1
|
Calzas C, Alkie TN, Suderman M, Embury-Hyatt C, Khatri V, Le Goffic R, Berhane Y, Bourgault S, Archambault D, Chevalier C. M2e nanovaccines supplemented with recombinant hemagglutinin protect chickens against heterologous HPAI H5N1 challenge. NPJ Vaccines 2024; 9:161. [PMID: 39237609 PMCID: PMC11377767 DOI: 10.1038/s41541-024-00944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Current poultry vaccines against influenza A viruses target the globular head region of the hemagglutinin (HA1), providing limited protection against antigenically divergent strains. Experimental subunit vaccines based on the conserved ectodomain of the matrix protein 2 (M2e) induce cross-reactive antibody responses, but fail to fully prevent virus shedding after low pathogenic avian influenza (LPAI) virus challenge, and are ineffective against highly pathogenic avian influenza (HPAI) viruses. This study assessed the benefits of combining nanoparticles bearing three tandem M2e repeats (NR-3M2e nanorings or NF-3M2e nanofilaments) with an HA1 subunit vaccine in protecting chickens against a heterologous HPAI H5N1 virus challenge. Chickens vaccinated with the combined formulations developed M2e and HA1-specific antibodies, were fully protected from clinical disease and mortality, and showed no histopathological lesions or virus shedding, unlike those given only HA1, NR-3M2e, or NF-3M2e. Thus, the combined vaccine formulations provided complete cross-protection against HPAI H5N1 virus, and prevented environmental virus shedding, crucial for controlling avian influenza outbreaks.
Collapse
Affiliation(s)
- Cynthia Calzas
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tamiru N Alkie
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Matthew Suderman
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Vinay Khatri
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Ronan Le Goffic
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| | - Steve Bourgault
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Denis Archambault
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, QC, Canada.
| | | |
Collapse
|
2
|
Kapczynski DR, Chrzastek K, Shanmugasundaram R, Zsak A, Segovia K, Sellers H, Suarez DL. Efficacy of recombinant H5 vaccines delivered in ovo or day of age in commercial broilers against the 2015 U.S. H5N2 clade 2.3.4.4c highly pathogenic avian Influenza virus. Virol J 2023; 20:298. [PMID: 38102683 PMCID: PMC10724940 DOI: 10.1186/s12985-023-02254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Avian influenza is a highly contagious, agriculturally relevant disease that can severely affect the poultry industry and food supply. Eurasian-origin H5Nx highly pathogenic avian influenza viruses (HPAIV) (clade 2.3.4.4) have been circulating globally in wild birds with spill over into commercial poultry operations. The negative impact to commercial poultry renewed interest in the development of vaccines against these viruses to control outbreaks in the U.S. METHODS The efficacy of three recombinant H5 vaccines delivered in ovo or day of age were evaluated in commercial broilers challenged with the 2015 U.S. H5N2 clade 2.3.4.4c HPAIV. The recombinant vaccines included an alphavirus RNA particle vaccine (RP-H5), an inactivated reverse genetics-derived (RG-H5) and recombinant HVT vaccine (rHVT-AI) expressing H5 hemagglutinin (HA) genes. In the first experiment, in ovo vaccination with RP-H5 or rHVT-AI was tested against HPAI challenge at 3 or 6 weeks of age. In a second experiment, broilers were vaccinated at 1 day of age with a dose of either 107 or 108 RP-H5, or RG-H5 (512 HA units (HAU) per dose). RESULTS In experiment one, the RP-H5 provided no protection following in ovo application, and shedding titers were similar to sham vaccinated birds. However, when the RP-H5 was delivered in ovo with a boost at 3 weeks, 95% protection was demonstrated at 6 weeks of age. The rHVT-AI vaccine demonstrated 95 and 100% protection at 3 and 6 weeks of age, respectively, of challenged broilers with reduced virus shedding compared to sham vaccinated birds. Finally, when the RP-H5 and rHVT vaccines were co-administered at one day of age, 95% protection was demonstrated with challenge at either 3 or 6 weeks age. In the second experiment, the highest protection (92%) was observed in the 108 RP-H5 vaccinated group. Significant reductions (p < 0.05) in virus shedding were observed in groups of vaccinated birds that were protected from challenge. The RG-H5 provided 62% protection from challenge. In all groups of surviving birds, antibody titers increased following challenge. CONCLUSIONS Overall, these results demonstrated several strategies that could be considered to protected broiler chickens during a H5 HPAI challenge.
Collapse
Affiliation(s)
- Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Klaudia Chrzastek
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Revathi Shanmugasundaram
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Aniko Zsak
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Karen Segovia
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Holly Sellers
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, 956 College Station Road, 30602, Athens, Athens, GA, U.S
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S..
| |
Collapse
|
3
|
Lambert S, Bauzile B, Mugnier A, Durand B, Vergne T, Paul MC. A systematic review of mechanistic models used to study avian influenza virus transmission and control. Vet Res 2023; 54:96. [PMID: 37853425 PMCID: PMC10585835 DOI: 10.1186/s13567-023-01219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.
Collapse
Affiliation(s)
| | - Billy Bauzile
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Benoit Durand
- Epidemiology Unit, Laboratory for Animal Health, French Agency for Food, Environment and Occupational Health and Safety (ANSES), Paris-Est University, Maisons-Alfort, France
| | | | | |
Collapse
|
4
|
Chen YQ, Su GM, Zhang JH, Li B, Ma KX, Zhang X, Huang LH, Liao M, Qi WB. HVT-vectored H7 vaccine protects chickens from lethal infection with the highly pathogenic H7N9 Avian influenza virus. Vet Microbiol 2023; 285:109852. [PMID: 37683421 DOI: 10.1016/j.vetmic.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Since mid-2016, the highly pathogenic H7N9 subtype avian influenza virus (AIV) has threatened both public health and the poultry industry. Although a vaccination strategy has been deemed imperative to manage the virus, the most commonly used inactivated vaccines today are susceptible to interference from maternal antibodies and associated with an over-reliance on humoral immunity. In response, we developed a recombination vaccine with the herpesvirus of turkeys (HVT) as the vector to squeeze HPAI H7N9 and assessed its protective efficiency in immunized chickens. By inserting an enhanced green fluorescent protein (EGFP) expression cassette (i.e., MCMV+EGFP+SV40 polyA) into the HVT065 and HVT066 positions, we obtained the recombinant HVT expressing EGFP (i.e., rHVT-EGFP). Electroporation and EGFP tags improved the efficiency of transfection compared with transfection using expression plasmids without any fluorescent labeling and traditional liposomes. Using limiting dilution analysis and ultrasonic cell disruption techniques, we screened and purified a cell-bound herpes virus based on rHVT-EGFP and consequently constructed a recombinant HVT expressing the hemagglutinin (HA) of H7N9 (i.e., rHVT-H7HA), which was able to proliferate similarly to the parental strain, stably pass for at least 15 generations in vitro, and replicate stably in multiple organs in vivo. After chickens were immunized with rHVT-H7HA, the average antibody titers reached up to 3 log2 at 35 d post-vaccination and remained stable. Those results suggest that rHVT-H7HA can protect chickens against H7N9 with a dose-independent immune protection rate of 90% and significantly reduce the lung virus titer 4 d post-challenge.
Collapse
Affiliation(s)
- Yi-Qun Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Guan-Ming Su
- National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China
| | - Jia-Hao Zhang
- National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China
| | - Bo Li
- National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China
| | - Kai-Xiong Ma
- National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China
| | - Xu Zhang
- National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China
| | - Li-Hong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| | - Wen-Bao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
5
|
Niqueux É, Flodrops M, Allée C, Lebras MO, Pierre I, Louboutin K, Guillemoto C, Le Prioux A, Le Bouquin-Leneveu S, Keïta A, Amelot M, Martenot C, Massin P, Cherbonnel-Pansart M, Briand FX, Schmitz A, Cazaban C, Dauphin G, Delquigny T, Lemière S, Watier JM, Mogler M, Tarpey I, Grasland B, Eterradossi N. Evaluation of three hemagglutinin-based vaccines for the experimental control of a panzootic clade 2.3.4.4b A(H5N8) high pathogenicity avian influenza virus in mule ducks. Vaccine 2023; 41:145-158. [PMID: 36411134 DOI: 10.1016/j.vaccine.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
In France during winter 2016-2017, 487 outbreaks of clade 2.3.4.4b H5N8 subtype high pathogenicity (HP) avian influenza A virus (AIV) infections were detected in poultry and captive birds. During this epizootic, HPAIV A/decoy duck/France/161105a/2016 (H5N8) was isolated and characterized in an experimental infection transmission model in conventional mule ducks. To investigate options to possibly protect such ducks against this HPAIV, three vaccines were evaluated in controlled conditions. The first experimental vaccine was derived from the hemagglutinin gene of another clade 2.3.4.4b A(H5N8) HPAIV. It was injected at three weeks of age, either alone (Vac1) or after a primer injection at day-old (Vac1 + boost). The second vaccine (Vac2) was a commercial bivalent adjuvanted vaccine containing an expressed hemagglutinin modified from a clade 2.3.2 A(H5N1) HPAIV. Vac2 was administered as a single injection at two weeks of age. The third experimental vaccine (Vac3) also incorporated a homologous 2.3.4.4b H5 HA gene and was administered as a single injection at three weeks of age. Ducks were challenged with HPAIV A/decoy duck/France/161105a/2016 (H5N8) at six weeks of age. Post-challenge virus excretion was monitored in vaccinated and control birds every 2-3 days for two weeks using real-time reverse-transcription polymerase chain reaction and serological analyses (haemagglutination inhibition test against H5N8, H5 ELISA and AIV ELISA) were performed. Vac1 abolished oropharyngeal and cloacal shedding to almost undetectable levels, whereas Vac3 abolished cloacal shedding only (while partially reducing respiratory shedding) and Vac2 only partly reduced the respiratory and intestinal excretion of the challenge virus. These results provided relevant insights in the immunogenicity of recombinant H5 vaccines in mule ducks, a rarely investigated hybrid between Pekin and Muscovy duck species that has played a critical role in the recent H5 HPAI epizootics in France.
Collapse
Affiliation(s)
- Éric Niqueux
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Marion Flodrops
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Chantal Allée
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Marie-Odile Lebras
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Isabelle Pierre
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Katell Louboutin
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Carole Guillemoto
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Aurélie Le Prioux
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Sophie Le Bouquin-Leneveu
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, BP53, 22440 Ploufragan, France
| | - Alassane Keïta
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian Experimentation and Breeding Service, BP53, 22440 Ploufragan, France
| | - Michel Amelot
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian Experimentation and Breeding Service, BP53, 22440 Ploufragan, France
| | - Claire Martenot
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Pascale Massin
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Martine Cherbonnel-Pansart
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - François-Xavier Briand
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | - Audrey Schmitz
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| | | | - Gwenaëlle Dauphin
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - Thomas Delquigny
- Boehringer Ingelheim Animal Health, 29 avenue Tony Garnier, 69007 Lyon, France
| | - Stéphane Lemière
- Boehringer Ingelheim Animal Health, 29 avenue Tony Garnier, 69007 Lyon, France
| | - Jean-Marie Watier
- MSD Santé Animale, 7 rue Olivier de Serres, BP 17144, 49071 Beaucouzé Cedex, France
| | - Mark Mogler
- Merck Animal Health, Ames, IA 50010, United States of America
| | - Ian Tarpey
- MSD Animal Health, Walton Manor, Milton Keynes MK7 7AJ, United Kingdom
| | - Béatrice Grasland
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France.
| | - Nicolas Eterradossi
- Anses (French Agency for Food, Environmental and Occupational Health & Safety), Ploufragan-Plouzané-Niort Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, BP53, 22440 Ploufragan, France
| |
Collapse
|
6
|
Hein R, Koopman R, García M, Armour N, Dunn JR, Barbosa T, Martinez A. Review of Poultry Recombinant Vector Vaccines. Avian Dis 2021; 65:438-452. [PMID: 34699141 DOI: 10.1637/0005-2086-65.3.438] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
The control of poultry diseases has relied heavily on the use of many live and inactivated vaccines. However, over the last 30 yr, recombinant DNA technology has been used to generate many novel poultry vaccines. Fowlpox virus and turkey herpesvirus are the two main vectors currently used to construct recombinant vaccines for poultry. With the use of these two vectors, more than 15 recombinant viral vector vaccines against Newcastle disease, infectious laryngotracheitis, infectious bursal disease, avian influenza, and Mycoplasma gallisepticum have been developed and are commercially available. This review focuses on current knowledge about the safety and efficacy of recombinant viral vectored vaccines and the mechanisms by which they facilitate the control of multiple diseases. Additionally, the development of new recombinant vaccines with novel vectors will be briefly discussed.
Collapse
Affiliation(s)
- Ruud Hein
- Consultant Poultry Diseases Molecular Vaccine Technology Georgetown DE 19947,
| | - Rik Koopman
- MSD Animal Health/Intervet International BV, Boxmeer, 5831 AN Netherlands
| | - Maricarmen García
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Natalie Armour
- Poultry Research and Diagnostic Laboratory, Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39208
| | - John R Dunn
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeast Poultry Research Laboratory, Athens, GA 30602
| | | | - Algis Martinez
- Cobb-Vantress Global Veterinary Services, Siloam Springs, AR 72761
| |
Collapse
|
7
|
El-Shall NA, Awad AM, Sedeik ME. Examination of the protective efficacy of two avian influenza H5 vaccines against clade 2.3.4.4b H5N8 highly pathogenic avian influenza virus in commercial broilers. Res Vet Sci 2021; 140:125-133. [PMID: 34425414 DOI: 10.1016/j.rvsc.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N8 virus of clade 2.3.4.4 was detected in 2017 in Egypt, which is one of the few countries using vaccination as a control strategy in poultry farms. This study was conducted to evaluate the efficacy of the commercial recombinant turkey herpes virus-H5 (rHVT-H5) vaccine (clade 2.2), alone or in combination with commercial inactivated reverse genetically engineered H5N1 vaccine (rgH5N1) (clade 2.2), in preventing the genetically distinct HPAI H5N8 virus of clade 2.3.4.4b in commercial broiler chickens. Four experimental groups of chickens were used as follows: G1, non-vaccinated and non-challenged; G2, non-vaccinated and challenged; G3, vaccinated with rHVT-H5; and G4, prime-boost vaccinated with rHVT-H5/rgH5N1. For challenge with the Egyptian HPAI H5N8 (2.3.4.4b) virus, the groups were divided into two subgroups (A and B); chickens in subgroups A were challenged at the age of 28 days, whereas those in subgroups B were challenged at the age of 35 days. Results showed that a protective efficacy (survival rate) of 40%-50% was obtained in the vaccinated subgroups A. By delaying challenge for 1 week (subgroups B), a single rHVT-H5 vaccination provided 80% protection, whereas prime-boost vaccination induced full protection and reduced viral shedding very efficiently (1/10 birds and only detected on the 3rd day post challenge) against HPAI H5N8 virus (2.3.4.4b). Moreover, body weight loss improved from 31.39% and 43.65% in G3A and G4A, respectively, to 16.34% and 7.7% in G3B and G4B, respectively. The HI titers obtained in G3A and G4A on the challenge day (28th d) using H5N8 antigen were 3 and 3.75 log2 (p > 0.05), respectively, whereas those in G3B and G4B on the challenge day (35th d) were 6.25 and 6 log2 (p > 0.05), respectively, which increased post-challenge in all vaccinated subgroups. Therefore, the dual use of vectored rHVT-H5 and inactivated rgH5N1 vaccines in the vaccination schedule in poultry farms is the most efficient tool for preventing the disease (mortality and viral shedding) caused by the genetically distinct virus (clade 2.3.3.4b HPAI H5N8) in combination with strict biosecurity and sanitary measures.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Abis 10, 21944, Egypt.
| | - Ashraf M Awad
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Abis 10, 21944, Egypt
| | - Mahmoud E Sedeik
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Abis 10, 21944, Egypt
| |
Collapse
|
8
|
Rauw F, Ngabirano E, Gardin Y, Palya V, Lambrecht B. Effectiveness of a Simultaneous rHVT-F(ND) and rHVT-H5(AI) Vaccination of Day-Old Chickens and the Influence of NDV- and AIV-Specific MDA on Immune Response and Conferred Protection. Vaccines (Basel) 2020; 8:vaccines8030536. [PMID: 32948028 PMCID: PMC7565404 DOI: 10.3390/vaccines8030536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
The recombinant herpesvirus of turkey (rHVT) vaccines targeting Newcastle disease (ND) and H5Nx avian influenza (AI) have been demonstrated efficient in chickens when used individually at day-old. Given the practical field constraints associated with administering two vaccines separately and in the absence of a currently available bivalent rHVT vector vaccine expressing both F(ND) and H5(AI) antigens, the aim of this study was to investigate whether interference occurs between the two vaccines when simultaneously administered in a single shot. The studies have been designed to determine (i) the ND and AI-specific protection and antibody response conferred by these vaccines inoculated alone or in combination at day-old, (ii) the influence of maternally-derived antibodies (MDA), and (iii) the potential interference between the two vaccine. Our results demonstrate that their combined administration is efficient to protect chickens against clinical signs of velogenic Newcastle disease virus (vNDV) and H5-highly pathogenic avian influenza virus (HPAIV) infections. Viral shedding following co-vaccination is also markedly reduced, while slightly lower NDV- and AIV-specific antibody responses are observed. NDV- and AIV-specific MDA show negative effects on the onset of the specific antibody responses. However, if AIV-specific MDA reduce the protection against H5-HPAIV induced by rHVT-H5(AI) vaccine, it was not observed for ND.
Collapse
Affiliation(s)
- Fabienne Rauw
- Sciensano, Avian Virology and Immunology Service, Groeselenberg 99, 1180 Brussels, Belgium; (E.N.); (B.L.)
- Correspondence:
| | - Eva Ngabirano
- Sciensano, Avian Virology and Immunology Service, Groeselenberg 99, 1180 Brussels, Belgium; (E.N.); (B.L.)
| | - Yannick Gardin
- CEVA Santé Animale, Avenue de la Ballastière 10, 33 500 Libourne, France;
| | - Vilmos Palya
- CEVA Phylaxia, Szállás utca 5, 1107 Budapest, Hungary;
| | - Bénédicte Lambrecht
- Sciensano, Avian Virology and Immunology Service, Groeselenberg 99, 1180 Brussels, Belgium; (E.N.); (B.L.)
| |
Collapse
|
9
|
Nassif S, Zaki F, Mourad A, Fouad E, Saad A, Setta A, Felföldi B, Mató T, Kiss I, Palya V. Herpesvirus of turkey-vectored avian influenza vaccine offers cross-protection against antigenically drifted H5Nx highly pathogenic avian influenza virus strains. Avian Pathol 2020; 49:547-556. [PMID: 32615785 DOI: 10.1080/03079457.2020.1790502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Among the different vaccines used to control highly pathogenic avian influenza, an HVT vector-based live recombinant avian influenza vaccine, expressing the haemagglutinin gene of an H5N1 HPAI virus, has been used by the poultry industry since 2012. The objective of the study presented in this paper was to test the efficacy of the commercially available HVT-based recombinant H5 vaccine against antigenically drifted H5N1, H5N8 and H5N2 HPAI virus circulating in Egypt recently. Groups of SPF chicks vaccinated at day-old with the HVT-based recombinant H5 vaccine were challenged, along with non-vaccinated controls, with 106 EID50 each of H5N1, H5N2 or H5N8 HPAI virus at 28 days of age. The birds were monitored for clinical protection and virus shedding during a 10-day postchallenge period. Clinical protection levels were 90%, 90% and 80% following challenge with the H5N1, H5N2 and H5N8 field isolates, respectively. Challenge virus shedding was significantly reduced in vaccinated groups, with up to 40%, 30% and 20% of non-shedders, and 3.8, 3.3 and 2.8 log10 reduction in the amount of excreted virus following challenge with H5N1, H5N2 and H5N8 viruses, respectively. Analyses of the amino acid sequences of the HA proteins of challenge viruses and serological relatedness with the vaccine insert revealed significant antigenic divergences between the vaccine and the challenge viruses. These results provide further evidence of the potential of HVT-based recombinant H5 vaccine to provide cross-protection against antigenically drifted HPAI H5Nx viruses with strong control on virus shedding.
Collapse
Affiliation(s)
- Samir Nassif
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Farid Zaki
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Ahlam Mourad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Esraa Fouad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Asem Saad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Ahmed Setta
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Ceva-Phylaxia, Ceva Sante Animale, Cairo, Egypt
| | | | - Tamás Mató
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| | - Istvan Kiss
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| | - Vilmos Palya
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| |
Collapse
|
10
|
Estimating the introduction time of highly pathogenic avian influenza into poultry flocks. Sci Rep 2020; 10:12388. [PMID: 32709965 PMCID: PMC7381656 DOI: 10.1038/s41598-020-68623-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
The estimation of farm-specific time windows for the introduction of highly-pathogenic avian influenza (HPAI) virus can be used to increase the efficiency of disease control measures such as contact tracing and may help to identify risk factors for virus introduction. The aims of this research are to (1) develop and test an accurate approach for estimating farm-specific virus introduction windows and (2) evaluate this approach by applying it to 11 outbreaks of HPAI (H5N8) on Dutch commercial poultry farms during the years 2014 and 2016. We used a stochastic simulation model with susceptible, infectious and recovered/removed disease stages to generate distributions for the period from virus introduction to detection. The model was parameterized using data from the literature, except for the within-flock transmission rate, which was estimated from disease-induced mortality data using two newly developed methods that describe HPAI outbreaks using either a deterministic model (A) or a stochastic approach (B). Model testing using simulated outbreaks showed that both method A and B performed well. Application to field data showed that method A could be successfully applied to 8 out of 11 HPAI H5N8 outbreaks and is the most generally applicable one, when data on disease-induced mortality is scarce.
Collapse
|
11
|
Vuong CN, Chou WK, Briggs W, Faulkner O, Wolfenden A, Jonas M, Kapczynski DR, Hargis BM, Bielke LR, Berghman LR. Crude Inactivated Influenza A Virus Adjuvated with a Bispecific Antibody Complex Targeting Chicken CD40 and AIV M2e Confers Protection Against Lethal HPAI Challenge in Chickens. Monoclon Antib Immunodiagn Immunother 2018; 37:245-251. [PMID: 30592705 DOI: 10.1089/mab.2018.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vivo targeting an immunogen to the CD40 receptor expressed on professional antigen-presenting cells (APCs) dramatically enhances speed, magnitude, and quality of the immune response. Our previous evaluation of this strategy in poultry was limited to immunogenicity studies using CD40-targeted synthetic peptides, which demonstrated significant antigen-specific serum IgG and tracheal IgA levels <1 week after primary administration. In this study, this antibody-guided immunization strategy was modified to permit incorporation of inactivated highly pathogenic avian influenza virions (in lieu of short synthetic peptides) as the immunogen by simply mixing a bispecific antibody complex (anti-CD40/M2e) with crude inactivated virus before injection. Adjuvated avian influenza virus (AIV) induced significant hemagglutination inhibition titers up to 6 weeks postimmunization. In efficacy studies, administration of a single vaccine dose yielded 56%-64% survival against challenge with highly pathogenic H5N1, and 100% protection was achieved upon boosting. These results represent a feasible strategy to effectively target whole inactivated influenza A virus to chicken APCs, regardless of AIV clade and without phenotyping or purifying the virus from crude allantoic fluid. The data represent proof of principle for the unique prophylactic efficacy and versatility of a CD40-targeting adjuvation strategy that can in principle also be harnessed in other poultry vaccines.
Collapse
Affiliation(s)
- Christine N Vuong
- 1 Department of Veterinary Pathobiology and Texas A&M University , College Station, Texas
| | - Wen-Ko Chou
- 2 Department of Poultry Science, Texas A&M University , College Station, Texas
| | - Whitney Briggs
- 3 Department of Animal Science, The Ohio State University , Wooster, Ohio
| | - Olivia Faulkner
- 4 Department of Poultry Science, University of Arkansas , Fayetteville, Arkansas
| | - Amanda Wolfenden
- 4 Department of Poultry Science, University of Arkansas , Fayetteville, Arkansas
| | - Melina Jonas
- 5 Medion Vaccine Company , Bandung, West Java, Indonesia
| | - Darrell R Kapczynski
- 6 Exotic and Emerging Viral Diseases Research Unit, U.S. Department of Agriculture, Agricultural Research Service , Athens, Georgia
| | - Billy M Hargis
- 4 Department of Poultry Science, University of Arkansas , Fayetteville, Arkansas
| | - Lisa R Bielke
- 3 Department of Animal Science, The Ohio State University , Wooster, Ohio
| | - Luc R Berghman
- 1 Department of Veterinary Pathobiology and Texas A&M University , College Station, Texas.,2 Department of Poultry Science, Texas A&M University , College Station, Texas
| |
Collapse
|
12
|
Palya V, Tatár-Kis T, Walkóné Kovács E, Kiss I, Homonnay Z, Gardin Y, Kertész K, Dán Á. Efficacy of a Recombinant Turkey Herpesvirus AI (H5) Vaccine in Preventing Transmission of Heterologous Highly Pathogenic H5N8 Clade 2.3.4.4b Challenge Virus in Commercial Broilers and Layer Pullets. J Immunol Res 2018; 2018:3143189. [PMID: 30584541 PMCID: PMC6280313 DOI: 10.1155/2018/3143189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022] Open
Abstract
Outbreaks caused by the highly pathogenic avian influenza virus (HPAIV) H5N8 subtype clade 2.3.4.4 were first reported in 2014 in South Korea then spread very rapidly in Asia, to Europe, and for the first time, to North America. Efficacy of a recombinant HVT-AI (H5) vaccine (rHVT-H5) to provide clinical protection as well as to significantly reduce the shedding of an H5N8 challenge virus has already been demonstrated in SPF chickens. The aim of our studies was to test the efficacy of the same rHVT-H5 vaccine in controlling the transmission of a recent Hungarian HPAIV H5N8 challenge virus in commercial chickens. Broilers and layers were vaccinated at day old according to the manufacturer's recommendation and then challenged with a 2017 Hungarian HPAIV H5N8 (2.3.4.4b) isolate at 5 or 7 weeks of age, respectively. Evaluation of clinical protection, reduction of challenge virus shedding, and transmission to vaccinated contact birds was done on the basis of clinical signs/mortality, detection, and quantitation of challenge virus in oronasal and cloacal swabs (regularly between 1 and 14 days postchallenge). Measurement of seroconversion to AIV nucleoprotein was used as an indicator of infection and replication of challenge virus. Our results demonstrated that rHVT-H5 vaccination could prevent the development of clinical disease and suppress shedding very efficiently, resulting in the lack of challenge virus transmission to vaccinated contact chickens, regardless the type of birds. Single immunization with the tested rHVT-H5 vaccine proved to be effective to stop HPAIV H5N8 (2.3.4.4b) transmission within vaccinated poultry population under experimental conditions.
Collapse
Affiliation(s)
- Vilmos Palya
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | - Tímea Tatár-Kis
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | - Edit Walkóné Kovács
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | - István Kiss
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | - Zalán Homonnay
- Scientific Support and Investigation Unit, Ceva-Phylaxia, Ceva Animal Health, Budapest 1107, Hungary
| | | | | | - Ádám Dán
- Veterinary Diagnostic Directorate, National Food Chain Safety Office (NEBIH), Budapest 1149, Hungary
| |
Collapse
|
13
|
Balzli CL, Bertran K, Lee DH, Killmaster L, Pritchard N, Linz P, Mebatsion T, Swayne DE. The efficacy of recombinant turkey herpesvirus vaccines targeting the H5 of highly pathogenic avian influenza virus from the 2014–2015 North American outbreak. Vaccine 2018; 36:84-90. [DOI: 10.1016/j.vaccine.2017.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/25/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
14
|
Kapczynski DR, Pantin-Jackwood MJ, Spackman E, Chrzastek K, Suarez DL, Swayne DE. Homologous and heterologous antigenic matched vaccines containing different H5 hemagglutinins provide variable protection of chickens from the 2014 U.S. H5N8 and H5N2 clade 2.3.4.4 highly pathogenic avian influenza viruses. Vaccine 2017; 35:6345-6353. [DOI: 10.1016/j.vaccine.2017.04.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
|
15
|
Bertran K, Balzli C, Lee DH, Suarez DL, Kapczynski DR, Swayne DE. Protection of White Leghorn chickens by U.S. emergency H5 vaccination against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus. Vaccine 2017; 35:6336-6344. [PMID: 28554502 DOI: 10.1016/j.vaccine.2017.05.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/01/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5+rgH5N1 or rHVT-H5+RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Charles Balzli
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| |
Collapse
|
16
|
Ingrao F, Rauw F, van den Berg T, Lambrecht B. Characterization of two recombinant HVT-IBD vaccines by VP2 insert detection and cell-mediated immunity after vaccination of specific pathogen-free chickens. Avian Pathol 2017; 46:289-299. [PMID: 27897452 DOI: 10.1080/03079457.2016.1265083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Infectious bursal disease (IBD) is an avian viral disease that causes severe economic losses in the poultry industry worldwide. The live IBD virus (IBDV) has a potential immunosuppressive effect. Currently available IBDV vaccines have shortcomings, prompting the development of safer and more effective vaccination approaches, including the use of the recombinant turkey herpesvirus vaccine expressing the immunogenic structural VP2 protein of IBDV (recombinant HVT (rHVT)-IBD). The objectives of this study were twofold: (i) to develop in vitro assays and molecular tools to detect the VP2 protein and gene and (ii) to evaluate cell-mediated immunity (CMI) induced by rHVT-IBD vaccination of day-old specific pathogen-free chickens. The VP2 protein expressed by rHVT-IBD-infected chicken embryo fibroblasts was detected using the enzyme-linked immunosorbent assay and immunofluorescence. Using molecular techniques, the VP2 gene was detected in various organs, providing a method to monitor vaccine uptake. rHVT-IBD vaccination induced CMI responses in specific pathogen-free chickens at 5 weeks. CMI was detected by measuring chicken interferon-gamma after ex vivo antigenic stimulation of splenocytes. Moreover, our results showed that the enzyme-linked immunospot approach is more sensitive in detecting chicken interferon-gamma than enzyme-linked immunosorbent assay. The tools developed in this study may be useful in the characterization of new-generation recombinant vaccines and the cellular immune response they induce.
Collapse
Affiliation(s)
- Fiona Ingrao
- a Avian Virology & Immunology Unit , Veterinary and Agrochemical Research Centre , Brussels , Belgium
| | - Fabienne Rauw
- a Avian Virology & Immunology Unit , Veterinary and Agrochemical Research Centre , Brussels , Belgium
| | - Thierry van den Berg
- a Avian Virology & Immunology Unit , Veterinary and Agrochemical Research Centre , Brussels , Belgium
| | - Bénédicte Lambrecht
- a Avian Virology & Immunology Unit , Veterinary and Agrochemical Research Centre , Brussels , Belgium
| |
Collapse
|
17
|
Park YC, Song JM. Preparation and immunogenicity of influenza virus-like particles using nitrocellulose membrane filtration. Clin Exp Vaccine Res 2017; 6:61-66. [PMID: 28168175 PMCID: PMC5292359 DOI: 10.7774/cevr.2017.6.1.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 12/30/2016] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Purpose Nitrocellulose membrane–based filtration system (NCFS) is widely used for protein concentration. In this study, we applied NCFS for production of virus-like particle (VLP) as a vaccine candidate and evaluated yield property and immunogenicity. Materials and Methods Influenza VLPs were generated by baculovirus-insect cell protein expression system. NCFS and sucrose gradient ultracentrifugation were used for purification of VLP. Immunogenicity of VLP was evaluated by animal experiment. Results Influenza VLPs expressing hemagglutinin (HA) and neuraminidase proteins derived from highly pathogenic influenza virus (H5N8) were effectively produced and purified by NCFS. HA activity of VLP which correlated with antigenicity was well conserved during multiple purification steps. This NCFS based purified VLPs induced influenza virus–specific antibody responses. Conclusion Our results indicate that the influenza VLP vaccine could be prepared by NCFS without loss of immunogenicity and elicit antigen-specific immune responses.
Collapse
Affiliation(s)
- Young Chan Park
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| | - Jae Min Song
- Department of Global Medical Science, Sungshin University, Seoul, Korea
| |
Collapse
|