1
|
Sewastjanow-Silva M, Kwiatkowski E, Yamashita K, Abdelhakeem A, Yoshimura K, Vicentini ER, Pizzi MP, Jin J, Fan Y, Zou G, Wang L, Yin F, Dhar SS, Blum Murphy M, Mares JE, Li JJ, Gan Q, Waters RE, Rogers JE, Ajani JA. Three biomarkers (HER2, PD-L1, and microsatellite status) in a large cohort of metastatic gastroesophageal adenocarcinomas: The MD Anderson Cancer Center experience. Int J Cancer 2024; 155:2277-2286. [PMID: 38995150 DOI: 10.1002/ijc.35090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/11/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Human epidermal growth factor receptor-2 (HER2), programmed death-ligand 1 (PD-L1), and microsatellite (MS) status are well-established biomarkers in gastroesophageal adenocarcinomas (GEAs). However, it is unclear how the combination of these biomarkers is associated with clinicopathological factors and prognosis. This retrospective study included baseline metastatic GEA patients who were tested for all three biomarkers (HER2, PD-L1, and MS status) at the MD Anderson Cancer Center between 2012 and 2022. Stratification was performed according to the combination of biomarker profiles: triple negative (TN), single positive (SP), and multiple positive (MP). Comparative analyses of clinicopathological factors and survival using combinations of biomarkers were performed. Among the 698 GEA patients analyzed, 251 (36.0%) were classified as TN, 334 (47.9%) as SP, and 113 (16.1%) as MP. The MP group showed a significant association with tumors located in the esophagus (p < .001), well to moderate differentiation (p < .001), and the absence of signet ring cells (p < .001). In the survival analysis, MP group had a significantly longer overall survival (OS) compared to the other groups (MP vs. TN, p < .001 and MP vs. SP, p < .001). Multivariate Cox regression analysis revealed that MP serves as an independent positive prognostic indicator for OS (hazard ratio = 0.63, p < .01). Our findings indicate that MP biomarkers are associated with a favorable prognosis in metastatic GEA. These results are reflective of clinical practice and offer valuable insights into how therapeutics and future biomarkers could influence therapy/prognosis.
Collapse
Affiliation(s)
- Matheus Sewastjanow-Silva
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Evan Kwiatkowski
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahmed Abdelhakeem
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Katsuhiro Yoshimura
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ernesto R Vicentini
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa P Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gengyi Zou
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lingzhi Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Yin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shilpa S Dhar
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mariela Blum Murphy
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeannette E Mares
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jenny J Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qiong Gan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca E Waters
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane E Rogers
- Department of Pharmacy Clinical Programs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Ye C, Li P, Chen B, Mo Y, Huang Q, Li Q, Hou Q, Mo L, Yan J. Pan-cancer analysis and experimental validation of FPR3 as a prognostic and immune infiltration-related biomarker for glioma. Front Genet 2024; 15:1466617. [PMID: 39445161 PMCID: PMC11496095 DOI: 10.3389/fgene.2024.1466617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Formyl peptide receptor 3 (FPR3) is known to have implications in the progression of various cancer types. Despite this, its biological significance within pan-cancer datasets has yet to be investigated. In this investigation, we scrutinized FPR3's expression profiles, genetic alterations, prognostic significance, immune-related characteristics, methylation status, tumor mutation burden (TMB), and microsatellite instability (MSI) across different types of cancer. We utilized TISCH's single-cell data to identify immune cells closely associated with FPR3. The predictive significance of FPR3 was evaluated independently in gliomas using data from TCGA and CGGA datasets, leading to the development of a prognostic nomogram. Immunohistochemistry and Western blot analysis confirmed FPR3 expression in gliomas. Lastly, the CCK-8 and wound-healing assays were employed to assess the impact of FPR3 on the proliferation and metastasis of GBM cell lines. In numerous cancer types, heightened FPR3 expression correlated with adverse outcomes, immune cell infiltration, immune checkpoints, TMB, and MSI. In glioma, FPR3 emerged as a notable risk factor, with the prognostic model effectively forecasting patient results. The potential biological relevance of FPR3 was confirmed in glioma, and it was shown to have significant involvement in the processes of glioma growth, immune infiltration, and metastasis. Our results imply a potential association of FPR3 with tumor immunity, indicating its viability as a prognostic indicator in glioma.
Collapse
Affiliation(s)
- Chenglin Ye
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Peng Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Boxu Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuyun Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qinhan Hou
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Ooki A, Osumi H, Yoshino K, Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer 2024; 27:907-931. [PMID: 38922524 PMCID: PMC11335850 DOI: 10.1007/s10120-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Gastric cancer (GC) is a common malignancy that presents challenges in patient care worldwide. The mismatch repair (MMR) system is a highly conserved DNA repair mechanism that protects genome integrity during replication. Deficient MMR (dMMR) results in an increased accumulation of genetic errors in microsatellite sequences, leading to the development of a microsatellite instability-high (MSI-H) phenotype. Most MSI-H/dMMR GCs arise sporadically, mainly due to MutL homolog 1 (MLH1) epigenetic silencing. Unlike microsatellite-stable (MSS)/proficient MMR (pMMR) GCs, MSI-H/dMMR GCs are relatively rare and represent a distinct subtype with genomic instability, a high somatic mutational burden, favorable immunogenicity, different responses to treatment, and prognosis. dMMR/MSI-H status is a robust predictive biomarker for treatment with immune checkpoint inhibitors (ICIs) due to high neoantigen load, prominent tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PD-L1) overexpression. However, a subset of MSI-H/dMMR GC patients does not benefit from immunotherapy, highlighting the need for further research into predictive biomarkers and resistance mechanisms. This review provides a comprehensive overview of the clinical, molecular, immunogenic, and therapeutic aspects of MSI-H/dMMR GC, with a focus on the impact of ICIs in immunotherapy and their potential as neoadjuvant therapies. Understanding the complexity and diversity of the molecular and immunological profiles of MSI-H/dMMR GC will drive the development of more effective therapeutic strategies and molecular targets for future precision medicine.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Koichiro Yoshino
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
4
|
Cai X, Lin W, Wu F, Song G, Qian Z, Wang Y. RARB associated with MSI, affects progression and prognosis of gastric cancer. BMC Gastroenterol 2024; 24:285. [PMID: 39179979 PMCID: PMC11342619 DOI: 10.1186/s12876-024-03339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
Microsatellite instability (MSI) has been widely acknowledged as an important factor regulating tumor intrinsic biological behavior and affecting the survival of gastric cancer patients. Here, we firstly identified the RARB as a gene associated with MSI gastric cancer. RARB was downregulated in human gastric cancer tissues compared to paired paracancerous tissues, Knockdown of RARB accelerated the proliferation, invasion and migration of cancer cells in vitro. Mechanismly, RARB knockdown promoted epithelial-mesenchymal transition (EMT) process of gastric cancer. However, RARBLow patients exhibited better survival compared to RARBHigh patients. Further study revealed that RARB expression was inversely correlated with MSI status and immune infiltrates in vivo. Thus, RARB may be a potential target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xufan Cai
- Graduate School, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Wenfa Lin
- Graduate School, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University Hangzhou, Hangzhou, Zhejiang, China
| | - Fang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guangyuan Song
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhenyuan Qian
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yu Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Ibrahim D, Simó C, Brown EL, Shmuel S, Panikar SS, Benton A, DeWeerd R, Dehdashti F, Park H, Pereira PMR. PD-L1 has a heterogeneous and dynamic expression in gastric cancer with implications for immunoPET. Front Immunol 2024; 15:1405485. [PMID: 38915392 PMCID: PMC11194338 DOI: 10.3389/fimmu.2024.1405485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This study aimed to investigate the dynamics of programmed death-ligand 1 (PD-L1) expression, spatial heterogeneity, and binding affinity of FDA-approved anti-PD-L1 antibodies (avelumab and atezolizumab) in gastric cancer. Additionally, we determined how PD-L1 glycosylation impacts antibody accumulation in gastric cancer cells. Methods Dynamic PD-L1 expression was examined in NCIN87 gastric cancer cells. Comparative binding studies of avelumab and atezolizumab were conducted in gastric cancer models, both in vitro and in vivo. Antibody uptake in tumors was visualized through positron emission tomography (PET) imaging. PD-L1 glycosylation status was determined via Western blot analyses before and after PNGase F treatment. Results Consistent findings revealed time-dependent PD-L1 induction in NCIN87 gastric cancer cells and spatial heterogeneity in tumors, as shown by PET imaging and immunofluorescence. Avelumab displayed superior binding affinity to NCIN87 cells compared to atezolizumab, confirmed by in vivo PET imaging and ex vivo biodistribution analyses. Notably, PD-L1 glycosylation at approximately 50 kDa was observed, with PNGase F treatment inducing a shift to 35 kDa in molecular weight. Tissue samples from patient-derived xenografts (PDXs) validated the presence of both glycosylated and deglycosylated PD-L1 (degPD-L1) forms in gastric cancer. Immunofluorescence microscopy and binding assays demonstrated enhanced avelumab binding post-deglycosylation. Discussion This study provides an understanding of dynamic and spatially heterogeneous PD-L1 expression in gastric cancer. Anti-PD-L1 immunoPET was able to visualize gastric tumors, and PD-L1 glycosylation has significant implications for antibody recognition. These insights contribute to demonstrating the complexities of PD-L1 in gastric cancer, holding relevance for refining PD-L1 imaging-based approaches.
Collapse
Affiliation(s)
- Dina Ibrahim
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cristina Simó
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Emma L. Brown
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Shayla Shmuel
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep Surendra Panikar
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Alex Benton
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel DeWeerd
- Cancer Biology Graduate Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Farrokh Dehdashti
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Haeseong Park
- Gastrointestinal Cancer Center, Center for Cancer Therapeutic Innovation, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Patrícia M. R. Pereira
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Xiao M, Tu L, Zhou T, He Y, Li X, Zuo Q. Predictive model based on multiple immunofluorescence quantitative analysis for pathological complete response to neoadjuvant immunochemotherapy in lung squamous cell carcinoma. Front Oncol 2024; 14:1396439. [PMID: 38887237 PMCID: PMC11180808 DOI: 10.3389/fonc.2024.1396439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Objective This study aims to establish a prediction model for neoadjuvant immunochemotherapy (NICT) in lung squamous cell carcinoma to guide clinical treatment. Methods This retrospective study included 50 patients diagnosed with lung squamous cell carcinoma who received NICT. The patients were divided into the pathological complete response (PCR) group and the non-PCR group. HE staining and multiple immunofluorescence (mIF) techniques were utilized to analyze the differences in the immune microenvironment between these groups. LASSO regression and optimal subset regression were employed to identify the most significant variables and construct a prediction model. Results The PCR group showed higher densities of lymphocyte nuclei and karyorrhexis based on HE staining. Furthermore, based on mIF analysis, the PCR group showed higher cell densities of CD8+, PD-L1+, and CD8+PD-L1+ in the tumor region, while showing lower cell densities of CD3+Foxp3+, Foxp3+, and CD163+. Logistic univariate analysis revealed CD8+PD-L1+, PD-L1+, CD8+, CD4+LAG-3+, lymphocyte nuclei, and karyorrhexis as significant factors influencing PCR. By using diverse screening methods, the three most relevant variables (CD8+, PD-L1+, and CD8+PD-L1+ in the tumor region) were selected to establish the prediction model. The model exhibited excellent performance in both the training set (AUC=0.965) and the validation set (AUC=0.786). In the validation set, In comparison to the conventional TPS scoring criteria, the model attained superior accuracy (0.85), specificity(0.67), and sensitivity (0.92). Conclusion NICT treatment might induce anti-tumor effects by enriching immune cells and reactivating exhausted T cells. CD8+, PD-L1+, and CD8+PD-L1+ cell abundances within the tumor region have been closely associated with therapeutic efficacy. Incorporating these three variables into a predictive model allows accurate forecasting of treatment outcomes and provides a reliable basis for selecting NICT treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohui Li
- The Geriatric Respiratory Department, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiunan Zuo
- The Geriatric Respiratory Department, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Zhou KI, Hanks BA, Strickler JH. Management of Microsatellite Instability High (MSI-H) Gastroesophageal Adenocarcinoma. J Gastrointest Cancer 2024; 55:483-496. [PMID: 38133871 PMCID: PMC11186732 DOI: 10.1007/s12029-023-01003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Gastroesophageal cancer is a major cause of cancer-related mortality worldwide. Treatment of both early stage and advanced disease remains highly reliant on cytotoxic chemotherapy. About 4-24% of gastroesophageal cancers are microsatellite instability high (MSI-H). The MSI-H subtype is associated with favorable prognosis, resistance to cytotoxic chemotherapy, and sensitivity to immune checkpoint inhibitors (ICI). Recent studies have demonstrated promising activity of ICIs in the MSI-H subtype, resulting in fundamental changes in the management of MSI-H gastroesophageal adenocarcinoma. PURPOSE In this review, we discuss the prevalence, characteristics, prognosis, and management of MSI-H gastroesophageal adenocarcinoma, with a focus on recent and ongoing studies that have changed the landscape of treatment for the MSI-H subtype. We also discuss current challenges in the management of resectable and advanced MSI-H gastroesophageal cancer, including the need for more accurate biomarkers of response to ICI therapy.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
| | - Brent A Hanks
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - John H Strickler
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Sun J, Li X, Wang Q, Chen P, Zhao L, Gao Y. Proteomic profiling and biomarker discovery for predicting the response to PD-1 inhibitor immunotherapy in gastric cancer patients. Front Pharmacol 2024; 15:1349459. [PMID: 38881867 PMCID: PMC11176556 DOI: 10.3389/fphar.2024.1349459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment; however, a significant proportion of gastric cancer (GC) patients do not respond to this therapy. Consequently, there is an urgent need to elucidate the mechanisms underlying resistance to ICIs and identify robust biomarkers capable of predicting the response to ICIs at treatment initiation. Methods: In this study, we collected GC tissues from 28 patients prior to the administration of anti-programmed death 1 (PD-1) immunotherapy and conducted protein quantification using high-resolution mass spectrometry (MS). Subsequently, we analyzed differences in protein expression, pathways, and the tumor microenvironment (TME) between responders and non-responders. Furthermore, we explored the potential of these differences as predictive indicators. Finally, using machine learning algorithms, we screened for biomarkers and constructed a predictive model. Results: Our proteomics-based analysis revealed that low activity in the complement and coagulation cascades pathway (CCCP) and a high abundance of activated CD8 T cells are positive signals corresponding to ICIs. By using machine learning, we successfully identified a set of 10 protein biomarkers, and the constructed model demonstrated excellent performance in predicting the response in an independent validation set (N = 14; area under the curve [AUC] = 0.959). Conclusion: In summary, our proteomic analyses unveiled unique potential biomarkers for predicting the response to PD-1 inhibitor immunotherapy in GC patients, which may provide the impetus for precision immunotherapy.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Longfei Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Han Z, Zhang Z, Yang X, Li Z, Sang S, Islam MT, Guo AA, Li Z, Wang X, Wang J, Zhang T, Sun Z, Yu L, Wang W, Xiong W, Li G, Jiang Y. Development and interpretation of a pathomics-driven ensemble model for predicting the response to immunotherapy in gastric cancer. J Immunother Cancer 2024; 12:e008927. [PMID: 38749538 PMCID: PMC11097892 DOI: 10.1136/jitc-2024-008927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Only a subset of patients with gastric cancer experience long-term benefits from immune checkpoint inhibitors (ICIs). Currently, there is a deficiency in precise predictive biomarkers for ICI efficacy. The aim of this study was to develop and validate a pathomics-driven ensemble model for predicting the response to ICIs in gastric cancer, using H&E-stained whole slide images (WSI). METHODS This multicenter study retrospectively collected and analyzed H&E-stained WSIs and clinical data from 584 patients with gastric cancer. An ensemble model, integrating four classifiers: least absolute shrinkage and selection operator, k-nearest neighbors, decision trees, and random forests, was developed and validated using pathomics features, with the objective of predicting the therapeutic efficacy of immune checkpoint inhibition. Model performance was evaluated using metrics including the area under the curve (AUC), sensitivity, and specificity. Additionally, SHAP (SHapley Additive exPlanations) analysis was used to explain the model's predicted values as the sum of the attribution values for each input feature. Pathogenomics analysis was employed to explain the molecular mechanisms underlying the model's predictions. RESULTS Our pathomics-driven ensemble model effectively stratified the response to ICIs in training cohort (AUC 0.985 (95% CI 0.971 to 0.999)), which was further validated in internal validation cohort (AUC 0.921 (95% CI 0.839 to 0.999)), as well as in external validation cohort 1 (AUC 0.914 (95% CI 0.837 to 0.990)), and external validation cohort 2 (0.927 (95% CI 0.802 to 0.999)). The univariate Cox regression analysis revealed that the prediction signature of pathomics-driven ensemble model was a prognostic factor for progression-free survival in patients with gastric cancer who underwent immunotherapy (p<0.001, HR 0.35 (95% CI 0.24 to 0.50)), and remained an independent predictor after multivariable Cox regression adjusted for clinicopathological variables, (including sex, age, carcinoembryonic antigen, carbohydrate antigen 19-9, therapy regime, line of therapy, differentiation, location and programmed death ligand 1 (PD-L1) expression in all patients (p<0.001, HR 0.34 (95% CI 0.24 to 0.50)). Pathogenomics analysis suggested that the ensemble model is driven by molecular-level immune, cancer, metabolism-related pathways, and was correlated with the immune-related characteristics, including immune score, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data score, and tumor purity. CONCLUSIONS Our pathomics-driven ensemble model exhibited high accuracy and robustness in predicting the response to ICIs using WSIs. Therefore, it could serve as a novel and valuable tool to facilitate precision immunotherapy.
Collapse
Affiliation(s)
- Zhen Han
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Zhicheng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
- JancsiLab, JancsiTech, Hongkong, China
| | - Xianqi Yang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhe Li
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shengtian Sang
- Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Alyssa A Guo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Zihan Li
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Xiaoyan Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
| | - Lequan Yu
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Wang
- Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine,Southern Medical University, Guangzhou, Guangdong, China
- School of Clinical Medicine, Tsinghua University, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
10
|
Raimondi A, Kim YW, Kang WK, Langley RE, Choi YY, Kim KM, Nankivell MG, Randon G, Kook MC, An JY, Grabsch HI, Prisciandaro M, Nichetti F, Noh SH, Sohn TS, Kim S, Wotherspoon A, Morano F, Cunningham D, Lee J, Cheong JH, Smyth EC, Pietrantonio F. Prognostic and predictive impact of sex in locally advanced microsatellite instability high gastric or gastroesophageal junction cancer: An individual patient data pooled analysis of randomized clinical trials. Eur J Cancer 2024; 203:114043. [PMID: 38598921 DOI: 10.1016/j.ejca.2024.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Surgery plus peri-operative/adjuvant chemotherapy is the standard of care for locally advanced GC/GEJC, though with unsatisfactory results. dMMR/MSI-high tumors have better prognosis and scant benefit from chemotherapy as compared to pMMR/MSS ones. The differential outcome of therapies in terms of safety and efficacy according to sex is still debated in GC/GEJC patients. METHODS We previously performed an individual patient data pooled analysis of MAGIC, CLASSIC, ITACA-S, and ARTIST trials including GC/GEJC patients treated with surgery alone or surgery plus peri-operative/adjuvant chemotherapy to assess the value of MSI status. We performed a secondary analysis investigating the prognostic and predictive role of sex (female versus male) in the pooled analysis dataset in the overall population and patients stratified for MSI status (MSI-high versus MSS/MSI-low). Disease-free (DFS) and overall survival (OS) were calculated. RESULTS Patients with MSI-high tumors had improved survival as compared to MSS/MSI-low ones irrespective of sex, whereas in those with MSS/MSI-low tumors, females had numerically longer OS and DFS (5-year OS was 63.2% versus 57.6%, HR 0.842; p = 0.058, and 5-year DFS was 55.8% versus 50.8%, HR 0.850; p = 0.0504 in female versus male patients). The numerical difference for the detrimental effect of chemotherapy in MSI-high GC was higher in females than males, while the significant benefit of chemotherapy over surgery alone was confirmed in MSS/MSI-low GC irrespective of sex. CONCLUSIONS This pooled analysis including four randomized trials highlights a relevant impact of sex in the prognosis and treatment efficacy of MSI-high and MSS/MSI-low non-metastatic GC/GEJC.
Collapse
Affiliation(s)
- Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ruth E Langley
- The Medical Research Council Clinical Trials Unit, London, United Kingdom
| | - Yoon Young Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Ji Yeong An
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Heike I Grabsch
- Division of Pathology and Data analytics, Leeds Institute for Medical Research at St. James's, University of Leeds, Leeds, United Kingdom; Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Sung Sohn
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Andrew Wotherspoon
- Royal Marsden Hospital, London and Sutton, United Kingdom and the Institute of Cancer Research, London, United Kingdom
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Cunningham
- Department of Gastrointestinal Oncology and Lymphoma, Royal Marsden Hospital, Sutton, London, United Kingdom
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
11
|
Yehan Z, Sheng Q, Hong Y, Jiayu L, Jun H, Juan J, Min S, Jiaxin Y, Shangzhi H, Yi W, Qifeng W, Xuefeng L, Wenwu H, Xueyan C, Yang L, Zongyao H. To develop a prognostic model for neoadjuvant immunochemotherapy efficacy in esophageal squamous cell carcinoma by analyzing the immune microenvironment. Front Immunol 2024; 15:1312380. [PMID: 38726002 PMCID: PMC11079241 DOI: 10.3389/fimmu.2024.1312380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Objective The choice of neoadjuvant therapy for esophageal squamous cell carcinoma (ESCC) is controversial. This study aims to provide a basis for clinical treatment selection by establishing a predictive model for the efficacy of neoadjuvant immunochemotherapy (NICT). Methods A retrospective analysis of 30 patients was conducted, divided into Response and Non-response groups based on whether they achieved major pathological remission (MPR). Differences in genes and immune microenvironment between the two groups were analyzed through next-generation sequencing (NGS) and multiplex immunofluorescence (mIF). Variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves to establish a predictive model. An additional 48 patients were prospectively collected as a validation set to verify the model's effectiveness. Results NGS suggested seven differential genes (ATM, ATR, BIVM-ERCC5, MAP3K1, PRG, RBM10, and TSHR) between the two groups (P < 0.05). mIF indicated significant differences in the quantity and location of CD3+, PD-L1+, CD3+PD-L1+, CD4+PD-1+, CD4+LAG-3+, CD8+LAG-3+, LAG-3+ between the two groups before treatment (P < 0.05). Dynamic mIF analysis also indicated that CD3+, CD8+, and CD20+ all increased after treatment in both groups, with a more significant increase in CD8+ and CD20+ in the Response group (P < 0.05), and a more significant decrease in PD-L1+ (P < 0.05). The three variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves: Tumor area PD-L1+ (AUC= 0.881), CD3+PD-L1+ (AUC= 0.833), and CD3+ (AUC= 0.826), and a predictive model was established. The model showed high performance in both the training set (AUC= 0.938) and the validation set (AUC= 0.832). Compared to the traditional CPS scoring criteria, the model showed significant improvements in accuracy (83.3% vs 70.8%), sensitivity (0.625 vs 0.312), and specificity (0.937 vs 0.906). Conclusion NICT treatment may exert anti-tumor effects by enriching immune cells and activating exhausted T cells. Tumor area CD3+, PD-L1+, and CD3+PD-L1+ are closely related to therapeutic efficacy. The model containing these three variables can accurately predict treatment outcomes, providing a reliable basis for the selection of neoadjuvant treatment plans.
Collapse
Affiliation(s)
- Zhou Yehan
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Sheng
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Hong
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Jiayu
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hou Jun
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ji Juan
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Min
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Jiaxin
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hu Shangzhi
- Department of Endoscopy Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wang Yi
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wang Qifeng
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Leng Xuefeng
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - He Wenwu
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Liu Yang
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huang Zongyao
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Zhang Z, Huang J, Li Y, Yan H, Xie J, Wang J, Zhao B. Global burden, risk factors, clinicopathological characteristics, molecular biomarkers and outcomes of microsatellite instability-high gastric cancer. Aging (Albany NY) 2024; 16:948-963. [PMID: 38224334 PMCID: PMC10817383 DOI: 10.18632/aging.205431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Microsatellite instability-high (MSI-H) has gained considerable interests since it was approved as a tumor-agnostic biomarker in immunotherapy. However, the reported characteristics of MSI-H gastric cancer (GC) are inconsistent due to the biological complexity. Here, we aim to clarify the prevalence, risk factors, clinicopathological/molecular features and outcomes of MSI-H GC though a comprehensive review on 43246 patients from 134 cohorts. Overall, the proportion of MSI-H GC was 14.5% (95% CI, 13.3%-15.8%). Patients with MSI-H GC were less likely to have Epstein-Barr virus infection. High incidences of MSI-H GC were associated with female, older age, lower gastric body, Lauren intestinal histology, WHO tubular and mucinous subtypes, and early disease stage. Additionally, patients with MSI-H GC harbored more KRAS mutation, PD-L1 positivity, CD8 overexpression, and higher TMB, but less HER2 positivity and TP53 mutation. When treated with conventional strategy, the 5-year survival rates in MSI-H patients (70.3%) and MSI-L/MSS patients (43.7%) were significantly different (p<0.001). Patients with MSI-H GC derived larger benefit from immunotherapy in term of overall survival (pInteraction<0.001) and objective response (pInteraction=0.02). Since the prevalence of MSI-H GC is relatively high and associated with distinct clinicopathological and molecular characteristics, MSI testing should be conducted during standard diagnostical activity. Moreover, giving MSI-H tumors are often diagnosed at early stage and have favorable outcomes, less aggressive treatment strategies may be considered in clinical practice. In summary, this panoramic review may assist in design and/or interpretation of clinical trials, provide references in drug development, and constitute complementary information in drafting the clinical practice guideline.
Collapse
Affiliation(s)
- Zhishan Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Jinyuan Huang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yingying Li
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Huimeng Yan
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Junxing Xie
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Jing Wang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Bin Zhao
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
Zhao L, Fu Y, Niu P, Zhang F, Jiao F, Zhou X, Wu Z, Wang W, Luan X, Han X, He M, Guan Q, Li Y, Zhao D, Gao J, Chen Y. Perioperative Chemotherapy Could Not Improve the Prognosis of Gastric Cancer Patients With Mismatch Repair Deficiency: A Multicenter, Real-World Study. Oncologist 2023; 28:e891-e901. [PMID: 37104872 PMCID: PMC10546834 DOI: 10.1093/oncolo/oyad108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION To date, the role of deficient mismatch repair (dMMR) remains to be proven in gastric cancer, and it is difficult to judge its value in clinical application. Our study aimed to investigate how MMR status affected the prognosis in patients with gastrectomy, as well as the efficacy of neoadjuvant chemotherapy and adjuvant chemotherapy in patients with dMMR with gastric cancer. MATERIALS AND METHODS Patients with gastric cancer with certain pathologic diagnosis of dMMR or proficient MMR (pMMR) using immunohistochemistry from 4 high-volume hospitals in China were included. Propensity score matching was used to match patients with dMMR or pMMR in 1:2 ratios. Overall survival (OS) and progression-free survival (PFS) curves were plotted using the Kaplan-Meier method and compared statistically using the log-rank test. Univariate and multivariate Cox proportional hazards models based on hazard ratios (HRs) and 95% confidence intervals (CIs) were used to determine the risk factors for survival. RESULTS In total, data from 6176 patients with gastric cancer were ultimately analyzed, and loss of expression of one or more MMR proteins was observed in 293 patients (293/6176, 4.74%). Compared to patients with pMMR, patients with dMMR are more likely to be older (≥66, 45.70% vs. 27.94%, P < .001), distal location (83.51% vs. 64.19%, P < .001), intestinal type (42.21% vs. 34.46%, P < .001), and in the earlier pTNM stage (pTNM I, 32.79% vs. 29.09%, P = .009). Patients with gastric cancer with dMMR showed better OS than those with pMMR before PSM (P = .002); however, this survival advantage was not observed for patients with dMMR after PSM (P = .467). As for perioperative chemotherapy, results of multivariable Cox regression analysis showed that perioperative chemotherapy was not an independent prognostic factor for PFS and OS in patients with dMMR with gastric cancer (HR = 0.558, 95% CI, 0.270-1.152, P = .186 and HR = 0.912, 95% CI, 0.464-1.793, P = .822, respectively). CONCLUSION In conclusion, perioperative chemotherapy could not prolong the OS and PFS of patients with dMMR with gastric cancer.
Collapse
Affiliation(s)
- Lulu Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yongliang Fu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Penghui Niu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Fan Zhang
- Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Fuzhi Jiao
- The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiadong Zhou
- Gansu Provincial Cancer Hospital, Lanzhou, People’s Republic of China
| | - Zhenkun Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wanqing Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoyi Luan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xue Han
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Mingyan He
- Gansu Provincial Cancer Hospital, Lanzhou, People’s Republic of China
| | - Quanlin Guan
- The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yumin Li
- Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Dongbing Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jidong Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union College, Shenzhen, People’s Republic of China
| | - Yingtai Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Nie Y, Zhao W, Lu L, Zhou F. Predictive biomarkers and new developments of immunotherapy in gastric cancer: a 2023 update. Am J Cancer Res 2023; 13:3169-3184. [PMID: 37559976 PMCID: PMC10408463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
Gastric cancer is an extremely common digestive tract tumor. The promotion and application of standardized therapy, treatment scheme optimization, and development of new targeted drugs and immunotherapies have improved gastric cancer survival somewhat. However, gastric cancer prognosis generally remains non-optimistic. Immune checkpoint inhibitors (ICI) have gradually become a new choice for gastric cancer treatment and can prolong the survival of some patients. Among them, high-microsatellite instability, Epstein-Barr virus-positive status, or high-tumor mutational burden patients with gastric cancer may be the potential population to benefit from immunotherapy. Nevertheless, there remains a lack of unified and effective predictive markers. Accordingly, this review mainly focused on the possible predictive biomarkers of anti-PD-1/PD-L1 in gastric cancer treatment. Furthermore, the application of anti-PD-1/PD-L1 therapy-related clinical trials on gastric cancer is discussed. The current findings suggest that immunotherapy is a promising application in gastric cancer treatment. Therefore, combining immunotherapy and other therapies may be the trend in the future. Nevertheless, exploring biomarkers to predict ICI response remains a major challenge.
Collapse
Affiliation(s)
- Yanli Nie
- Department of Gastrointestinal Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430079, Hubei, China
| | - Wei Zhao
- PLA Rocket Force Characteristic Medical CenterBeijing 100088, China
| | - Li Lu
- Department of Gastrointestinal Surgical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430079, Hubei, China
| | - Fuxiang Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan UniversityWuhan 430071, Hubei, China
| |
Collapse
|
15
|
Vos EL, Maron SB, Krell RW, Nakauchi M, Fiasconaro M, Capanu M, Walch HS, Chatila WK, Schultz N, Ilson DH, Janjigian YY, Ku GY, Yoon SS, Coit DG, Vanderbilt CM, Tang LH, Strong VE. Survival of Locally Advanced MSI-high Gastric Cancer Patients Treated With Perioperative Chemotherapy: A Retrospective Cohort Study. Ann Surg 2023; 277:798-805. [PMID: 35766391 PMCID: PMC9797619 DOI: 10.1097/sla.0000000000005501] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To evaluate the efficacy of chemotherapy in patients with microsatellite instability (MSI)-high gastric cancer. BACKGROUND Although MSI-high gastric cancer is associated with a superior prognosis, recent studies question the benefit of perioperative chemotherapy in this population. METHODS Locally advanced gastric adenocarcinoma patients who either underwent surgery alone or also received neoadjuvant, perioperative, or adjuvant chemotherapy between 2000 and 2018 were eligible. MSI status, determined by next-generation sequencing or mismatch repair protein immunohistochemistry, was determined in 535 patients. Associations among MSI status, chemotherapy administration, overall survival (OS), disease-specific survival, and disease-free survival were assessed. RESULTS In 535 patients, 82 (15.3%) had an MSI-high tumor and ∼20% better OS, disease-specific survival, and disease-free survival. Grade 1 (90%-100%) pathological response to neoadjuvant chemotherapy was found in 0 of 40 (0%) MSI-high tumors versus 43 of 274 (16%) MSS. In the MSI-high group, the 3-year OS rate was 79% with chemotherapy versus 88% with surgery alone ( P =0.48). In the MSS group, this was 61% versus 59%, respectively ( P =0.96). After multivariable interaction analyses, patients with MSI-high tumors had superior survival compared with patients with MSS tumors whether given chemotherapy (hazard ratio=0.53, 95% confidence interval: 0.28-0.99) or treated with surgery alone (hazard ratio=0.15, 95% confidence interval: 0.02-1.17). CONCLUSIONS MSI-high locally advanced gastric cancer was associated with superior survival compared with MSS overall, despite worse pathological chemotherapy response. In patients with MSI-high gastric cancer who received chemotherapy, the survival rate was ∼9% worse compared with surgery alone, but chemotherapy was not significantly associated with survival.
Collapse
Affiliation(s)
- Elvira L Vos
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven B Maron
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert W Krell
- Department of Surgery, Brooke Army Medical Center, Fort Sam Houston, TX
| | - Masaya Nakauchi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Megan Fiasconaro
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Henry S Walch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Walid K Chatila
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David H Ilson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Geoffrey Y Ku
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chad M Vanderbilt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Laura H Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vivian E Strong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
16
|
Narita Y, Muro K. Updated Immunotherapy for Gastric Cancer. J Clin Med 2023; 12:jcm12072636. [PMID: 37048719 PMCID: PMC10094960 DOI: 10.3390/jcm12072636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer treatments are evolving rapidly. For example, immune checkpoint inhibitors, especially those that target PD-1 or PD-L1, have long-term efficacy in a subset of gastric cancer patients, and are currently the first-line therapy. Immunotherapies approved for use in untreated gastric cancer patients include monotherapy and chemotherapy-immunotherapy combinations. Major clinical trials have reported efficacy and safety data suggesting that PD-L1 expression is important for regimen selection, although other biomarkers, clinicopathologic factors, and patient preference might also be relevant in other situations. Currently, several novel biomarkers and therapeutic strategies are being assessed, which might refine the current treatment paradigm. In this review, we describe the current treatment regimens for patients with gastric cancer and detail the approach we use for the selection of first-line immunotherapy regimens.
Collapse
Affiliation(s)
- Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| |
Collapse
|
17
|
Lavacchi D, Fancelli S, Buttitta E, Vannini G, Guidolin A, Winchler C, Caliman E, Vannini A, Giommoni E, Brugia M, Cianchi F, Pillozzi S, Roviello G, Antonuzzo L. Perioperative Tailored Treatments for Gastric Cancer: Times Are Changing. Int J Mol Sci 2023; 24:4877. [PMID: 36902306 PMCID: PMC10003389 DOI: 10.3390/ijms24054877] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Resectable gastric or gastroesophageal (G/GEJ) cancer is a heterogeneous disease with no defined molecularly based treatment strategy. Unfortunately, nearly half of patients experience disease recurrence despite standard treatments (neoadjuvant and/or adjuvant chemotherapy/chemoradiotherapy and surgery). In this review, we summarize the evidence of potential tailored approaches in perioperative treatment of G/GEJ cancer, with a special focus on patients with human epidermal growth factor receptor-2(HER2)-positive and microsatellite instability-high (MSI-H) tumors. In patients with resectable MSI-H G/GEJ adenocarcinoma, the ongoing INFINITY trial introduces the concept of non-operative management for patients with complete clinical-pathological-molecular response, and this could be a novel and potential practice changing strategy. Other pathways involving vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), claudin18 isoform 2 (CLDN18.2), and DNA damage repair proteins are also described, with limited evidence until now. Although tailored therapy appears to be a promising strategy for resectable G/GEJ cancer, there are several methodological issues to address: inadequate sample size for pivotal trials, underestimation of subgroup effects, and choice of primary endpoint (tumor-centered vs. patient-centered endpoints). A better optimization of G/GEJ cancer treatment allows maximizing patient outcomes. In the perioperative phase, although caution is mandatory, times are changing and tailored strategies could introduce new treatment concepts. Overall, MSI-H G/GEJ cancer patients possess the characteristics to be the subgroup that could receive the most benefit from a tailored approach.
Collapse
Affiliation(s)
- Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Sara Fancelli
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Eleonora Buttitta
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Gianmarco Vannini
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Alessia Guidolin
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Costanza Winchler
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Enrico Caliman
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Agnese Vannini
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Elisa Giommoni
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Marco Brugia
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Digestive Surgery, Careggi University Hospital, 50134 Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| | | | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
18
|
Zhao H, Gao J, Bai B, Wang R, Yu J, Lu H, Cheng M, Liang P. Development and external validation of a non-invasive imaging biomarker to estimate the microsatellite instability status of gastric cancer and its prognostic value: The combination of clinical and quantitative CT-imaging features. Eur J Radiol 2023; 162:110719. [PMID: 36764010 DOI: 10.1016/j.ejrad.2023.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE Molecular testing for microsatellite instability (MSI) status plays a vital role in the clinical management of gastric cancer (GC). Nevertheless, challenges of routinely applied technology for MSI determination exist. This study aimed to develop and validate a non-invasive imaging biomarker for MSI assessment in GC and explore its prognostic value. METHODS We retrospectively recruited 396 GC patients with pretreatment CT images from a single center and a public database and divided them into an original cohort (n = 356) and an external validation cohort (n = 40). The SMOTE algorithm was used to generate a balanced training cohort (n = 192) and the independent radiomics model, clinical model, and radiomics-clinic combined model were constructed for determining MSI status. The models' discrimination, calibration, clinical usefulness, and prognosis significance were evaluated by AUC, calibration, decision curve analyses, and Kaplan-Meier curve analysis, respectively. RESULTS The radiomics-clinic combined model derived from clinical and quantitative CT-based "Radscore" exhibited the best discriminatory abilities of MSI status in all cohorts, with AUCs of 0.836 (95% CI, 0.780-0.893) in the training cohort, 0.834 (95% CI, 0.688-0.981) in the external validation cohort, and 0.750 (95% CI, 0.682-0.819) in the original cohort, respectively. Meanwhile, the combined model demonstrated goodness of fitness, higher clinical net benefits, and significant positive integrated discrimination improvement compared with any independent model. While it showed no significant overall survival- or progression-free survival-based risk stratification ability (p > 0.05). CONCLUSIONS The radiomics-clinic combined model could be a potential non-invasive biomarker for MSI status in GC, which help clinical decision-making, nevertheless, provided limited prognostic ability.
Collapse
Affiliation(s)
- Huiping Zhao
- Department of CT, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an 710068, Shaanxi Province, China.
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor & Henan International Joint Laboratory of Medical Imaging & Henan Engineering Laboratory of Tumor Imaging & Henan Key Laboratory of CT Imaging & Zhengzhou Key Laboratory of Medical Imaging Technology and Diagnosis, Zhengzhou 450052, Henan Province, China
| | - Biaosheng Bai
- Department of Radiotherapy, People's Hospital of Bayingolin Mongol Autonomous Prefecture, Korla 841000, Xinjiang, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor & Henan International Joint Laboratory of Medical Imaging & Henan Engineering Laboratory of Tumor Imaging & Henan Key Laboratory of CT Imaging & Zhengzhou Key Laboratory of Medical Imaging Technology and Diagnosis, Zhengzhou 450052, Henan Province, China
| | - Juan Yu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hao Lu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor & Henan International Joint Laboratory of Medical Imaging & Henan Engineering Laboratory of Tumor Imaging & Henan Key Laboratory of CT Imaging & Zhengzhou Key Laboratory of Medical Imaging Technology and Diagnosis, Zhengzhou 450052, Henan Province, China
| | - Ming Cheng
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor & Henan International Joint Laboratory of Medical Imaging & Henan Engineering Laboratory of Tumor Imaging & Henan Key Laboratory of CT Imaging & Zhengzhou Key Laboratory of Medical Imaging Technology and Diagnosis, Zhengzhou 450052, Henan Province, China; Department of Medical Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Pan Liang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor & Henan International Joint Laboratory of Medical Imaging & Henan Engineering Laboratory of Tumor Imaging & Henan Key Laboratory of CT Imaging & Zhengzhou Key Laboratory of Medical Imaging Technology and Diagnosis, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
19
|
Marano L, Carbone L, Poto GE, Restaino V, Piccioni SA, Verre L, Roviello F, Marrelli D. Extended Lymphadenectomy for Gastric Cancer in the Neoadjuvant Era: Current Status, Clinical Implications and Contentious Issues. Curr Oncol 2023; 30:875-896. [PMID: 36661716 PMCID: PMC9858164 DOI: 10.3390/curroncol30010067] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Despite its decreasing incidence, gastric cancer remains an important global healthcare problem due to its overall high prevalence and high mortality rate. Since the MAGIC and FNLCC/FFCD trials, the neoadjuvant chemotherapy has been recommended throughout Europe in gastric cancer. Potential benefits of preoperative treatments include a higher rate of R0 resection achieved by downstaging the primary tumor, a likely effect on micrometastases and isolated tumor cells in the lymph nodes, and, as a result, improved cancer-related survival. Nevertheless, distortion of anatomical planes of dissection, interstitial fibrosis, and sclerotic tissue changes may increase surgical difficulty. The collection of at least twenty-five lymph nodes after neoadjuvant therapy would seem to ensure removal of undetectable node metastasis and reduce the likelihood of locoregional recurrence. It is not what you take but what you leave behind that defines survival. Therefore, para-aortic lymph node dissection is safe and effective after neoadjuvant chemotherapy, in both therapeutic and prophylactic settings. In this review, the efficacy of adequate lymph node dissection, also in a neoadjuvant setting, has been investigated in the key studies conducted to date on the topic.
Collapse
Affiliation(s)
| | - Ludovico Carbone
- Unit of Surgical Oncology, Department of Medicine Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Zeng Q, Zhu Y, Li L, Feng Z, Shu X, Wu A, Luo L, Cao Y, Tu Y, Xiong J, Zhou F, Li Z. CT-based radiomic nomogram for preoperative prediction of DNA mismatch repair deficiency in gastric cancer. Front Oncol 2022; 12:883109. [PMID: 36185292 PMCID: PMC9523515 DOI: 10.3389/fonc.2022.883109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDNA mismatch repair (MMR) deficiency has attracted considerable attention as a predictor of the immunotherapy efficacy of solid tumors, including gastric cancer. We aimed to develop and validate a computed tomography (CT)-based radiomic nomogram for the preoperative prediction of MMR deficiency in gastric cancer (GC).MethodsIn this retrospective analysis, 225 and 91 GC patients from two distinct hospital cohorts were included. Cohort 1 was randomly divided into a training cohort (n = 176) and an internal validation cohort (n = 76), whereas cohort 2 was considered an external validation cohort. Based on repeatable radiomic features, a radiomic signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. We employed multivariable logistic regression analysis to build a radiomics-based model based on radiomic features and preoperative clinical characteristics. Furthermore, this prediction model was presented as a radiomic nomogram, which was evaluated in the training, internal validation, and external validation cohorts.ResultsThe radiomic signature composed of 15 robust features showed a significant association with MMR protein status in the training, internal validation, and external validation cohorts (both P-values <0.001). A radiomic nomogram incorporating a radiomic signature and two clinical characteristics (age and CT-reported N stage) represented good discrimination in the training cohort with an AUC of 0.902 (95% CI: 0.853–0.951), in the internal validation cohort with an AUC of 0.972 (95% CI: 0.945–1.000) and in the external validation cohort with an AUC of 0.891 (95% CI: 0.825–0.958).ConclusionThe CT-based radiomic nomogram showed good performance for preoperative prediction of MMR protein status in GC. Furthermore, this model was a noninvasive tool to predict MMR protein status and guide neoadjuvant therapy.
Collapse
Affiliation(s)
- Qingwen Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Leyan Li
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zongfeng Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xufeng Shu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ahao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lianghua Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Yi Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
- *Correspondence: Zhengrong Li, ; Yi Cao,
| | - Yi Tu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbo Xiong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
- Institute of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhengrong Li, ; Yi Cao,
| |
Collapse
|
21
|
Yang G. Microsatellite instability/mismatch repair deficiency and activation of the Wnt/β-catenin signaling pathway in gastric adenocarcinoma of the fundic gland: A case report. Medicine (Baltimore) 2022; 101:e30311. [PMID: 36042639 PMCID: PMC9410697 DOI: 10.1097/md.0000000000030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RATIONALE Gastric adenocarcinoma of the fundic gland is a rare, well-differentiated variant of gastric adenocarcinoma, which has been proposed as a novel disease entity. As a result of mismatch repair deficiency, microsatellite instability has been frequently observed in various human cancers and widely performed in the area of cancer pathogenesis. Herein, we report a case of gastric adenocarcinoma of fundic gland presented with microsatellite instability phenotype. PATIENT CONCERNS A 46-year-old man was referred to our hospital for abdominal distension and pain. DIAGNOSIS The patient contained 3 tumor lesions with different degrees of histologic differentiation and microsatellite instability. The lesions were located in the upper third of the stomach. The tumor size was 55 mm. Macroscopically, tumor showed an ulcerative type. In terms of depth of invasion, tumor lesion invaded into subserosa with lymphatic invasion. In addition, this patient did not present GNAS mutation but harbored AXIN2 mutation. By immunohistochemistry, the expression level of β-catenin protein in the nucleus of the carcinoma cells was obviously higher than that in normal nucleus. Compared with microsatellite instability-low lesion, PD-1, PD-L1, and CD8 were positive in the microsatellite instability-high lesions. INTERVENTIONS The patient underwent surgical resection and postoperative chemotherapy. OUTCOMES The patient experienced distant metastasis and died from severe complications after 6 months of treatment. LESSONS These results suggested that the mutation of Wnt component genes associated with Wnt/β-catenin signaling pathway activation may play a role in promoting the occurrence of gastric adenocarcinoma of fundic gland. This is the first report of a gastric adenocarcinoma of fundic gland with microsatellite instability. These findings modify our understanding of the pathophysiology of gastric adenocarcinoma of fundic gland.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama university, Okayama, Japan
- Department of Pathology, Mudanjiang Medical University, Mudanjiang, China
- *Correspondence: Guang Yang, 2-5-1, Shikata-cho, Kita-ku, Okayama-city, Okayama 700-8558, Japan (e-mail: )
| |
Collapse
|
22
|
Predicting response to immunotherapy in gastric cancer via multi-dimensional analyses of the tumour immune microenvironment. Nat Commun 2022; 13:4851. [PMID: 35982052 PMCID: PMC9388563 DOI: 10.1038/s41467-022-32570-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/06/2022] [Indexed: 11/09/2022] Open
Abstract
A single biomarker is not adequate to identify patients with gastric cancer (GC) who have the potential to benefit from anti-PD-1/PD-L1 therapy, presumably owing to the complexity of the tumour microenvironment. The predictive value of tumour-infiltrating immune cells (TIICs) has not been definitively established with regard to their density and spatial organisation. Here, multiplex immunohistochemistry is used to quantify in situ biomarkers at sub-cellular resolution in 80 patients with GC. To predict the response to immunotherapy, we establish a multi-dimensional TIIC signature by considering the density of CD4+FoxP3−PD-L1+, CD8+PD-1−LAG3−, and CD68+STING+ cells and the spatial organisation of CD8+PD-1+LAG3− T cells. The TIIC signature enables prediction of the response of patients with GC to anti-PD-1/PD-L1 immunotherapy and patient survival. Our findings demonstrate that a multi-dimensional TIIC signature may be relevant for the selection of patients who could benefit the most from anti-PD-1/PD-L1 immunotherapy. Predictive methods for gastric cancer to try and differentiate between potential treatment response are required. Here the authors use a multiplexed immunohistochemistry method to propose the proximity of tumour infiltrating immune cells as an indicator of likely therapeutic response.
Collapse
|
23
|
Cherri S, Oneda E, Noventa S, Melocchi L, Zaniboni A. Microsatellite instability and chemosensitivity in solid tumours. Ther Adv Med Oncol 2022; 14:17588359221099347. [PMID: 35620236 PMCID: PMC9127927 DOI: 10.1177/17588359221099347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/21/2022] [Indexed: 01/01/2023] Open
Abstract
The use of biomarkers that influence a targeted choice in cancer treatments is the future of medical oncology. Within this scenario, in recent years, an important role has been played by knowledge of microsatellite instability (MSI), a molecular fingerprint that identifies defects in the mismatch repair system. This knowledge has changed clinical practice in the adjuvant setting of colon cancer, and its role in the neoadjuvant setting in gastric tumours is becoming increasingly interesting, as well as in endometrial cancers in both early and advanced diseases. Furthermore, it has undoubtedly conditioned the first lines of treatment in the metastatic setting in different types of cancers. The incidence of MSI is different in different cancer types, as well as in early cancers versus metastatic disease. Knowing the incidence of MSI in the various histologies can provide insight into the potential use of this biomarker considering its prognostic value, especially in the early stages, and its predictive role with respect to treatment response. In particular, MSI can guide the choice of chemotherapy treatments in the adjuvant setting of colon and perioperative setting in gastric tumours, which could lead to immunotherapy treatments in these patients in both the early stages of the disease and the metastatic setting where the response to immunotherapy drugs in diseases with MSI is now well established. In this review, we focus on colon, gastric and endometrial cancers, and we briefly discuss other cancer types where MSI could have a potential role in oncological treatment decisions.
Collapse
Affiliation(s)
- Sara Cherri
- Department of Clinical Oncology, Fondazione Poliambulanza, Via bissolati 57, 25124, Brescia, Italy
| | - Ester Oneda
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| | - Silvia Noventa
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| | - Laura Melocchi
- Department of Anatomical Pathology, Fondazione Poliambulanza, Brescia, Italy
| | - Alberto Zaniboni
- Department of Clinical Oncology, Fondazione Poliambulanza, Brescia, Italy
| |
Collapse
|
24
|
Högner A, Moehler M. Immunotherapy in Gastric Cancer. Curr Oncol 2022; 29:1559-1574. [PMID: 35323331 PMCID: PMC8946975 DOI: 10.3390/curroncol29030131] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint inhibition is a new standard of targeted therapy in the treatment of advanced or metastatic gastric cancer (GC) and is represented in various combinations with and without chemotherapy in every therapy line within clinical trials. In advanced adenocarcinoma of GC, gastroesophageal junction cancer (GEJC) and esophageal cancer (EC), the combination of nivolumab and chemotherapy in first-line therapy improves overall survival (OS) in PD-L1 (programmed cell death protein 1)-positive patients with approval in Europe (PD-L1 CPS (combined positivity score) ≥ 5), USA and Taiwan (CHECKMATE-649) and pembrolizumab plus chemotherapy for GEJC and EC in Europe (CPS ≥ 10) and the USA (KEYNOTE-590). Furthermore, pembrolizumab plus trastuzumab and chemotherapy show clear benefits in OS and are approved as first-line treatment of Her2 (human epidermal growth factor receptor-2)-positive tumors in the USA (KEYNOTE-811). Nivolumab demonstrates superior OS regardless of PD-L1 expression in third-line therapy with approval in Japan (ATTRACTION-02) and pembrolizumab prolonged the duration of response in PD-L1 positive patients with approval in the USA in PD-L1 CPS ≥ 1 patients (KEYNOTE-059). This review reflects the rationale and current results of phase II and III clinical trials investigating various immune checkpoint inhibitors targeting PD-L1/1 and CTLA (anticytotoxic T-lymphocyte-associated antigen)-4 in combination with and without chemotherapy and Her2-targeted therapy in GC.
Collapse
Affiliation(s)
- Anica Högner
- Campus Virchow-Klinikum, Medizinische Klinik m.S. Hämatologie, Onkologie und Tumorimmunologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Markus Moehler
- Universitätsmedizin der Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany
| |
Collapse
|
25
|
Bin YL, Hu HS, Tian F, Wen ZH, Yang MF, Wu BH, Wang LS, Yao J, Li DF. Metabolic Reprogramming in Gastric Cancer: Trojan Horse Effect. Front Oncol 2022; 11:745209. [PMID: 35096565 PMCID: PMC8790521 DOI: 10.3389/fonc.2021.745209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, gastric cancer (GC) represents the fifth most common cancer for incidence and the third leading cause of death in developed countries. Despite the development of combination chemotherapies, the survival rates of GC patients remain unsatisfactory. The reprogramming of energy metabolism is a hallmark of cancer, especially increased dependence on aerobic glycolysis. In the present review, we summarized current evidence on how metabolic reprogramming in GC targets the tumor microenvironment, modulates metabolic networks and overcomes drug resistance. Preclinical and clinical studies on the combination of metabolic reprogramming targeted agents and conventional chemotherapeutics or molecularly targeted treatments [including vascular endothelial growth factor receptor (VEGFR) and HER2] and the value of biomarkers are examined. This deeper understanding of the molecular mechanisms underlying successful pharmacological combinations is crucial in finding the best-personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Yu-Ling Bin
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Hong-Sai Hu
- Department of Gastroenterology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Feng Tian
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Zhen-Hua Wen
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
26
|
Li Z, Wang Y, Ying X, Zhang L, Gao X, Jia Y, Zhang L, Wu A, Su X, Ji J. Prognostic and predictive value of mismatch repair deficiency in gastric and gastroesophageal junction adenocarcinoma patients receiving neoadjuvant or adjuvant chemotherapy. J Surg Oncol 2021; 124:1356-1364. [PMID: 34515995 DOI: 10.1002/jso.26669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Evidence is inconclusive regarding the prognostic significance of deficient DNA mismatch repair (dMMR) in gastric and gastroesophageal junction (GEJ) adenocarcinoma patients receiving chemotherapy. We aim to explore such associations with a large cohort. METHODS We retrospectively identified a consecutive cohort of patients who had histology proven gastric or GEJ adenocarcinoma and received neoadjuvant chemotherapy plus surgery or upfront surgery plus adjuvant chemotherapy. MMR status was assessed by immunohistochemistry staining on surgical specimen. The association of MMR status with tumor regression grade (TRG), overall survival (OS), and disease-free survival (DFS) were analyzed. RESULTS In total, 1568 patients received neoadjuvant or adjuvant chemotherapy, of which 128 (8.2%) had dMMR tumors. No significant difference was found in the frequencies of TRG categories between proficient MMR (pMMR) and dMMR tumors (p = .62). Among patients receiving neoadjuvant chemotherapy, dMMR status was associated with better OS (log-rank p = .044) and DFS (log-rank p = .022) in the univariate analysis; this association became nonsignificant after adjusting for pathologic stages and other prognostic factors. Similar results were found for patients receiving adjuvant chemotherapy. CONCLUSIONS dMMR status was not significantly associated with OS and DFS among gastric and GEJ adenocarcinoma patients with neoadjuvant and adjuvant platinum and fluorouracil-based chemotherapy.
Collapse
Affiliation(s)
- Ziyu Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yinkui Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangji Ying
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Zhang
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangyu Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yongning Jia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lianhai Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Aiwen Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
27
|
Cao L, Chen E, Zhang H, Ba Y, Yan B, Li T, Yang J. Construction of a novel methylation-related prognostic model for colorectal cancer based on microsatellite status. J Cell Biochem 2021; 122:1781-1790. [PMID: 34397105 DOI: 10.1002/jcb.30131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
The present study aimed to construct a novel methylation-related prognostic model based on microsatellite status that may enhance the prognosis of colorectal cancer (CRC) from methylation and microsatellite status perspective. DNA methylation and mRNA expression data with clinical information were downloaded from The Cancer Genome Atlas (TCGA) data set. The samples were divided into microsatellite stability and microsatellite instability group, and CIBERSORT was used to assess the immune cell infiltration characteristics. After identifying the differentially methylated genes and differentially expression genes using R packages, the methylation-driven genes were further identified. Prognostic genes that were used to establish the methylation-related risk score model were generated by the univariate and multivariate Cox regression model. Finally, we established and evaluated the methylation-related prognostic model for CRC patients. A total of 69 MDGs were obtained and three of these genes (MIOX, TH, DKFZP434K028) were selected to construct the prognostic model. Patients in the low-risk score group had a conspicuously better overall survival than those in the high-risk score group (p < .0001). The area under the receiver operating characteristic curve for this model was 0.689 at 3 years, 0.674 at 4 years, and 0.658 at 5 years. The Wilcoxon test showed that higher risk score was associated with higher T stage (p = .01), N stages (p = .0028), metastasis (p = .013), and advanced pathological stage (p = .0013). However, the more instability of microsatellite status, the lower risk score of CRC patients (p = .0048). Our constructed methylation-related prognostic model based on microsatellite status presents potential significance in assessing recurrence risk stratification, tumor staging, and immunotherapy for CRC patients.
Collapse
Affiliation(s)
- Lichao Cao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Erfei Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Hezi Zhang
- Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Ying Ba
- Shenzhen Nuclear Gene Technology Co., Ltd., Shenzhen, China
| | - Bianbian Yan
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Tong Li
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| | - Jin Yang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, China
| |
Collapse
|
28
|
Peng Y, Dong S, Yang Z, Song Y, Ding J, Hou D, Wang L, Zhang Z, Li N, Wang H. Identification of docetaxel-related biomarkers for prostate cancer. Andrologia 2021; 53:e14079. [PMID: 34021502 DOI: 10.1111/and.14079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) which was the second commonly diagnosed malignancy, contributed to the top fifth carcinoma death in men. Nevertheless, the main chemotherapeutic agent docetaxel came to failure due to chemoresistance. Recently, increasing evidence suggested the importance of tumour microenvironment (TME) in PCa. The present study aimed to explore the specific TME in PCa and find biomarkers related to both immune infiltration and docetaxel. The docetaxel-specific genes and differential expression genes comparing PCa with normal control samples were derived using DESeq2 and zinbwave with GSE140440, TCGA and GTEx datasets. Immune-infiltration-related genes were identified using CIBERSORT and co-expression network analysis. Key genes related to both docetaxel and immune infiltrating in PCa, including nine genes, namely ZNF486, IFI6, TMOD2, HSPA4L, ITPR1, LRRC37A7P, APOC1, APOBEC3G, and ITGA2, were determined by overlapping above three gene sets. ITGA2 was then defined as the hub gene for its significant prognostic implications. Further validations conducted on Oncomine, GEO, TISIDB, MSigDB, and The Human Protein Atlas confirmed the docetaxel-specific and immune infiltrating characteristics of ITGA2. To sum up, our findings could provide a better understanding of immune infiltrating and docetaxel-resistance in PCa, mostly, ITGA2 could serve as potential prognosis biomarkers and targets for the combination of docetaxel.
Collapse
Affiliation(s)
- Yun Peng
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Shiqiang Dong
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zhikai Yang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Ding
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dingkun Hou
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Zheyu Zhang
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Nan Li
- Tianjin Institute of Urology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
29
|
Puliga E, Corso S, Pietrantonio F, Giordano S. Microsatellite instability in Gastric Cancer: Between lights and shadows. Cancer Treat Rev 2021; 95:102175. [PMID: 33721595 DOI: 10.1016/j.ctrv.2021.102175] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) represents an important contributor to the global burden of cancer, being one of the most common and deadly malignancies worldwide. According to TCGA and ACRG classifications, the microsatellite instable (MSI) group represents a significant subset of GCs and is currently in the limelight of many researches due to its favorable survival outcome in resectable stages compared to microsatellite stable tumors. MSI GCs hypermutated phenotype triggers immunosurveillance, making this molecular subgroup a promising candidate for immune checkpoint inhibitors treatment. Conversely, conflicting outcomes have been reported in chemotherapy settings. Due to the clinical relevance of these observations, in this review we report and discuss the molecular, pathological, prognostic, and predictive features of MSI gastric tumors.
Collapse
Affiliation(s)
- Elisabetta Puliga
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| |
Collapse
|
30
|
Li C, Qiu J, Xue Y. Low-dose Diosbulbin-B (DB) activates tumor-intrinsic PD-L1/NLRP3 signaling pathway mediated pyroptotic cell death to increase cisplatin-sensitivity in gastric cancer (GC). Cell Biosci 2021; 11:38. [PMID: 33579380 PMCID: PMC7881658 DOI: 10.1186/s13578-021-00548-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Emerging evidences suggests that Diosbulbin-B (DB) is effective to improve cisplatin (DDP)-sensitivity in gastric cancer (GC), but its molecular mechanisms were not fully delineated, and this study managed to investigate this issue. Methods Genes expressions were determined by Real-Time qPCR and Western Blot at transcriptional and translational levels. Cell proliferation and viability were evaluated by cell counting kit-8 (CCK-8) and trypan blue staining assay. Annexin V-FITC/PI double staining assay was used to examine cell apoptosis. The Spheroid formation assay was used to evaluated cell stemness. The xenograft tumor-bearing mice models were established, and the tumors were monitored and the immunohistochemistry (IHC) was employed to examine the expressions and localization of Ki67 protein in mice tumor tissues. Results Low-dose DB (12.5 μM) downregulated PD-L1 to activate NLRP3-mediated pyroptosis, and inhibited cancer stem cells (CSCs) properties, to sensitize cisplatin-resistant GC (CR-GC) cells to cisplatin. Mechanistically, the CR-GC cells were obtained, and either low-dose DB or cisplatin alone had little effects on cell viability in CR-GC cells, while low-dose DB significantly induced apoptotic cell death in cisplatin treated CR-GC cells. In addition, low-dose DB triggered cell pyroptosis in CR-GC cells co-treated with cisplatin, which were abrogated by silencing NLRP3. Next, CSCs tended to be enriched in CR-GC cells, instead of their parental cisplatin-sensitive GC (CS-GC) cells, and low-dose DB inhibited spheroid formation and stemness biomarkers (SOX2, OCT4 and Nanog) expressions to eliminate CSCs in CR-GC cells, which were reversed by upregulating programmed death ligand-1 (PD-L1). Furthermore, we proved that PD-L1 negatively regulated NLRP3 in CR-GC cells, and low-dose DB activated NLRP3-mediated pyroptotic cell death in cisplatin treated CR-GC cells by downregulating PD-L1. Also, low-dose DB aggravated the inhibiting effects of cisplatin on tumorigenesis of CR-GC cells in vivo. Conclusions Collectively, low-dose DB regulated intrinsic PD-L1/NLRP3 pathway to improve cisplatin-sensitivity in CR-GC cells, and this study provided alternative therapy treatments for GC.![]()
Collapse
Affiliation(s)
- Chunfeng Li
- Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, Heilongjiang, China
| | - Junqiang Qiu
- Department of Inorganic Chemistry and Analytical Chemistry, School of Pharmacy, Hainan Medical University, Xueyuan Road No. 3, Haikou, 571199, Hainan, China
| | - Yingwei Xue
- Gastrointestinal Surgical Ward, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
31
|
Resende C, Gomes CP, Machado JC. Review: Gastric cancer: Basic aspects. Helicobacter 2020; 25 Suppl 1:e12739. [PMID: 32918356 DOI: 10.1111/hel.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Gastric cancer is still one of the most prevalent and deadliest cancers in the world. Although our knowledge about the disease has progressed extraordinarily, this has not been accompanied by our capacity to effectively treat the disease. In the last years, immunotherapy made its way into the cancer field and was responsible for major changes in the treatment success rates for several cancer types. Although gastric cancer was not among the first successful targets of this type of therapy, the relationship between this type of cancer, immunosurveillance and immunotherapy is now being actively researched. In this article, we review the literature of the past year regarding the relationship between gastric cancer, its immune microenvironment and response to immunotherapy. Published data indicate that the immune microenvironment influences the clinical behaviour of gastric cancer, and is correlated with its histologic and molecular subtypes with an emphasis on the microsatellite- and EBV-positive tumour subgroups. Although the literature regarding response to immunotherapy is scarce, there is good evidence that patient stratification for immunotherapy is going to become a reality in gastric cancer.
Collapse
Affiliation(s)
- Carlos Resende
- i3S - Institute for Research and Innovation in Health and IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Carla Pereira Gomes
- i3S - Institute for Research and Innovation in Health and IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Jose Carlos Machado
- i3S - Institute for Research and Innovation in Health and IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Corallo S, Fucà G, Morano F, Salati M, Spallanzani A, Gloghini A, Volpi CC, Trupia DV, Lobefaro R, Guarini V, Milione M, Cattaneo L, Antista M, Prisciandaro M, Raimondi A, Sposito C, Mazzaferro V, de Braud F, Pietrantonio F, Di Bartolomeo M. Clinical Behavior and Treatment Response of Epstein-Barr Virus-Positive Metastatic Gastric Cancer: Implications for the Development of Future Trials. Oncologist 2020; 25:780-786. [PMID: 32272500 PMCID: PMC7485344 DOI: 10.1634/theoncologist.2020-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-positive gastric cancers (GCs) have been recently identified as a molecular subgroup showing excellent outcomes after surgery for early-stage disease and responsiveness to immune checkpoint inhibitors (ICIs) for metastatic stage. No data are available on the prevalence, clinical characteristics, and prognosis of this subgroup of GCs in the metastatic setting. MATERIALS AND METHODS In this cohort study, we assessed the impact of EBV status in patients with metastatic GC treated with chemotherapy at two Italian institutions. RESULTS Among the 175 cases analyzed, only 7 (4%) were EBV positive and all showed long-lasting and even complete responses to first-line chemotherapy with fluorouracil and platinum and a significantly better survival compared with EBV-negative patients (3-year overall survival: 80% vs. 20.1%; hazard ratio: 0.12). CONCLUSION If confirmed in larger data sets, our results may give a strong rationale for investigating the addition of ICIs to chemotherapy, in order to maximize the chance of achieving durable and complete responses in this uncommon subtype of GC. IMPLICATIONS FOR PRACTICE To date, no data are available on the prevalence and clinical characteristics of patients with Epstein-Barr virus (EBV)-positive metastatic gastric cancer (GC), a specific subtype of GC showing excellent outcomes after radical surgery in early-stage disease and responsiveness to immune checkpoint inhibitors (ICIs). This cohort study showed that patients with EBV-positive GC who did not receive ICIs had exceptional, long-lasting, and even complete responses to first-line chemotherapy with fluorouracil and platinum and a significantly better survival compared with EBV-negative patients. If confirmed in larger series, these results may give a strong rationale for investigating the combination of chemotherapy and ICIs to achieve durable and potentially complete response in this uncommon subtype of GC.
Collapse
Affiliation(s)
- Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Massimiliano Salati
- Oncology and Hematology Department, Division of Oncology, University of Modena and Reggio EmiliaModenaItaly
| | - Andrea Spallanzani
- Oncology and Hematology Department, Division of Oncology, University of Modena and Reggio EmiliaModenaItaly
| | - Annunziata Gloghini
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Chiara Costanza Volpi
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Desirè Viola Trupia
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Vincenzo Guarini
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Massimo Milione
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Laura Cattaneo
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Carlo Sposito
- Hepato‐Pancreatic‐Biliary Surgery and Liver Transplantation Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Vincenzo Mazzaferro
- Hepato‐Pancreatic‐Biliary Surgery and Liver Transplantation Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Oncology and Hemato‐Oncology Department, University of MilanMilanItaly
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Oncology and Hemato‐Oncology Department, University of MilanMilanItaly
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Oncology and Hemato‐Oncology Department, University of MilanMilanItaly
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| |
Collapse
|