evaluation method.
Collapse
Affiliation(s)
- Yi Yang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Jiancheng Yang
- Department of Electronic Engineering, Shanghai Jiao Tong UniversityShanghai, China
- MoE Key Lab of Artificial Intelligence, Artificial Intelligence Institute, Shanghai Jiao Tong UniversityShanghai, China
- Dianei TechnologyShanghai, China
| | - Lan Shen
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | | | - Liliang Xia
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Bingbing Ni
- Department of Electronic Engineering, Shanghai Jiao Tong UniversityShanghai, China
- MoE Key Lab of Artificial Intelligence, Artificial Intelligence Institute, Shanghai Jiao Tong UniversityShanghai, China
| | - Liang Ge
- Dianei TechnologyShanghai, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
28
|
Zhang B, Qi S, Pan X, Li C, Yao Y, Qian W, Guan Y. Deep CNN Model Using CT Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung Adenocarcinoma. Front Oncol 2021; 10:598721. [PMID: 33643902 PMCID: PMC7907520 DOI: 10.3389/fonc.2020.598721] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
To recognize the epidermal growth factor receptor (EGFR) gene mutation status in lung adenocarcinoma (LADC) has become a prerequisite of deciding whether EGFR-tyrosine kinase inhibitor (EGFR-TKI) medicine can be used. Polymerase chain reaction assay or gene sequencing is for measuring EGFR status, however, the tissue samples by surgery or biopsy are required. We propose to develop deep learning models to recognize EGFR status by using radiomics features extracted from non-invasive CT images. Preoperative CT images, EGFR mutation status and clinical data have been collected in a cohort of 709 patients (the primary cohort) and an independent cohort of 205 patients. After 1,037 CT-based radiomics features are extracted from each lesion region, 784 discriminative features are selected for analysis and construct a feature mapping. One Squeeze-and-Excitation (SE) Convolutional Neural Network (SE-CNN) has been designed and trained to recognize EGFR status from the radiomics feature mapping. SE-CNN model is trained and validated by using 638 patients from the primary cohort, tested by using the rest 71 patients (the internal test cohort), and further tested by using the independent 205 patients (the external test cohort). Furthermore, SE-CNN model is compared with machine learning (ML) models using radiomics features, clinical features, and both features. EGFR(-) patients show the smaller age, higher odds of female, larger lesion volumes, and lower odds of subtype of acinar predominant adenocarcinoma (APA), compared with EGFR(+). The most discriminative features are for texture (614, 78.3%) and the features of first order of intensity (158, 20.1%) and the shape features (12, 1.5%) follow. SE-CNN model can recognize EGFR mutation status with an AUC of 0.910 and 0.841 for the internal and external test cohorts, respectively. It outperforms the CNN model without SE, the fine-tuned VGG16 and VGG19, three ML models, and the state-of-art models. Utilizing radiomics feature mapping extracted from non-invasive CT images, SE-CNN can precisely recognize EGFR mutation status of LADC patients. The proposed method combining radiomics features and deep leaning is superior to ML methods and can be expanded to other medical applications. The proposed SE-CNN model may help make decision on usage of EGFR-TKI medicine.
Collapse
Affiliation(s)
- Baihua Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohuan Pan
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, TX, United States
| | - Yubao Guan
- Department of Radiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Zhang G, Cao Y, Zhang J, Ren J, Zhao Z, Zhang X, Li S, Deng L, Zhou J. Predicting EGFR mutation status in lung adenocarcinoma: development and validation of a computed tomography-based radiomics signature. Am J Cancer Res 2021; 11:546-560. [PMID: 33575086 PMCID: PMC7868761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023] Open
Abstract
Patients with epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma can benefit from targeted therapy. However, noninvasively determination of EGFR mutation status before targeted therapy remains a challenge. This study constructed a nomogram based on a combination of radiomics features with the clinical and radiological features to predict the EGFR mutation status. The least absolute shrinkage and selection operator (LASSO) and Wilcoxon test were used for feature selection. Decision tree (DT), logistic regression (LR), and support vector machine (SVM) classifiers were used for radiomics model building. Used the clinical and radiological features establish clinical-radiology (C-R) model. The C-R model with the best radiomics model to establish clinical-radiological-radiomics (C-R-R) model. The predictive performance of the model was evaluated by ROC and calibration curves, and the clinical usefulness was assessed by a decision curve analysis. The current study showed that twelve radiomics features were significantly associated with EGFR mutations. The best radiomics signature model was obtained using the SVM classifier. The C-R-R model had the best distinguishing ability for predicting the EGFR mutation status, with an AUC of 0.849 (95% CI, 0.805-0.893) and 0.835 (95% CI, 0.761-0.909) in the development and validation cohorts, respectively. Our study provides a non-invasive C-R-R model that combines CT-based radiomics features with clinical and radiological features, which can provide useful image-based biological information for targeted therapy candidates.
Collapse
Affiliation(s)
- Guojin Zhang
- Second Clinical School, Lanzhou UniversityLanzhou, China
- Key Laboratory of Medical ImagingLanzhou, Gansu Province, China
- Department of Radiology, Lanzhou University Second HospitalLanzhou, China
| | - Yuntai Cao
- Second Clinical School, Lanzhou UniversityLanzhou, China
- Key Laboratory of Medical ImagingLanzhou, Gansu Province, China
| | - Jing Zhang
- Second Clinical School, Lanzhou UniversityLanzhou, China
- Key Laboratory of Medical ImagingLanzhou, Gansu Province, China
| | | | - Zhiyong Zhao
- Second Clinical School, Lanzhou UniversityLanzhou, China
- Key Laboratory of Medical ImagingLanzhou, Gansu Province, China
| | - Xiaodi Zhang
- Philips (China) Investment Co., Ltd.Chengdu Branch, China
| | - Shenglin Li
- Second Clinical School, Lanzhou UniversityLanzhou, China
- Key Laboratory of Medical ImagingLanzhou, Gansu Province, China
| | - Liangna Deng
- Second Clinical School, Lanzhou UniversityLanzhou, China
- Key Laboratory of Medical ImagingLanzhou, Gansu Province, China
| | - Junlin Zhou
- Key Laboratory of Medical ImagingLanzhou, Gansu Province, China
- Department of Radiology, Lanzhou University Second HospitalLanzhou, China
| |
Collapse
|
30
|
Ninomiya K, Arimura H, Chan WY, Tanaka K, Mizuno S, Muhammad Gowdh NF, Yaakup NA, Liam CK, Chai CS, Ng KH. Robust radiogenomics approach to the identification of EGFR mutations among patients with NSCLC from three different countries using topologically invariant Betti numbers. PLoS One 2021; 16:e0244354. [PMID: 33428651 PMCID: PMC7799813 DOI: 10.1371/journal.pone.0244354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives To propose a novel robust radiogenomics approach to the identification of epidermal growth factor receptor (EGFR) mutations among patients with non-small cell lung cancer (NSCLC) using Betti numbers (BNs). Materials and methods Contrast enhanced computed tomography (CT) images of 194 multi-racial NSCLC patients (79 EGFR mutants and 115 wildtypes) were collected from three different countries using 5 manufacturers’ scanners with a variety of scanning parameters. Ninety-nine cases obtained from the University of Malaya Medical Centre (UMMC) in Malaysia were used for training and validation procedures. Forty-one cases collected from the Kyushu University Hospital (KUH) in Japan and fifty-four cases obtained from The Cancer Imaging Archive (TCIA) in America were used for a test procedure. Radiomic features were obtained from BN maps, which represent topologically invariant heterogeneous characteristics of lung cancer on CT images, by applying histogram- and texture-based feature computations. A BN-based signature was determined using support vector machine (SVM) models with the best combination of features that maximized a robustness index (RI) which defined a higher total area under receiver operating characteristics curves (AUCs) and lower difference of AUCs between the training and the validation. The SVM model was built using the signature and optimized in a five-fold cross validation. The BN-based model was compared to conventional original image (OI)- and wavelet-decomposition (WD)-based models with respect to the RI between the validation and the test. Results The BN-based model showed a higher RI of 1.51 compared with the models based on the OI (RI: 1.33) and the WD (RI: 1.29). Conclusion The proposed model showed higher robustness than the conventional models in the identification of EGFR mutations among NSCLC patients. The results suggested the robustness of the BN-based approach against variations in image scanner/scanning parameters.
Collapse
Affiliation(s)
- Kenta Ninomiya
- Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetaka Arimura
- Faculty of Medical Sciences, Division of Medical Quantum Science, Department of Health Sciences, Kyushu University, Fukuoka, Japan
- * E-mail: (HA); (WYC)
| | - Wai Yee Chan
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (HA); (WYC)
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Shinichi Mizuno
- Division of Medical Sciences and Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Nur Adura Yaakup
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia
| | - Chong-Kin Liam
- Faculty of Medicine, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee-Shee Chai
- Faculty of Medicine and Health Science, Department of Medicine, University Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Kwan Hoong Ng
- Faculty of Medicine, Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Cucchiara F, Del Re M, Valleggi S, Romei C, Petrini I, Lucchesi M, Crucitta S, Rofi E, De Liperi A, Chella A, Russo A, Danesi R. Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer. Front Oncol 2020; 10:593831. [PMID: 33489892 PMCID: PMC7819134 DOI: 10.3389/fonc.2020.593831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background EGFR-positive Non-small Cell Lung Cancer (NSCLC) is a dynamic entity and tumor progression and resistance to tyrosine kinase inhibitors (TKIs) arise from the accumulation, over time and across different disease sites, of subclonal genetic mutations. For instance, the occurrence of EGFR T790M is associated with resistance to gefitinib, erlotinib, and afatinib, while EGFR C797S causes osimertinib to lose activity. Sensitive technologies as radiomics and liquid biopsy have great potential to monitor tumor heterogeneity since they are both minimally invasive, easy to perform, and can be repeated over patient’s follow-up, enabling the extraction of valuable information. Yet, to date, there are no reported cases associating liquid biopsy and radiomics during treatment. Case presentation In this case series, seven patients with metastatic EGFR-positive NSCLC have been monitored during target therapy. Plasma-derived cell free DNA (cfDNA) was analyzed by a digital droplet PCR (ddPCR), while radiomic analyses were performed using the validated LifeX® software on computed tomography (CT)-images. The dynamics of EGFR mutations in cfDNA was compared with that of radiomic features. Then, for each EGFR mutation, a radiomic signature was defines as the sum of the most predictive features, weighted by their corresponding regression coefficients for the least absolute shrinkage and selection operator (LASSO) model. The receiver operating characteristic (ROC) curves were computed to estimate their diagnostic performance. The signatures achieved promising performance on predicting the presence of EGFR mutations (R2 = 0.447, p <0.001 EGFR activating mutations R2 = 0.301, p = 0.003 for T790M; and R2 = 0.354, p = 0.001 for activating plus resistance mutations), confirmed by ROC analysis. Conclusion To our knowledge, these are the first cases to highlight a potentially promising strategy to detect clonal heterogeneity and ultimately identify patients at risk of progression during treatment. Together, radiomics and liquid biopsy could detect the appearance of new mutations and therefore suggest new therapeutic management.
Collapse
Affiliation(s)
- Federico Cucchiara
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Valleggi
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Romei
- Radiology Unit 2, Department of Diagnostics and Imaging, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Iacopo Petrini
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa De Liperi
- Radiology Unit 2, Department of Diagnostics and Imaging, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antonio Chella
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Li J, Li X, Chen X, Ma S. [Research Advances and Obstacles of CT-based Radiomics in Diagnosis and Treatment of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:904-908. [PMID: 32798440 PMCID: PMC7583873 DOI: 10.3779/j.issn.1009-3419.2020.101.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
影像组学是一种基于多模态医学影像处理分析的技术,该技术能够基于高性能计算机及算法从目前普遍使用的计算机断层扫描(computed tomography, CT)、磁共振图像(magnetic resonance imaging, MRI)和正电子发射/断层图像(positron emission tomography/computed tomography, PET/CT)中自动提取海量数据进行分析,对疾病的早期诊断、良恶性肿瘤鉴别、疾病治疗全程管理,个体化精准治疗等需求提供更多有价值信息。近年来,许多研究表明基于CT的影像组学技术在肺癌的早期诊断、基因表型预测、疗效预测及预后评估均有良好的应用价值,且影像学检查具有无创、经济、可重复等优势。其对临床的指导价值已有所展露,在肺癌的个体化、精准化治疗和研究方面具有较大价值,但是,影像组学特征的重复性和一致性问题以及在肺部肿瘤图像提取中的特征筛选还需进一步研究。
Collapse
Affiliation(s)
- Jiawei Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiadong Li
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Xueqin Chen
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Shenglin Ma
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou 310006, China
| |
Collapse
|
33
|
Song Z, Liu T, Shi L, Yu Z, Shen Q, Xu M, Huang Z, Cai Z, Wang W, Xu C, Sun J, Chen M. The deep learning model combining CT image and clinicopathological information for predicting ALK fusion status and response to ALK-TKI therapy in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging 2020; 48:361-371. [PMID: 32794105 DOI: 10.1007/s00259-020-04986-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/31/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to investigate the deep learning model (DLM) combining computed tomography (CT) images and clinicopathological information for predicting anaplastic lymphoma kinase (ALK) fusion status in non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS Preoperative CT images, clinicopathological information as well as the ALK fusion status from 937 patients in three hospitals were retrospectively collected to train and validate the DLM for the prediction of ALK fusion status in tumors. Another cohort of patients (n = 91) received ALK tyrosine kinase inhibitor (TKI) treatment was also included to evaluate the value of the DLM in predicting the clinical outcomes of the patients. RESULTS The performances of the DLM trained only by CT images in the primary and validation cohorts were AUC = 0.8046 (95% CI 0.7715-0.8378) and AUC = 0.7754 (95% CI 0.7199-0.8310), respectively, while the DLM trained by both CT images and clinicopathological information exhibited better performance for the prediction of ALK fusion status (AUC = 0.8540, 95% CI 0.8257-0.8823 in the primary cohort, p < 0.001; AUC = 0.8481, 95% CI 0.8036-0.8926 in the validation cohort, p < 0.001). In addition, the deep learning scores of the DLMs showed significant differences between the wild-type and ALK infusion tumors. In the ALK-target therapy cohort (n = 91), the patients predicted as ALK-positive by the DLM showed better performance of progression-free survival than the patients predicted as ALK-negative (16.8 vs. 7.5 months, p = 0.010). CONCLUSION Our findings showed that the DLM trained by both CT images and clinicopathological information could effectively predict the ALK fusion status and treatment responses of patients. For the small size of the ALK-target therapy cohort, larger data sets would be collected to further validate the performance of the model for predicting the response to ALK-TKI treatment.
Collapse
Affiliation(s)
- Zhengbo Song
- Department of Clinical Trial, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Tianchi Liu
- Shanghai Key Laboratory of Artificial Intelligence for Medical Image and Knowledge Graph, Shanghai, 200336, China
- YITU AI Research Institute for Healthcare, Hangzhou, 310000, Zhejiang, China
| | - Lei Shi
- Shanghai Key Laboratory of Artificial Intelligence for Medical Image and Knowledge Graph, Shanghai, 200336, China
- YITU AI Research Institute for Healthcare, Hangzhou, 310000, Zhejiang, China
| | - Zongyang Yu
- Department of Medical Oncology, 900th Hospital, Fuzhou, 350000, Fujian, China
| | - Qing Shen
- Shanghai Key Laboratory of Artificial Intelligence for Medical Image and Knowledge Graph, Shanghai, 200336, China
- YITU AI Research Institute for Healthcare, Hangzhou, 310000, Zhejiang, China
| | - Mengdi Xu
- Shanghai Key Laboratory of Artificial Intelligence for Medical Image and Knowledge Graph, Shanghai, 200336, China
- YITU AI Research Institute for Healthcare, Hangzhou, 310000, Zhejiang, China
| | - Zhangzhou Huang
- Department of Medical Oncology, Fujian Cancer Hospital, Fuzhou, 350001, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Wenxian Wang
- Department of Clinical Trial, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Chunwei Xu
- Department of Pathology, Fujian Cancer Hospital, Fuzhou, 350001, China
| | - Jingjing Sun
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China
| | - Ming Chen
- Department of Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences(Zhejiang Cancer Hospital), Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
34
|
Zhu Y, Liu YL, Feng Y, Yang XY, Zhang J, Chang DD, Wu X, Tian X, Tang KJ, Xie CM, Guo YB, Feng ST, Ke ZF. A CT-derived deep neural network predicts for programmed death ligand-1 expression status in advanced lung adenocarcinomas. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:930. [PMID: 32953730 PMCID: PMC7475404 DOI: 10.21037/atm-19-4690] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Programmed death ligand-1 (PD-L1) expression remains a crucial predictor in selecting patients for immunotherapy. The current study aimed to non-invasively predict PD-L1 expression based on chest computed tomography (CT) images in advanced lung adenocarcinomas (LUAD), thus help select optimal patients who can potentially benefit from immunotherapy. Methods A total of 127 patients with stage III and IV LUAD were enrolled into this study. Pretreatment enhanced thin-section CT images were available for all patients and were analyzed in terms of both morphologic characteristics by radiologists and deep learning (DL), so to further determine the association between CT features and PD-L1 expression status. Univariate analysis and multivariate logical regression analysis were applied to evaluate significant variables. For DL, the 3D DenseNet model was built and validated. The study cohort were grouped by PD-L1 Tumor Proportion Scores (TPS) cutoff value of 1% (positive/negative expression) and 50% respectively. Results Among 127 LUAD patients, 46 (36.2%) patients were PD-L1-positive and 38 (29.9%) patients expressed PD-L1-TPS ≥50%. For morphologic characteristics, univariate and multivariate analysis revealed that only lung metastasis was significantly associated with PD-L1 expression status despite of different PD-L1 TPS cutoff values, and its Area under the receiver operating characteristic curve (AUC) for predicting PD-L1 expression were less than 0.700. On the other hand, the predictive value of DL-3D DenseNet model was higher than that of the morphologic characteristics, with AUC more than 0.750. Conclusions The traditional morphologic CT characteristics analyzed by radiologists show limited prediction efficacy for PD-L1 expression. By contrast, CT-derived deep neural network improves the prediction efficacy, it may serve as an important alternative marker for clinical PD-L1 detection.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Institution of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang-Li Liu
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Feng
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan-Dan Chang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Wu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Tian
- Advanced Institute, Infervision, Beijing, China
| | - Ke-Jing Tang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Can-Mao Xie
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Biao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zun-Fu Ke
- Institution of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Aye PS, Tin Tin S, McKeage MJ, Khwaounjoo P, Cavadino A, Elwood JM. Development and validation of a predictive model for estimating EGFR mutation probabilities in patients with non-squamous non-small cell lung cancer in New Zealand. BMC Cancer 2020; 20:658. [PMID: 32664868 PMCID: PMC7362551 DOI: 10.1186/s12885-020-07162-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Targeted treatment with Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) is superior to systemic chemotherapy in non-small cell lung cancer (NSCLC) patients with EGFR gene mutations. Detection of EGFR mutations is a challenge in many patients due to the lack of suitable tumour specimens for molecular testing or for other reasons. EGFR mutations are more common in female, Asian and never smoking NSCLC patients. METHODS Patients were from a population-based retrospective cohort of 3556 patients diagnosed with non-squamous non-small cell lung cancer in northern New Zealand between 1 Feb 2010 and 31 July 2017. A total of 1694 patients were tested for EGFR mutations, of which information on 1665 patients was available for model development and validation. A multivariable logistic regression model was developed based on 1176 tested patients, and validated in 489 tested patients. Among 1862 patients not tested for EGFR mutations, 129 patients were treated with EGFR-TKIs. Their EGFR mutation probabilities were calculated using the model, and their duration of benefit and overall survival from the start of EGFR-TKI were compared among the three predicted probability groups: < 0.2, 0.2-0.6, and > 0.6. RESULTS The model has three predictors: sex, ethnicity and smoking status, and is presented as a nomogram to calculate EGFR mutation probabilities. The model performed well in the validation group (AUC = 0.75). The probability cut-point of 0.2 corresponds 68% sensitivity and 78% specificity. The model predictions were related to outcome in a group of TKI-treated patients with no biopsy testing available (n = 129); in subgroups with predicted probabilities of < 0.2, 0.2-0.6, and > 0.6, median overall survival times from starting EGFR-TKI were 4.0, 5.5 and 18.3 months (p = 0.02); and median times remaining on EGFR-TKI treatment were 2.0, 4.2, and 14.0 months, respectively (p < 0.001). CONCLUSION Our model may assist clinical decision making for patients in whom tissue-based mutation testing is difficult or as a supplement to mutation testing.
Collapse
Affiliation(s)
- Phyu Sin Aye
- Epidemiology and Biostatistics, University of Auckland, B507, 22-30 Park Ave, Grafton, Auckland, 1072, New Zealand.
| | - Sandar Tin Tin
- Epidemiology and Biostatistics, University of Auckland, B507, 22-30 Park Ave, Grafton, Auckland, 1072, New Zealand
| | - Mark James McKeage
- Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | | | - Alana Cavadino
- Epidemiology and Biostatistics, University of Auckland, B507, 22-30 Park Ave, Grafton, Auckland, 1072, New Zealand
| | - J Mark Elwood
- Epidemiology and Biostatistics, University of Auckland, B507, 22-30 Park Ave, Grafton, Auckland, 1072, New Zealand
| |
Collapse
|
36
|
Fornacon-Wood I, Faivre-Finn C, O'Connor JPB, Price GJ. Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype. Lung Cancer 2020; 146:197-208. [PMID: 32563015 PMCID: PMC7383235 DOI: 10.1016/j.lungcan.2020.05.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/24/2022]
Abstract
Radiomics has become a popular image analysis method in the last few years. Its key hypothesis is that medical images harbor biological, prognostic and predictive information that is not revealed upon visual inspection. In contrast to previous work with a priori defined imaging biomarkers, radiomics instead calculates image features at scale and uses statistical methods to identify those most strongly associated to outcome. This builds on years of research into computer aided diagnosis and pattern recognition. While the potential of radiomics to aid personalized medicine is widely recognized, several technical limitations exist which hinder biomarker translation. Aspects of the radiomic workflow lack repeatability or reproducibility under particular circumstances, which is a key requirement for the translation of imaging biomarkers into clinical practice. One of the most commonly studied uses of radiomics is for personalized medicine applications in Non-Small Cell Lung Cancer (NSCLC). In this review, we summarize reported methodological limitations in CT based radiomic analyses together with suggested solutions. We then evaluate the current NSCLC radiomics literature to assess the risk associated with accepting the published conclusions with respect to these limitations. We review different complementary scoring systems and initiatives that can be used to critically appraise data from radiomics studies. Wider awareness should improve the quality of ongoing and future radiomics studies and advance their potential as clinically relevant biomarkers for personalized medicine in patients with NSCLC.
Collapse
Affiliation(s)
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Radiology, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Gareth J Price
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Liu Q, Sun D, Li N, Kim J, Feng D, Huang G, Wang L, Song S. Predicting EGFR mutation subtypes in lung adenocarcinoma using 18F-FDG PET/CT radiomic features. Transl Lung Cancer Res 2020; 9:549-562. [PMID: 32676319 PMCID: PMC7354146 DOI: 10.21037/tlcr.2020.04.17] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Identification of epidermal growth factor receptor (EGFR) mutation types is crucial before tyrosine kinase inhibitors (TKIs) treatment. Radiomics is a new strategy to noninvasively predict the genetic status of cancer. In this study, we aimed to develop a predictive model based on 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) radiomic features to identify the specific EGFR mutation subtypes. Methods We retrospectively studied 18F-FDG PET/CT images of 148 patients with isolated lung lesions, which were scanned in two hospitals with different CT scan setting (slice thickness: 3 and 5 mm, respectively). The tumor regions were manually segmented on PET/CT images, and 1,570 radiomic features (1,470 from CT and 100 from PET) were extracted from the tumor regions. Seven hundred and ninety-four radiomic features insensitive to different CT settings were first selected using the Mann white U test, and collinear features were further removed from them by recursively calculating the variation inflation factor. Then, multiple supervised machine learning models were applied to identify prognostic radiomic features through: (I) a multi-variate random forest to select features of high importance in discriminating different EGFR mutation status; (II) a logistic regression model to select features of the highest predictive value of the EGFR subtypes. The EGFR mutation predicting model was constructed from prognostic radiomic features using the popular Xgboost machine-learning algorithm and validated using 3-fold cross-validation. The performance of predicting model was analyzed using the receiver operating characteristic curve (ROC) and measured with the area under the curve (AUC). Results Two sets of prognostic radiomic features were found for specific EGFR mutation subtypes: 5 radiomic features for EGFR exon 19 deletions, and 5 radiomic features for EGFR exon 21 L858R missense. The corresponding radiomic predictors achieved the prediction accuracies of 0.77 and 0.92 in terms of AUC, respectively. Combing these two predictors, the overall model for predicting EGFR mutation positivity was also constructed, and the AUC was 0.87. Conclusions In our study, we established predictive models based on radiomic analysis of 18F-FDG PET/CT images. And it achieved a satisfying prediction power in the identification of EGFR mutation status as well as the certain EGFR mutation subtypes in lung cancer.
Collapse
Affiliation(s)
- Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dazhen Sun
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinman Kim
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Biomedical and Multimedia Information Technology Research Group, School of Computer Science, University of Sydney, Sydney, Australia.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Dagan Feng
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Biomedical and Multimedia Information Technology Research Group, School of Computer Science, University of Sydney, Sydney, Australia.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lisheng Wang
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
38
|
Yang B, Ji HS, Zhou CS, Dong H, Ma L, Ge YQ, Zhu CH, Tian JH, Zhang LJ, Zhu H, Lu GM. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiomic features for prediction of epidermal growth factor receptor mutation status and prognosis in patients with lung adenocarcinoma. Transl Lung Cancer Res 2020; 9:563-574. [PMID: 32676320 PMCID: PMC7354130 DOI: 10.21037/tlcr-19-592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background To investigate whether radiomic features from (18F)-fluorodeoxyglucose positron emission tomography/computed tomography [(18F)-FDG PET/CT] can predict epidermal growth factor receptor (EGFR) mutation status and prognosis in patients with lung adenocarcinoma. Methods One hundred and seventy-four consecutive patients with lung adenocarcinoma underwent (18F)-FDG PET/CT and EGFR gene testing were retrospectively analyzed. Radiomic features combined with clinicopathological factors to construct a random forest (RF) model to identify EGFR mutation status. The mutant/wild-type model was trained on a training group (n=139) and validated in an independent validation group (n=35). The second RF classifier predicting the 19/21 mutation site was also built and evaluated in an EGFR mutation subset (training group, n=80; validation group, n=25). Radiomic score and 5 clinicopathological factors were integrated into a multivariate Cox proportional hazard (CPH) model for predicting overall survival (OS). AUC (the area under the receiver characteristic curve) and C-index were calculated to evaluate the model’s performance. Results Of 174 patients, 109 (62.6%) harbored EGFR mutations, 21L858R was the most common mutation type [55.9% (61/109)]. The mutant/wild-type model was identified in the training (AUC, 0.77) and validation (AUC, 0.71) groups. The 19/21 mutation site model had an AUC of 0.82 and 0.73 in the training and validation groups, respectively. The C-index of the CPH model was 0.757. The survival time between targeted therapy and chemotherapy for patients with EGFR mutations was significantly different (P=0.03). Conclusions Radiomic features based on (18F)-FDG PET/CT combined with clinicopathological factors could reflect genetic differences and predict EGFR mutation type and prognosis.
Collapse
Affiliation(s)
- Bin Yang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Heng-Shan Ji
- Department of Nuclear Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Chang-Sheng Zhou
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hao Dong
- College of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China
| | - Lu Ma
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ying-Qian Ge
- Siemens Healthineers Ltd. Shanghai 200000, China
| | - Chao-Hui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jia-He Tian
- Department of Nuclear Medicine, The Chinese PLA General Hospital, Beijing 100730, China
| | - Long-Jiang Zhang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hong Zhu
- Department of Nuclear Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Guang-Ming Lu
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
39
|
Ninatti G, Kirienko M, Neri E, Sollini M, Chiti A. Imaging-Based Prediction of Molecular Therapy Targets in NSCLC by Radiogenomics and AI Approaches: A Systematic Review. Diagnostics (Basel) 2020; 10:E359. [PMID: 32486314 PMCID: PMC7345054 DOI: 10.3390/diagnostics10060359] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The objective of this systematic review was to analyze the current state of the art of imaging-derived biomarkers predictive of genetic alterations and immunotherapy targets in lung cancer. We included original research studies reporting the development and validation of imaging feature-based models. The overall quality, the standard of reporting and the advancements towards clinical practice were assessed. Eighteen out of the 24 selected articles were classified as "high-quality" studies according to the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). The 18 "high-quality papers" adhered to Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) with a mean of 62.9%. The majority of "high-quality" studies (16/18) were classified as phase II. The most commonly used imaging predictors were radiomic features, followed by visual qualitative computed tomography (CT) features, convolutional neural network-based approaches and positron emission tomography (PET) parameters, all used alone or combined with clinicopathologic features. The majority (14/18) were focused on the prediction of epidermal growth factor receptor (EGFR) mutation. Thirty-five imaging-based models were built to predict the EGFR status. The model's performances ranged from weak (n = 5) to acceptable (n = 11), to excellent (n = 18) and outstanding (n = 1) in the validation set. Positive outcomes were also reported for the prediction of ALK rearrangement, ALK/ROS1/RET fusions and programmed cell death ligand 1 (PD-L1) expression. Despite the promising results in terms of predictive performance, image-based models, suffering from methodological bias, require further validation before replacing traditional molecular pathology testing.
Collapse
Affiliation(s)
- Gaia Ninatti
- Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (G.N.); (A.C.)
| | | | - Emanuele Neri
- Department of Translational Research, Diagnostic Radiology 3, University of Pisa, 56126 Pisa, Italy;
| | - Martina Sollini
- Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (G.N.); (A.C.)
- Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy
| | - Arturo Chiti
- Humanitas University, Pieve Emanuele, 20090 Milan, Italy; (G.N.); (A.C.)
- Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy
| |
Collapse
|
40
|
Zhao W, Wu Y, Xu Y, Sun Y, Gao P, Tan M, Ma W, Li C, Jin L, Hua Y, Liu J, Li M. The Potential of Radiomics Nomogram in Non-invasively Prediction of Epidermal Growth Factor Receptor Mutation Status and Subtypes in Lung Adenocarcinoma. Front Oncol 2020; 9:1485. [PMID: 31993370 PMCID: PMC6962353 DOI: 10.3389/fonc.2019.01485] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Up to 50% of Asian patients with NSCLC have EGFR gene mutations, indicating that selecting eligible patients for EGFR-TKIs treatments is clinically important. The aim of the study is to develop and validate radiomics-based nomograms, integrating radiomics, CT features and clinical characteristics, to non-invasively predict EGFR mutation status and subtypes. Materials and Methods: We included 637 patients with lung adenocarcinomas, who performed the EGFR mutations analysis in the current study. The whole dataset was randomly split into a training dataset (n = 322) and validation dataset (n = 315). A sub-dataset of EGFR-mutant lesions (EGFR mutation in exon 19 and in exon 21) was used to explore the capability of radiomic features for predicting EGFR mutation subtypes. Four hundred seventy-five radiomic features were extracted and a radiomics sore (R-score) was constructed by using the least absolute shrinkage and selection operator (LASSO) regression in the training dataset. A radiomics-based nomogram, incorporating clinical characteristics, CT features and R-score was developed in the training dataset and evaluated in the validation dataset. Results: The constructed R-scores achieved promising performance on predicting EGFR mutation status and subtypes, with AUCs of 0.694 and 0.708 in two validation datasets, respectively. Moreover, the constructed radiomics-based nomograms excelled the R-scores, clinical, CT features alone in terms of predicting EGFR mutation status and subtypes, with AUCs of 0.734 and 0.757 in two validation datasets, respectively. Conclusions: Radiomics-based nomogram, incorporating clinical characteristics, CT features and radiomic features, can non-invasively and efficiently predict the EGFR mutation status and thus potentially fulfill the ultimate purpose of precision medicine. The methodology is a possible promising strategy to predict EGFR mutation subtypes, providing the support of clinical treatment scenario.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China.,Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuzhi Wu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ya'nan Xu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yingli Sun
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Pan Gao
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Mingyu Tan
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiling Ma
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Cheng Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanqing Hua
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Diagnosis and Treatment Center of Small Lung Nodules of Huadong Hospital, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Dalal V, Carmicheal J, Dhaliwal A, Jain M, Kaur S, Batra SK. Radiomics in stratification of pancreatic cystic lesions: Machine learning in action. Cancer Lett 2019; 469:228-237. [PMID: 31629933 DOI: 10.1016/j.canlet.2019.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Pancreatic cystic lesions (PCLs) are well-known precursors of pancreatic cancer. Their diagnosis can be challenging as their behavior varies from benign to malignant disease. Precise and timely management of malignant pancreatic cysts might prevent transformation to pancreatic cancer. However, the current consensus guidelines, which rely on standard imaging features to predict cyst malignancy potential, are conflicting and unclear. This has led to an increased interest in radiomics, a high-throughput extraction of comprehensible data from standard of care images. Radiomics can be used as a diagnostic and prognostic tool in personalized medicine. It utilizes quantitative image analysis to extract features in conjunction with machine learning and artificial intelligence (AI) methods like support vector machines, random forest, and convolutional neural network for feature selection and classification. Selected features can then serve as imaging biomarkers to predict high-risk PCLs. Radiomics studies conducted heretofore on PCLs have shown promising results. This cost-effective approach would help us to differentiate benign PCLs from malignant ones and potentially guide clinical decision-making leading to better utilization of healthcare resources. In this review, we discuss the process of radiomics, its myriad applications such as diagnosis, prognosis, and prediction of therapy response. We also discuss the outcomes of studies involving radiomic analysis of PCLs and pancreatic cancer, and challenges associated with this novel field along with possible solutions. Although these studies highlight the potential benefit of radiomics in the prevention and optimal treatment of pancreatic cancer, further studies are warranted before incorporating radiomics into the clinical decision support system.
Collapse
Affiliation(s)
- Vipin Dalal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amaninder Dhaliwal
- Department of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; The Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; The Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
42
|
Bogowicz M, Vuong D, Huellner MW, Pavic M, Andratschke N, Gabrys HS, Guckenberger M, Tanadini-Lang S. CT radiomics and PET radiomics: ready for clinical implementation? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:355-370. [PMID: 31527578 DOI: 10.23736/s1824-4785.19.03192-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Today, rapid technical and clinical developments result in an increasing number of treatment options for oncological diseases. Thus, decision support systems are needed to offer the right treatment to the right patient. Imaging biomarkers hold great promise in patient-individual treatment guidance. Routinely performed for diagnosis and staging, imaging datasets are expected to hold more information than used in the clinical practice. Radiomics describes the extraction of a large number of meaningful quantitative features from medical images, such as computed tomography (CT) and positron emission tomography (PET). Due to the non-invasive nature and ability to capture 3D image-based heterogeneity, radiomic features are potential surrogate markers of the cancer phenotype. Several radiomic studies are published per day, owing to encouraging results of many radiomics-based patient outcome models. Despite this comparably large number of studies, radiomics is mainly studied in proof of principle concept. Hence, a translation of radiomics from a hot topic research field into an essential clinical decision-making tool is lacking, but of high clinical interest. EVIDENCE ACQUISITION Herein, we present a literature review addressing the clinical evidence of CT and PET radiomics. An extensive literature review was conducted in PubMed, including papers on robustness and clinical applications. EVIDENCE SYNTHESIS We summarize image-modality related influences on the robustness of radiomic features and provide an overview of clinical evidence reported in the literature. Today, more evidence has been provided for CT imaging, however, PET imaging offers the promise of direct imaging of biological processes and functions. We provide a summary of future research directions, which needs to be addressed in order to successfully introduce radiomics into clinical medicine. In comparison to CT, more focus should be directed towards harmonization of PET acquisition and reconstruction protocols, which is important for transferable modelling. CONCLUSIONS Both CT and PET radiomics are promising pre-treatment and intra-treatment biomarkers for outcome prediction. Most studies are performed in retrospective setting, however their validation in prospective data collections is ongoing.
Collapse
Affiliation(s)
- Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland -
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hubert S Gabrys
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|