1
|
Guerini-Rocco E, Venetis K, Cursano G, Mane E, Frascarelli C, Pepe F, Negrelli M, Olmeda E, Vacirca D, Ranghiero A, Trapani D, Criscitiello C, Curigliano G, Rolfo C, Malapelle U, Fusco N. Standardized molecular pathology workflow for ctDNA-based ESR1 testing in HR+/HER2- metastatic breast cancer. Crit Rev Oncol Hematol 2024; 201:104427. [PMID: 38917944 DOI: 10.1016/j.critrevonc.2024.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Mutations in the estrogen receptor alpha gene (ESR1) can lead to resistance to endocrine therapy (ET) in hormone receptor-positive (HR+)/ HER2- metastatic breast cancer (MBC). ESR1 mutations can be detected in up to 40 % of patients pretreated with ET in circulating tumor DNA (ctDNA). Data from prospective randomized trials highlight those patients with HR+/HER2- MBC with detectable ESR1 mutations experience better outcomes when receiving novel selective estrogen receptor degraders (SERDs). There is a high need for optimizing ESR1 testing strategies on liquid biopsy samples in HR+/HER2- MBC, including a hugh quality workflow implementation and molecular pathology reporting standardization. Our manuscript aims to elucidate the clinical and biological rationale for ESR1 testing in MBC, while critically examining the currently available guidelines and recommendations for this specific type of molecular testing on ctDNA. The objective will extend to the critical aspects of harmonization and standardization, specifically focusing on the pathology laboratory workflow. Finally, we propose a clear and comprehensive model for reporting ESR1 testing results on ctDNA in HR+/HER2- MBC.
Collapse
Affiliation(s)
- Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Francesco Pepe
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Mariachiara Negrelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; School of Pathology, University of Milan, Milan, Italy
| | - Edoardo Olmeda
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; School of Pathology, University of Milan, Milan, Italy
| | - Davide Vacirca
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Ranghiero
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Stitz R, Stoiber F, Silye R, Vlachos G, Andaloro S, Rebhan E, Dunzinger M, Pühringer F, Gallo C, El-Heliebi A, Heitzer E, Hauser-Kronberger C. Clinical Implementation of a Noninvasive, Multi-Analyte Droplet Digital PCR Test to Screen for Androgen Receptor Alterations. J Mol Diagn 2024; 26:467-478. [PMID: 38522838 DOI: 10.1016/j.jmoldx.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 03/26/2024] Open
Abstract
Alterations of the androgen receptor (AR) are associated with resistance to AR-directed therapy in prostate cancer. Thus, it is crucial to develop robust detection methods for AR alterations as predictive biomarkers to enable applicability in clinical practice. We designed and validated five multiplex droplet digital PCR assays for reliable detection of 12 AR targets including AR amplification, AR splice variant 7, and 10 AR hotspot mutations, as well as AR and KLK3 gene expression from plasma-derived cell-free DNA and cell-free RNA. The assays demonstrated excellent analytical sensitivity and specificity ranging from 95% to 100% (95% CI, 75% to 100%). Intrarun and interrun variation analyses revealed a high level of repeatability and reproducibility. The developed assays were applied further in peripheral blood samples from 77 patients with advanced prostate cancer to assess their feasibility in a real-world scenario. Optimizing the reverse transcription of RNA increased the yield of plasma-derived cell-free RNA by 30-fold. Among 23 patients with castration-resistant prostate cancer, 6 patients (26.1%) had one or a combination of several AR alterations, whereas only 2 of 54 patients (3.7%) in the hormone-sensitive stage showed AR alterations. These findings were consistent with other studies and suggest that implementation of comprehensive AR status detection in clinical practice is feasible and can support the treatment decision-making process.
Collapse
Affiliation(s)
- Regina Stitz
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria; Doctoral Program Medical Science, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Franz Stoiber
- Department of Urology Medicine, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Renè Silye
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Silvia Andaloro
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Elisabeth Rebhan
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Michael Dunzinger
- Department of Urology Medicine, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Franz Pühringer
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Caroline Gallo
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| | - Cornelia Hauser-Kronberger
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria; Department of Anatomy and Cell Biology, Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
3
|
Zengin ZB, Henderson NC, Park JJ, Ali A, Nguyen C, Hwang C, Barata PC, Bilen MA, Graham L, Mo G, Kilari D, Tripathi A, Labriola M, Rothstein S, Garje R, Koshkin VS, Patel VG, Schweizer MT, Armstrong AJ, McKay RR, Alva A, Dorff T. Clinical implications of AR alterations in advanced prostate cancer: a multi-institutional collaboration. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00805-3. [PMID: 38383885 DOI: 10.1038/s41391-024-00805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/09/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AR gene alterations can develop in response to pressure of testosterone suppression and androgen receptor targeting agents (ARTA). Despite this, the relevance of these gene alterations in the context of ARTA treatment and clinical outcomes remains unclear. METHODS Patients with castration-resistant prostate cancer (CRPC) who had undergone genomic testing and received ARTA treatment were identified in the Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) database. Patients were stratified according to the timing of genomic testing relative to the first ARTA treatment (pre-/post-ARTA). Clinical outcomes such as time to progression, PSA response, and overall survival were compared based on alteration types. RESULTS In total, 540 CRPC patients who received ARTA and had tissue-based (n = 321) and/or blood-based (n = 244) genomic sequencing were identified. Median age was 62 years (range 39-90) at the time of the diagnosis. Majority were White (72.2%) and had metastatic disease (92.6%) at the time of the first ARTA treatment. Pre-ARTA genomic testing was available in 24.8% of the patients, and AR mutations and amplifications were observed in 8.2% and 13.1% of the patients, respectively. Further, time to progression was longer in patients with AR amplifications (25.7 months) compared to those without an AR alteration (9.6 months; p = 0.03). In the post-ARTA group (n = 406), AR mutations and AR amplifications were observed in 18.5% and 35.7% of the patients, respectively. The most common mutation in post-ARTA group was L702H (9.9%). CONCLUSION In this real-world clinicogenomics database-driven study we explored the development of AR alterations and their association with ARTA treatment outcomes. Our study showed that AR amplifications are associated with longer time to progression on first ARTA treatment. Further prospective studies are needed to optimize therapeutic strategies for patients with AR alterations.
Collapse
Affiliation(s)
- Zeynep B Zengin
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Joseph J Park
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alicia Ali
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Charles Nguyen
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Clara Hwang
- Division of Hematology/Oncology, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Pedro C Barata
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Laura Graham
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George Mo
- University of Washington/Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Deepak Kilari
- Department of Medicine, Froedtert Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Matthew Labriola
- Division of Medical Oncology, Duke University Medical Center, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | | | - Rohan Garje
- Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Vadim S Koshkin
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vaibhav G Patel
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Arvinas Inc, New Haven, CT, USA
| | | | - Andrew J Armstrong
- Division of Medical Oncology, Duke University Medical Center, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Rana R McKay
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ajjai Alva
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tanya Dorff
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
4
|
Dincman TA, Karam JAQ, Giordano A, Li H, Drusbosky LM, Gourdin TS, Howe PH, Lilly MB. Genomic amplifications identified by circulating tumor DNA analysis guide prognosis in metastatic castration-resistant prostate cancer. Front Oncol 2024; 13:1202277. [PMID: 38450313 PMCID: PMC10915757 DOI: 10.3389/fonc.2023.1202277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/25/2023] [Indexed: 03/08/2024] Open
Abstract
Purpose Analysis of circulating tumor DNA (ctDNA) in patients with metastatic prostate cancer (mPC) provides an opportunity to identify and monitor genomic alterations during a patient's treatment course. We evaluated whether the presence of specific gene amplifications (GAs) and plasma copy number (PCN) alterations are associated with disease features. Methods This is a single-institution retrospective study of patients with mPC who underwent ctDNA profiling using Guardant360® (Guardant Health Inc.). This test identifies single nucleotide variants (SNVs) and GAs of select genes by next-generation sequencing. A total of 155 men with mPC were studied. Patients were stratified by GA status. The Kaplan-Meier method and multivariate cox regression models were used to estimate overall survival (OS) or failure-free survival (FFS) from either the date of GA detection or the initiation of systemic therapy. The chi-square test was used to evaluate associations between clinical factors and GAs. Results The presence of liver and/or lung metastases was associated with GAs of BRAF, CDK6, PI3KCA, and FGFR1. Survival analyses were completed on a subset of 83 patients with metastatic castration-resistant prostate cancer (mCRPC). Median OS was improved in patients with 1 GA compared to patients with ≥2 GAs, whether determined from the date of initial GA(s) detection (14.9 mo vs. 8.9 mo) or date of therapy initiation nearest to GA detection (16.7 mo vs. 9.0 mo). Patients without GAs had not reached median OS. Patients with androgen receptor (AR) GA only were also found to have better median OS compared to patients with AR GA plus at least one other additional GA (19.3 mo vs. 8.9 mo). Patients with PIK3CA GA had significantly lower median OS compared to patients with GAs that did not have a PIK3CA GA (5.9 mo vs. 16.0 mo). In patients with AR and/or MYC GA(s), median OS improved in those with reduced AR or MYC PCN during therapy compared to those without such a reduction (25.1 mo vs. 15.9 mo). Conclusions The association of select GAs with survival provides an additional tool for assessing mCRPC prognosis and informing management. Serial monitoring of ctDNA GAs is also useful to guide prognosis and therapeutic response.
Collapse
Affiliation(s)
- Toros A. Dincman
- Department of Medicine, Division of Hematology and Oncology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Joseph A. Q. Karam
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Antonio Giordano
- Department of Medicine, Division of Hematology and Oncology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Medical Oncology, Harvard Medical School, Boston, MA, United States
| | - Hong Li
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Public Health Sciences, University of California- Davis, Davis, CA, United States
| | | | - Theodore S. Gourdin
- Department of Medicine, Division of Hematology and Oncology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Philip H. Howe
- Department of Biochemistry and Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Michael B. Lilly
- Department of Medicine, Division of Hematology and Oncology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
5
|
Alqualo NO, Campos-Fernandez E, Picolo BU, Ferreira EL, Henriques LM, Lorenti S, Moreira DC, Simião MPS, Oliveira LBT, Alonso-Goulart V. Molecular biomarkers in prostate cancer tumorigenesis and clinical relevance. Crit Rev Oncol Hematol 2024; 194:104232. [PMID: 38101717 DOI: 10.1016/j.critrevonc.2023.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men and assessing circulating tumor cells (CTCs) by liquid biopsy is a promising tool to help in cancer early detection, staging, risk of recurrence evaluation, treatment prediction and monitoring. Blood-based liquid biopsy approaches enable the enrichment, detection and characterization of CTCs by biomarker analysis. Hence, comprehending the molecular markers, their role on each stage of cancer development and progression is essential to provide information that can help in future implementation of these biomarkers in clinical assistance. In this review, we studied the molecular markers most associated with PCa CTCs to better understand their function on tumorigenesis and metastatic cascade, the methodologies utilized to analyze these biomarkers and their clinical significance, in order to summarize the available information to guide researchers in their investigations, new hypothesis formulation and target choice for the development of new diagnostic and treatment tools.
Collapse
Affiliation(s)
- Nathalia Oliveira Alqualo
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Esther Campos-Fernandez
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Bianca Uliana Picolo
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Emanuelle Lorrayne Ferreira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Laila Machado Henriques
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Sabrina Lorenti
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Danilo Caixeta Moreira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Maria Paula Silva Simião
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Luciana Beatriz Tiago Oliveira
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology, Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia, MG 38400-902, Brazil.
| |
Collapse
|
6
|
Davoudi F, Moradi A, Becker TM, Lock JG, Abbey B, Fontanarosa D, Haworth A, Clements J, Ecker RC, Batra J. Genomic and Phenotypic Biomarkers for Precision Medicine Guidance in Advanced Prostate Cancer. Curr Treat Options Oncol 2023; 24:1451-1471. [PMID: 37561382 PMCID: PMC10547634 DOI: 10.1007/s11864-023-01121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
| | - John G. Lock
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, 2052 Australia
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD 4000 Australia
- Centre for Biomedical Technologies (CBT), Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2006 Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Rupert C. Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
- TissueGnostics GmbH, EU 1020 Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| |
Collapse
|
7
|
Dai C, Dehm SM, Sharifi N. Targeting the Androgen Signaling Axis in Prostate Cancer. J Clin Oncol 2023; 41:4267-4278. [PMID: 37429011 PMCID: PMC10852396 DOI: 10.1200/jco.23.00433] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/12/2023] Open
Abstract
Activation of the androgen receptor (AR) and AR-driven transcriptional programs is central to the pathophysiology of prostate cancer. Despite successful translational efforts in targeting AR, therapeutic resistance often occurs as a result of molecular alterations in the androgen signaling axis. The efficacy of next-generation AR-directed therapies for castration-resistant prostate cancer has provided crucial clinical validation for the continued dependence on AR signaling and introduced a range of new treatment options for men with both castration-resistant and castration-sensitive disease. Despite this, however, metastatic prostate cancer largely remains an incurable disease, highlighting the need to better understand the diverse mechanisms by which tumors thwart AR-directed therapies, which may inform new therapeutic avenues. In this review, we revisit concepts in AR signaling and current understandings of AR signaling-dependent resistance mechanisms as well as the next frontier of AR targeting in prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Massachusetts General Hospital Cancer Center, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Scott M. Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
- Department of Urology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
8
|
Dorff T, Zengin Z, Henderson N, Ali A, Nguyen C, Hwang C, Barata PC, Bilen M, Graham L, Mo G, Kilari D, Tripathi A, Labriola M, Rothstein S, Garje R, Koshkin V, Patel V, Schweizer M, Armstrong A, McKay R, Alva A. Clinical implications of AR alterations in advanced prostate cancer: A multi-institutional collaboration. RESEARCH SQUARE 2023:rs.3.rs-3201150. [PMID: 37609284 PMCID: PMC10441451 DOI: 10.21203/rs.3.rs-3201150/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background AR gene alterations can develop in response to pressure of testosterone suppression and androgen receptor targeting agents (ARTA). Despite this, the relevance of these gene alterations in the context of ARTA treatment and clinical outcomes remains unclear. Methods Patients with castration-resistant prostate cancer (CRPC) who had undergone genomic testing and received ARTA treatment were identified in the Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) database. Patients were stratified according to the timing of genomic testing relative to the first ARTA treatment (pre-/post-ARTA). Clinical outcomes such as time to progression, PSA response, and overall survival were compared based on alteration types. Results In total, 540 CRPC patients who received ARTA and had tissue-based (n=321) and/or blood-based (n=244) genomic sequencing were identified. Median age was 62 years (range 39-90) at the time of the diagnosis. Majority were White (72.2%) and had metastatic disease (92.6%) at the time of the first ARTA treatment. Pre-ARTA genomic testing was available in 24.8% of the patients, and AR mutations and amplifications were observed in 8.2% and 13.1% of the patients, respectively. Further, time to progression was longer in patients with AR amplifications (25.7 months) compared to those without an AR alteration (9.6 months; p=0.03). In the post-ARTA group (n=406), AR mutations and AR amplifications were observed in 18.5% and 35.7% of the patients, respectively. The most common mutation in post-ARTA group was L702H (9.9%). Conclusion To our knowledge, this is the largest real-world clinicogenomics database-driven study exploring the development of ARalterations and their association with ARTA treatment outcomes. Our study showed that AR amplifications are associated with longer time to progression on first ARTA treatment. Further prospective studies are needed to optimize therapeutic strategies for patients with AR alterations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pedro C Barata
- Division of Medical Oncology, Department of Medicine, University Hospitals Seidman Cancer Center and Case Comprehensive Cancer Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang A, Luo X, Meng X, Lu Z, Chen K, Yang Y. Discovery of a Novel Bifunctional Steroid Analog, YXG-158, as an Androgen Receptor Degrader and CYP17A1 Inhibitor for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2023; 66:9972-9991. [PMID: 37458396 DOI: 10.1021/acs.jmedchem.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The androgen/androgen receptor (AR) signaling pathway plays an important role in castration-resistant prostate cancer (CRPC). Bifunctional agents that simultaneously degrade AR and inhibit androgen synthesis are expected to block the androgen/AR signaling pathway more thoroughly, demonstrating the promising therapeutic potential for CRPC, even enzalutamide-resistant CRPC. Herein, a series of steroid analogs were designed, synthesized, and identified as selective AR degraders, among which YXG-158 (23-h) was the most potent antitumor compound with dual functions of AR degradation and CYP17A1 inhibition. In addition, 23-h abrogated the hERG inhibition and exhibited excellent PK profiles. In vivo, 23-h effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited robust antitumor efficacy both in enzalutamide-sensitive (LNCaP/AR) and enzalutamide-resistant (C4-2b-ENZ) xenograft models. Thus, 23-h was chosen as a preclinical candidate for the treatment of enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xianggang Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
10
|
Doamekpor SK, Peng P, Xu R, Ma L, Tong Y, Tong L. A partially open conformation of an androgen receptor ligand-binding domain with drug-resistance mutations. Acta Crystallogr F Struct Biol Commun 2023; 79:95-104. [PMID: 36995121 PMCID: PMC10071832 DOI: 10.1107/s2053230x23002224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Mutations in the androgen receptor (AR) ligand-binding domain (LBD) can cause resistance to drugs used to treat prostate cancer. Commonly found mutations include L702H, W742C, H875Y, F877L and T878A, while the F877L mutation can convert second-generation antagonists such as enzalutamide and apalutamide into agonists. However, pruxelutamide, another second-generation AR antagonist, has no agonist activity with the F877L and F877L/T878A mutants and instead maintains its inhibitory activity against them. Here, it is shown that the quadruple mutation L702H/H875Y/F877L/T878A increases the soluble expression of AR LBD in complex with pruxelutamide in Escherichia coli. The crystal structure of the quadruple mutant in complex with the agonist dihydrotestosterone (DHT) reveals a partially open conformation of the AR LBD due to conformational changes in the loop connecting helices H11 and H12 (the H11-H12 loop) and Leu881. This partially open conformation creates a larger ligand-binding site for AR. Additional structural studies suggest that both the L702H and F877L mutations are important for conformational changes. This structural variability in the AR LBD could affect ligand binding as well as the resistance to antagonists.
Collapse
Affiliation(s)
- Selom K. Doamekpor
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Panfeng Peng
- Suzhou Kintor Pharmaceuticals Inc, No. 20 Songbei Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Ruo Xu
- Suzhou Kintor Pharmaceuticals Inc, No. 20 Songbei Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Liandong Ma
- Suzhou Kintor Pharmaceuticals Inc, No. 20 Songbei Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Youzhi Tong
- Suzhou Kintor Pharmaceuticals Inc, No. 20 Songbei Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
11
|
AR and PI3K/AKT in Prostate Cancer: A Tale of Two Interconnected Pathways. Int J Mol Sci 2023; 24:ijms24032046. [PMID: 36768370 PMCID: PMC9917224 DOI: 10.3390/ijms24032046] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men. The androgen receptor (AR) has a pivotal role in the pathogenesis and progression of PCa. Many therapies targeting AR signaling have been developed over the years. AR signaling inhibitors (ARSIs), including androgen synthesis inhibitors and AR antagonists, have proven to be effective in castration-sensitive PCa (CSPC) and improve survival, but men with castration-resistant PCa (CRPC) continue to have a poor prognosis. Despite a good initial response, drug resistance develops in almost all patients with metastatic CRPC, and ARSIs are no longer effective. Several mechanisms confer resistance to ARSI and include AR mutations but also hyperactivation of other pathways, such as PI3K/AKT/mTOR. This pathway controls key cellular processes, including proliferation and tumor progression, and it is the most frequently deregulated pathway in human cancers. A significant interaction between AR and the PI3K/AKT/mTOR signaling pathway has been shown in PCa. This review centers on the current scene of different AR and PI3K signaling pathway inhibitors, either as monotherapy or in combination treatments in PCa, and the treatment outcomes involved in both preclinical and clinical trials. A PubMed-based literature search was conducted up to November 2022. The most relevant and recent articles were selected to provide essential information and current evidence on the crosstalk between AR and the PI3K signaling pathways. The ClinicalTrials.gov registry was used to report information about clinical studies and their results using the Advanced research tool, filtering for disease and target.
Collapse
|
12
|
Ha S, Luo G, Xiang H. A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. J Med Chem 2022; 65:16128-16154. [PMID: 36459083 DOI: 10.1021/acs.jmedchem.2c01487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PC), the second most prevalent malignancy in men worldwide, has been proven to depend on the aberrant activation of androgen receptor (AR) signaling. Long-term androgen deprivation for the treatment of PC inevitably leads to castration-resistant prostate cancer (CRPC) in which AR remains a crucial oncogenic driver. Thus, there is an urgent need to develop new strategies to address this unmet medical need. Targeting AR for degradation has recently been in a vigorous development stage, and accumulating clinical studies have highlighted the benefits of AR degraders in CRPC patients. Herein, we provide a comprehensive summary of small-molecule AR degraders with diverse mechanisms of action including proteolysis-targeting chimeras (PROTACs), selective AR degraders (SARDs), hydrophobic tags (HyT), and other AR degraders with distinct mechanisms. Accordingly, their structure-activity relationships, biomedical applications, and therapeutic values are also dissected to provide insights into the future development of promising AR degradation-based therapeutics for CRPC.
Collapse
Affiliation(s)
- Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
13
|
Shiota M, Akamatsu S, Tsukahara S, Nagakawa S, Matsumoto T, Eto M. Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer 2022; 29:R143-R155. [PMID: 35900853 DOI: 10.1530/erc-22-0140] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Hormonal therapies including androgen deprivation therapy and androgen receptor (AR) pathway inhibitors such as abiraterone and enzalutamide have been widely used to treat advanced prostate cancer. However, treatment resistance emerges after hormonal manipulation in most prostate cancers, and it is attributable to a number of mechanisms, including AR amplification and overexpression, AR mutations, the expression of constitutively active AR variants, intra-tumor androgen synthesis, and promiscuous AR activation by other factors. Although various AR mutations have been reported in prostate cancer, specific AR mutations (L702H, W742L/C, H875Y, F877L, and T878A/S) were frequently identified after treatment resistance emerged. Intriguingly, these hot spot mutations were also revealed to change the binding affinity of ligands including steroids and antiandrogens and potentially result in altered responses to AR pathway inhibitors. Currently, precision medicine utilizing genetic and genomic data to choose suitable treatment for the patient is becoming to play an increasingly important role in clinical practice for prostate cancer management. Since clinical data between AR mutations and the efficacy of AR pathway inhibitors are accumulating, monitoring the AR mutation status is a promising approach for providing precision medicine in prostate cancer, which would be implemented through the development of clinically available testing modalities for AR mutations using liquid biopsy. However, there are few reviews on clinical significance of AR hot spot mutations in prostate cancer. Then, this review summarized the clinical landscape of AR mutations and discussed their potential implication for clinical utilization.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines 2022; 10:biomedicines10081872. [PMID: 36009418 PMCID: PMC9405166 DOI: 10.3390/biomedicines10081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a major diagnosed cancer among men globally, and about 20% of patients develop metastatic prostate cancer (mPCa) in the initial diagnosis. PCa is a typical androgen-dependent disease; thus, hormonal therapy is commonly used as a standard care for mPCa by inhibiting androgen receptor (AR) activities, or androgen metabolism. Inevitably, almost all PCa will acquire resistance and become castration-resistant PCa (CRPC) that is associated with AR gene mutations or amplification, the presence of AR variants, loss of AR expression toward neuroendocrine phenotype, or other hormonal receptors. Treating CRPC poses a great challenge to clinicians. Research efforts in the last decade have come up with several new anti-androgen agents to prolong overall survival of CRPC patients. In addition, many potential targeting agents have been at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the emerging strategies including small-molecule inhibitors to AR variants, DNA repair enzymes, cell survival pathway, neuroendocrine differentiation pathway, radiotherapy, CRPC-specific theranostics and immune therapy that are underway or have recently been completed.
Collapse
|
15
|
Kwan EM, Wyatt AW. Androgen receptor genomic alterations and treatment resistance in metastatic prostate cancer. Prostate 2022; 82 Suppl 1:S25-S36. [PMID: 35657159 DOI: 10.1002/pros.24356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genomic alterations to the androgen receptor (AR) are common in metastatic castration-resistant prostate cancer (mCRPC). AR copy number amplifications, ligand-binding domain missense mutations, and intronic structural rearrangements can all drive resistance to approved AR pathway inhibitors and their detection via tissue or liquid biopsy is linked to clinical outcomes. With an increasingly crowded treatment landscape, there is hope that AR genomic alterations can act as prognostic and/or predictive biomarkers to guide patient management. METHODS In this review, we evaluate the current evidence for AR genomic alterations as clinical biomarkers in mCRPC, focusing on correlative studies that have used plasma circulating tumor DNA to characterize AR genotype. RESULTS We highlight data that demonstrates the complexity of AR genotype within individual patients, and suggest that future studies should account for cancer clonal heterogeneity and variable tumor content in liquid biopsy samples. Given the potential for cooccurrence of multiple AR genomic alterations in the same or competing subclones of a patient, it is distinctly challenging to attribute blanket clinical significance to any individual alteration. This challenge is further complicated by the varied treatment exposures in contemporary patients, and the fact that AR genotype continues to evolve in the mCRPC setting across sequential lines of systemic therapy. CONCLUSIONS As treatment access and liquid biopsy technology continues to improve, we posit that real-time measures of AR biology are likely to play a key role in emerging precision oncology strategies for metastatic prostate cancer.
Collapse
Affiliation(s)
- Edmond M Kwan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Chen Y, Zhou Q, Hankey W, Fang X, Yuan F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis 2022; 13:632. [PMID: 35864113 PMCID: PMC9304354 DOI: 10.1038/s41419-022-05084-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Prostate cancer is a hormone-dependent malignancy, whose onset and progression are closely related to the activity of the androgen receptor (AR) signaling pathway. Due to this critical role of AR signaling in driving prostate cancer, therapy targeting the AR pathway has been the mainstay strategy for metastatic prostate cancer treatment. The utility of these agents has expanded with the emergence of second-generation AR antagonists, which began with the approval of enzalutamide in 2012 by the United States Food and Drug Administration (FDA). Together with apalutamide and darolutamide, which were approved in 2018 and 2019, respectively, these agents have improved the survival of patients with prostate cancer, with applications for both androgen-dependent and castration-resistant disease. While patients receiving these drugs receive a benefit in the form of prolonged survival, they are not cured and ultimately progress to lethal neuroendocrine prostate cancer (NEPC). Here we summarize the current state of AR antagonist development and highlight the emerging challenges of their clinical application and the potential resistance mechanisms, which might be addressed by combination therapies or the development of novel AR-targeted therapies.
Collapse
Affiliation(s)
- Yanhua Chen
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Qianqian Zhou
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - William Hankey
- grid.10698.360000000122483208Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xiaosheng Fang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 271000 Jinan, Shandong China
| | - Fuwen Yuan
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
17
|
Ionescu F, Zhang J, Wang L. Clinical Applications of Liquid Biopsy in Prostate Cancer: From Screening to Predictive Biomarker. Cancers (Basel) 2022; 14:1728. [PMID: 35406500 PMCID: PMC8996910 DOI: 10.3390/cancers14071728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer (PC) remains the most common malignancy and the second most common cause of cancer death in men. As a result of highly variable biological behavior and development of resistance to available agents under therapeutic pressure, optimal management is often unclear. Traditional surgical biopsies, even when augmented by genomic studies, may fail to provide adequate guidance for clinical decisions as these can only provide a snapshot of a dynamic process. Additionally, surgical biopsies are cumbersome to perform repeatedly and often involve risk. Liquid biopsies (LB) are defined as the analysis of either corpuscular (circulating tumor cells, extracellular vesicles) or molecular (circulating DNA or RNA) tumor-derived material. LB could more precisely identify clinically relevant alterations that characterize the metastatic potential of tumors, predict response to specific treatments or actively monitor for the emergence of resistance. These tests can potentially be repeated as often as deemed necessary and can detect real-time response to treatment with minimal inconvenience to the patient. In the current review, we consider common clinical scenarios to describe available LB assays in PC as a platform to explore existing evidence for their use in guiding decision making and to discuss current limitations to their adoption in the clinic.
Collapse
Affiliation(s)
- Filip Ionescu
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
18
|
Yu EM, Aragon-Ching JB. Advances with androgen deprivation therapy for prostate cancer. Expert Opin Pharmacother 2022; 23:1015-1033. [PMID: 35108137 DOI: 10.1080/14656566.2022.2033210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) has been a treatment of choice for prostate cancer in almost all phases, particularly in the locally advanced, metastatic setting in both hormone-sensitive and castration-resistant diseaseand in those who are unfit for any local therapy. Different ways of administering ADT comes in the form of surgical or chemical castration with the use of gonadotropin-releasing hormone (GnRH-agonists) being the foremost way of delivering ADT. AREAS COVERED This review encompasses ADT history, use of leuprolide, degarelix, and relugolix, with contextual use of ADT in combination with androgen-signaling inhibitors and potential mechanisms of resistance. Novel approaches with regard to hormone therapy are also discussed. EXPERT OPINION The use of GnRH-agonists and GnRH-antagonists yields efficacy that is likely equivalent in resulting in testosterone suppression. While the side-effect profile with ADT are generally equivalent, effects on cardiovascular morbidity may be improved with the use of oral relugolix though this is noted with caution since the cardiovascular side-effects were a result of secondary subgroup analyses. The choice of ADT hinges upon cost, availability, ease of administration, and preference amongst physicians and patients alike.
Collapse
Affiliation(s)
- Eun-Mi Yu
- GU Medical Oncology, Inova Schar Cancer Institute, Fairfax, VA, USA
| | | |
Collapse
|
19
|
Jacob A, Raj R, Allison DB, Myint ZW. Androgen Receptor Signaling in Prostate Cancer and Therapeutic Strategies. Cancers (Basel) 2021; 13:5417. [PMID: 34771580 PMCID: PMC8582395 DOI: 10.3390/cancers13215417] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding of the molecular mechanisms of prostate cancer has led to development of therapeutic strategies targeting androgen receptor (AR). These androgen-receptor signaling inhibitors (ARSI) include androgen synthesis inhibitor-abiraterone and androgen receptor antagonists-enzalutamide, apalutamide, and darolutamide. Although these medications provide significant improvement in survival among men with prostate cancer, drug resistance develops in nearly all patients with time. This could be through androgen-dependent or androgen-independent mechanisms. Even weaker signals and non-canonical steroid ligands can activate AR in the presence of truncated AR-splice variants, AR overexpression, or activating mutations in AR. AR splice variant, AR-V7 is the most studied among these and is not targeted by available ARSIs. Non-androgen receptor dependent resistance mechanisms are mediated by activation of an alternative signaling pathway when AR is inhibited. DNA repair pathway, PI3K/AKT/mTOR pathway, BRAF-MAPK and Wnt signaling pathway and activation by glucocorticoid receptors can restore downstream signaling in prostate cancer by alternative proteins. Multiple clinical trials are underway exploring therapeutic strategies to overcome these resistance mechanisms.
Collapse
Affiliation(s)
- Aasems Jacob
- Department of Medicine, Division of Hematology & Oncology, Pikeville Medical Center, Pikeville, KY 41501, USA;
| | - Rishi Raj
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Pikeville Medical Center, Pikeville, KY 41501, USA;
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Urology, University of Kentucky, Lexington, KY 40536, USA
| | - Zin W. Myint
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Lin C, Liu X, Zheng B, Ke R, Tzeng CM. Liquid Biopsy, ctDNA Diagnosis through NGS. Life (Basel) 2021; 11:life11090890. [PMID: 34575039 PMCID: PMC8468354 DOI: 10.3390/life11090890] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Liquid biopsy with circulating tumor DNA (ctDNA) profiling by next-generation sequencing holds great promise to revolutionize clinical oncology. It relies on the basis that ctDNA represents the real-time status of the tumor genome which contains information of genetic alterations. Compared to tissue biopsy, liquid biopsy possesses great advantages such as a less demanding procedure, minimal invasion, ease of frequent sampling, and less sampling bias. Next-generation sequencing (NGS) methods have come to a point that both the cost and performance are suitable for clinical diagnosis. Thus, profiling ctDNA by NGS technologies is becoming more and more popular since it can be applied in the whole process of cancer diagnosis and management. Further developments of liquid biopsy ctDNA testing will be beneficial for cancer patients, paving the way for precision medicine. In conclusion, profiling ctDNA with NGS for cancer diagnosis is both biologically sound and technically convenient.
Collapse
Affiliation(s)
- Chen Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
| | - Xuzhu Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
| | - Bingyi Zheng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Xiamen Key Laboratory of Cancer Cell Theranostics and Clinical Translation, Xiamen 361102, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
- Correspondence: (R.K.); (C.-M.T.)
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Xiamen Key Laboratory of Cancer Cell Theranostics and Clinical Translation, Xiamen 361102, China
- Correspondence: (R.K.); (C.-M.T.)
| |
Collapse
|
21
|
Lallous N, Snow O, Sanchez C, Parra Nuñez AK, Sun B, Hussain A, Lee J, Morin H, Leblanc E, Gleave ME, Cherkasov A. Evaluation of Darolutamide (ODM201) Efficiency on Androgen Receptor Mutants Reported to Date in Prostate Cancer Patients. Cancers (Basel) 2021; 13:cancers13122939. [PMID: 34208290 PMCID: PMC8230763 DOI: 10.3390/cancers13122939] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Resistance to drug treatments is common in prostate cancer (PCa), and the gain-of-function mutations in human androgen receptor (AR) represent one of the most dominant drivers of progression to resistance to AR pathway inhibitors (ARPI). Previously, we evaluated the in vitro response of 24 AR mutations, identified in men with castration-resistant PCa, to five AR antagonists. In the current work, we evaluated 44 additional PCa-associated AR mutants, reported in the literature, and thus expanded the study of the effect of darolutamide to a total of 68 AR mutants. Unlike other AR antagonists, we demonstrate that darolutamide exhibits consistent efficiency against all characterized gain-of-function mutations in a full-length AR. Additionally, the response of the AR mutants to clinically used bicalutamide and enzalutamide, as well as to major endogenous steroids (DHT, estradiol, progesterone and hydrocortisone), was also investigated. As genomic profiling of PCa patients becomes increasingly feasible, the developed "AR functional encyclopedia" could provide decision-makers with a tool to guide the treatment choice for PCa patients based on their AR mutation status.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Artem Cherkasov
- Correspondence: ; Tel.: +1-604-875-4818; Fax: +1-604-875-5654
| |
Collapse
|
22
|
Abstract
Huggins and Hodges demonstrated the therapeutic effect of gonadal testosterone deprivation in the 1940s and therefore firmly established the concept that prostate cancer is a highly androgen-dependent disease. Since that time, hormonal therapy has undergone iterative advancement, from the types of gonadal testosterone deprivation to modalities that block the generation of adrenal and other extragonadal androgens, to those that directly bind and inhibit the androgen receptor (AR). The clinical states of prostate cancer are the product of a superimposition of these therapies with nonmetastatic advanced prostate cancer, as well as frankly metastatic disease. Today's standard of care for advanced prostate cancer includes gonadotropin-releasing hormone agonists (e.g., leuprolide), second-generation nonsteroidal AR antagonists (enzalutamide, apalutamide, and darolutamide) and the androgen biosynthesis inhibitor abiraterone. The purpose of this review is to provide an assessment of hormonal therapies for the various clinical states of prostate cancer. The advancement of today's standard of care will require an accounting of an individual's androgen physiology that also has recently recognized germline determinants of peripheral androgen metabolism, which include HSD3B1 inheritance.
Collapse
Affiliation(s)
- Kunal Desai
- Department of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey M McManus
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
23
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
24
|
Vlajnic T, Bubendorf L. Molecular pathology of prostate cancer: a practical approach. Pathology 2020; 53:36-43. [PMID: 33234230 DOI: 10.1016/j.pathol.2020.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
While localised prostate cancer can be cured by local treatment, 'high-risk' prostate cancer often progresses to castration resistant disease and remains incurable with a dismal prognosis. In recent years, technical advances and development of novel methodologies have largely contributed to a better understanding of underlying molecular mechanisms that promote tumour growth and progression. Consecutively, novel therapeutic strategies for treatment of prostate cancer have emerged during the last decade, calling for the identification of predictive biomarkers. The concept of personalised medicine is to tailor treatment according to the specific tumour profile of an individual patient. Moreover, acquired molecular changes during tumour evolution and in response to therapy selection pressure require adapted predictive marker testing at different time points during the disease. In this setting, the pathologist plays a critical role in patient management and treatment selection. In this review, we provide a comprehensive overview of the current knowledge of molecular aspects of prostate cancer and their potential utility in the context of different therapeutic approaches. Furthermore, we discuss methods for molecular marker testing in routine clinical practice, with a focus on castration resistant prostate cancer.
Collapse
Affiliation(s)
- Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
25
|
Carson JJK, Di Lena MA, Berman DM, Siemens DR, Mueller CR. Development and initial clinical correlation of a DNA methylation-based blood test for prostate cancer. Prostate 2020; 80:1038-1042. [PMID: 32506642 DOI: 10.1002/pros.24025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND One of the principle limitations for more precise management of advanced prostate cancer is the lack of accurate biomarkers allowing estimation of tumor burden, ongoing assessment of progression, and response to treatment. Although prostate-specific antigen (PSA) performs modestly, nonsecreting cancers including those with early castrate-resistance warrant investigation of other predictive biomarkers. The objectives of these studies were to develop and perform initial validation of a circulating tumor DNA (ctDNA) methylation assay. METHODS Methylation DETection of Circulating Tumor DNA (mDETECT) is a highly multiplexed targeted sequencing DNA methylation-based ctDNA blood test that captures the vast majority of prostate cancer phenotypes due to a careful development process that ensures that each probe region is methylated in at least 50% of all methylation-based subtypes and is not methylated in normal tissues. Next-generation sequencing of targeted polymerase chain reaction (PCR) products whose amplification is biased towards methylated DNA ensures the specificity of the assay by identifying multiple tumor-specific methylated CpG residues in each read. RESULTS The final test is comprised of 46 PCR probes to 40 regions. It is relatively resistant to contaminating normal DNA and as a result functions in both serum and plasma samples. The assay was initially validated in a variety of prostate cancer cell lines to ensure specificity. Using a small number of longitudinal samples from prostate cancer patients initiating androgen deprivation therapy, the ability of mDETECT to track tumor burden was assessed compared with PSA. The mDETECT test signal generally paralleled that of PSA increasing and decreasing commensurate with tumor evolution in these patients. In two cases it appeared to anticipate clinical progression by a number of months compared to PSA and in a PSA nonproducing case, it was able to track tumor progression. CONCLUSIONS mDETECT offers a promising tool for the assessment of prostate cancer burden based on the sensitive detection of prostate-specific ctDNA and requires further validation.
Collapse
Affiliation(s)
- Jacob J K Carson
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael A Di Lena
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - D Robert Siemens
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - Christopher R Mueller
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
- Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Biological and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|